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Abstract

Word classes automatically induced from
distributional evidence have proved use-
ful many NLP tasks including Named En-
tity Recognition, parsing and sentence re-
trieval. The Brown hard clustering algo-
rithm is commonly used in this scenario.
Here we propose to use Latent Dirichlet
Allocation in order to induce soft, prob-
abilistic word classes. We compare our
approach against Brown in terms of ef-
ficiency. We also compare the useful-
ness of the induced Brown and LDA word
classes for the semi-supervised learning of
three NLP tasks: fine-grained Named En-
tity Recognition, Morphological Analysis
and semantic Relation Classification. We
show that using LDA for word class in-
duction scales better with the number of
classes than the Brown algorithm and the
resulting classes outperform Brown on the
three tasks.

1 Introduction

Word classes automatically induced from distri-
butional evidence have proved useful in a vari-
ety of tasks, including Named Entity Recogni-
tion (Miller et al. 2004, Ratinov and Roth 2009,
Chrupata and Klakow 2010, Turian et al. 2010),
parsing (Koo et al. 2008, Suzuki et al. 2009,
Candito and Crabbé 2009) and sentence retrieval
(Momtazi and Klakow 2009).

Brown et al. (1992) introduced an algorithm
which assigns word types to disjoint clusters and
it remains a common choice when a simple way to
automatically obtain word classes is needed. We
present a word class induction method using La-
tent Dirichlet Allocation (Blei et al. 2003) which
has attractive properties compared to Brown:
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e It induces a soft, probabilistic clustering on
both word types and context features.

e It runs in time linear in the number of classes.

The model maps straightforwardly to the standard
document topic model, and thus has the advan-
tage of many existing high quality implementa-
tions. We evaluate the model’s usefulness on fine-
grained Named Entity Recognition (NER), Mor-
phological Analysis (MA) and semantic Relation
Classification (RC) and show that

o while the word classes obtained perform bet-
ter than Brown classes,

e they can be induced in a fraction of the time
necessary to run the equivalent Brown model.

2 Inducing word representations

There is a variety of approaches to inducing word
representations from distributional information. In
this section we briefly review the research most
relevant to our proposed approach.

Hard classes Brown et al. (1992) introduced an
early model which induces a mapping from word
types to classes. It is an agglomerative clustering
algorithm which starts with K classes for the K
most frequent word types and then proceeds by al-
ternately adding the next most frequent word to
the class set and merging the two classes which
result in the least decrease in the mutual informa-
tion between class bigrams. The result is a class
hierarchy with word types at the leaves. The over-
all runtime of the algorithm is O(K?V) where K
is the number of classes and V' the number of word
types. Lin and Wu (2009) use a distributed version
of K-Means to assign words and phrases to hard
classes, and successfully use them as features in a
NER task and in query classification.
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Soft classes A limitation of the Brown model
is that it performs hard clustering of word types,
and cannot be used to disambiguate word occur-
rences based on context. Hidden Markov Mod-
els have been used to induce probabilistic (soft)
word classes: training an HMM on unlabeled data
one obtains classes which correspond to multino-
mial distributions over the vocabulary (Goldwater
and Griffiths 2007, Gao and Johnson 2008). Grif-
fiths et al. (2005) propose a model factored into
an HMM which generates function words and an
LDA topic models which generates content words.
Learning the parameters of a bigram HMM takes
O(K?2N) time where N is the number of word to-
kens in the corpus.

Other approaches Other approaches to induc-
ing word representations do not rely on the notion
of word class. Distributed word embeddings can
be learned using a neural network-bases language
models (Bengio et al. 2006, Collobert and Weston
2008, Mnih and Hinton 2009). Dimensionality re-
duction techniques such as SVD (Schiitze 1995,
Lamar et al. 2010) and LSA (Deerwester et al.
1990) have also been found useful for generating
word representations.

3 Using word representations

Our main motivation for studying word class
induction methods is to use them in a semi-
supervised learning scenario, where word repre-
sentations are induced from a large unlabeled cor-
pus and subsequently used as a source of features
for a supervised model. Turian et al. (2010) com-
pare the effect of using representations based on
Brown classes, the Collobert and Weston (2008)
embeddings and the Mnih and Hinton (2009)
embeddings in learning English syntactic chunk-
ing (CoNLL 2000) and English coarse-grained
Named Entity Recognition (CoNLL 2003). For
both tasks the best representation is fine-grained
Brown classes (3200 and 1000 classes respec-
tively). Combining the Brown features with
distributed embeddings further improves perfor-
mance on NER but not on chunking. Lin and Wu
(2009) use induce word and phrase classes and re-
port results on NER which are higher than Turian
et al. (2010)’s Brown scores, but this research used
700 billion words of web text and needed a cloud
computing infrastructure with 1000 CPUs to run.
It is evident that the Brown clustering algorithm
still provides an extremely competitive baseline
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nearly 20 years after it was proposed.

We thus compare the performance of the LDA
word class model to the Brown model on three
NLP tasks: fine grained Named Entity Recogni-
tion, Morphological Analysis, and Relation Clas-
sification. The first two tasks are difficult due to
the large number of labels and high potential for
ambiguity. The third task is challenging for a dif-
ferent reason: it involves highly abstract semantic
relations, often not obviously inferable from sur-
face lexical clues.

4 LDA model for word class induction

We propose an LDA-based model for word class
induction and contrast its structure, efficiency,
and performance to those exhibited by the Brown
model.

4.1 Weaknesses of Brown

Here we address what we see as two related weak-
nesses of the Brown model. The algorithm’s
quadratic dependence on K makes it inconvenient
to induce more than a few hundred classes: run-
ning a 1.000 class model with a 400.000 vocab-
ulary took over 100 hours. Second, the induced
clustering is hard, and the only way to model am-
biguous word types is to have a separate class for
each kind of ambiguity. This in turn means that
we need to learn a large number of classes, which
exacerbates the problem with inefficiency. Very
fine-grained Brown classes are typically needed
for good performance as shown by Turian et al.’s
results. Our model for word class induction ad-
dresses both of the weaknesses.

4.2 LDA for word class induction

Latent Dirichlet Allocation (LDA) was initially in-
troduced by Blei et al. (2003) in the context of
topic modeling, i.e. finding coherent topics shared
among subsets of a collection of documents. LDA
is a generative, probabilistic hierarchical Bayesian
model which induces a set of latent variables
which correspond to the topics. The topics them-
selves are multinomial distributions over words.
The graphical model is shown in plate notation
in Figure 1. The generative structure of the LDA
model is as follows:

¢y, ~ Dirichlet(3), kel K]
64 ~ Dirichlet(«), de[1,D] W
Zn, ~ Multinomial(6y), ng € [1, Ny

wy,, ~ Multinomial(¢, ), na € [1, Ng]
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Figure 1: LDA plate diagram

The document collection is generated by draw-
ing, for each topic k, a distribution over words ¢y
from a Dirichlet prior with parameters 5. Then
for each document d we draw a multinomial dis-
tribution over topics 65 from a Dirichlet prior
parametrized by o. To generate the n™ word in
document d we draw the topic id z,, from the
document-specific topic distribution 6;, and then
draw the word from the word distribution corre-
sponding to the chosen topic qbznd. Thus each
document is a mixture of different topics, giving
the model the flexibility needed to reflect the top-
ical structures in real-world document collections.
This flexibility has contributed to the popularity
of LDA as a common choice in a wide range of
domains beyond topic modeling. Another impor-
tant reason for LDA’s success is the availability
of efficient and well-understood estimation meth-
ods such as Variational EM (Blei et al. 2003),
and Gibbs sampling (Griffiths and Steyvers 2004).
For both methods efficient, well engineered and
well tested implementations are readily available.
These advantages have led us to try to use a model
equivalent to an LDA topic model in order to in-
duce word classes based on distributional clues.

We associate each word type with a distribution
over latent classes. Each class is in turn a distri-
bution over contextually co-occurring features. In
principle the contextual features could be arbitrary
functions of the context, but to make our model
use exactly the same information as the Brown
model, we will restrict them to the word’s imme-
diate left and right neighbors. A direct mapping to
document topic model can be seen:

Topic model | Word class induction

Document Word type
Word Context feature
Topic Word class

An example “document” in our scenario, corre-
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sponding to the word type Krzysztof looks like the
following:

Bledkowskii Kieslowskir Kieslowskip
Rutkowskirp Sikorskir and; arguesy,
arguesp, director;, director; editsp saidr

The subscript on the word indicates whether it
is a left or right context feature, i.e. whether it ap-
pears to left or to the right of Krzysztof in the cor-
pus.

Thus, strictly speaking our model does not gen-
erate the actual sequence of words in the corpus,
but rather a collection of “documents” such as the
above, or equivalently, a table listing bigram co-
occurrence counts for each word type.

The generative structure of the model corre-
sponds exactly to a standard LDA topic model in
equation 1. Now K is the number of latent classes,
D is the vocabulary size, and Ny is the number of
left and right contexts in which word type d ap-
pears, zp, is the class of word type d in the nf?
context, and fi,, is the n! context feature of word
type d.

Once trained, the parameters provide two types
of word representations. Each 6, gives the latent
class probability distribution given a word type.
Each ¢}, gives the feature distribution given a la-
tent class. Thus the model provides a probabilis-
tic representation for word types independently of
their context, and also for contexts independently
of the word type. This is a more powerful repre-
sentation than hard word clustering: (i) soft clus-
tering allows the modeling of ambiguity, (ii) ad-
ditional source of information is available which
helps determine the class of a word from its con-
text.

Figure 2 shows an example of how the classes
discovered by the model deal with ambiguity. The
pie charts depict the induced class distributions
for two word types Martin and Cameron. These
words are ambiguous in a similar way: they are
mostly used as (i) first names or (ii) family names,
and (iii) additionally can appear as part of a name
of a company or place. This similarity of usage
is reflected in closeness of the distributions over
the induced classes for those words. Thus the first
class (colored red) is associated with many fam-
ily names, the second (blue) with titles and first
names, and the third (green) with companies and
locations. This correspondence is certainly not



Cameron

Martin

chief Gingrich Martin Newt Van Scott Roberts
Mr. Ms. John Robert President Dr. David

Figure 2: Class distributions for the word types
Martin and Cameron. Also shown are the most
common word types for the three largest.

Newt, Speaker
says, Chairman

executive, operating
Clinton, Dole, J.

Figure 3: Most frequent left and right context-
word features co-occurring with the three classes
from Figure 2

perfect (e.g. the first class is also associated with
the word chief) but it is suggestive that soft LDA-
based clustering can successfully model and dis-
cover this type of systematic shared ambiguities.

We can use the same three classes to illustrate
the second advantage of LDA word classes men-
tioned above: we can obtain information about the
class of a particular token based on its context.
Thus even for a rare word which did not appear in
the corpus used for word class induction, we can
still find out what word classes it is associated with
just by consulting the ¢ table and retrieving the
classes strongly associated with the context fea-
tures. Figure 3 shows the left and right context
features which co-occurred most frequently with
the same three classes illustrated in Figure 2. For
example the second (blue) class, which contains
titles and first names, is associated with left con-
texts such as says and Chairman and right contexts
such as Clinton and Dole.

5 Experimental evaluation

In order to evaluate the LDA word class induction
model we assess two of its aspects: (i) we compare
its efficiency to that of Brown clustering, and (ii)
we compare the performance of the induced word
classes to those obtained by Brown clustering in
two difficult sequence labeling tasks and one clas-
sification task.
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Figure 4: Brown and LDA run times

5.1 Efficiency

Two main approaches have been used to train LDA
topic models: variational EM (Blei et al. 2003)
and Gibbs sampling (Griffiths and Steyvers 2004).
Both scale linearly with the number of topics. This
property is one of the main advantages of the LDA
word class induction model over HMM or Brown
clustering. In this section we show that also in
practice this means that LDA word classes can be
induced much faster than equivalently performing
Brown classes.

As training data for both models we use the
North American News Text Corpus (over 60M
words). For both models we only keep bigrams
which occur at least 3 times. The resulting vocab-
ulary is over 380K word types. The LDA class
induction model scales as O(KN) where N is
the sum of all feature counts. Since we discard
rare bigrams with frequencies under m, we can
scale the remaining feature counts by 1/m and
obtain an equivalent model, while reducing run-
time by m times. For both models we induce 50,
100, 200, 500 and 1000 classes. For Brown we
run the implementation of Liang (2005) until ter-
mination. For LDA we run 1000 iterations of a
collapsed Gibbs sampler from Mallet (McCallum
2002). Figure 4 shows how the models scale with
growing value of K on a log-log plot. Brown ter-
minates in 20 minutes for K'=50, but takes over
110 hours for K=1000, while LDA takes between
1 hour for K=50 and 4 hours for K=1000.



5.2 Performance

Another advantage of LDA word classes over hard
clusters is the increased representational power.
Ambiguity can be modeled more compactly, and
there are two sources of information to draw on
when deciding on the most likely class of a word
in context: the word type identity, and the lo-
cal context features. In this section we show that
these theoretical advantages translate into perfor-
mance on fine-grained Named Entity Recognition,
Morphological Analysis and on semantic Relation
Classification.

In each of the tasks we tried to use the Brown
classes and the LDA classes in an optimal way by
taking advantage of the strength of each type of
representation, and also to adapt the feature sets
to the specifics of the task. We followed previ-
ous work when available and ran exploratory ex-
periments with different feature combinations on
the development data. The details of the final fea-
ture sets are given in the respective sections but
in general we make use of the hierarchical nature
of Brown classes by using them at several levels
of granularity. For LDA classes we exploit their
probabilistic softness by including feature proba-
bility or rank, and include classes inferred from
context words when appropriate.

5.2.1 Named entity recognition

Named-entity recognition is one of the most com-
monly needed NLP task. Many evaluations have
focused on learning the coarse-grained CoNLL
and MUC entity labels (person, organization and
location). Here we evaluate on the more chal-
lenging fine-grained entities from the BBN corpus
(Weischedel and Brunstein 2005). We use sections
2 to 21 as training data, section 22 for develop-
ment and section 23 for final evaluation. We keep
all labels appearing at least 100 times in training
data. Less frequent labels we map to an exist-
ing more generic label if possible (e.g. LOCA-
TION:LAKE_SEA_OCEAN +— LOCATION:OTHER),
otherwise we discard them. We also discard all
description labels which are not proper named en-
tities. We are left with 40 labels, shown in Table 1.
We convert the labeling to the BIO format
which encodes chunking information into token-
level labels: each label is prefixed with B if it starts
a new chunk, I if it continues the previous chunk,
or O if it does not belong to a named entity chunk.
Thus we end up with 81 labels after conversion.

lowercase
wordshape

Map all characters to lower case

Encodes spelling of a token by map-
ping sequences of upper case letters
to X, lower case letters to x, digits to
0, hyphens and underlines to them-
selves. For example IJCNLP-2011

maps to X-0
suffix,, The n characters from the end of the
token
rank” f(z)| The n'™ class in the ranking ordered
by the value of the function f
prefix, The first n characters from the start
z Class id

Table 2: Meaning of feature functions

Baseline As a baseline we use a sequence-
perceptron labeler (Collins 2002) with the fol-
lowing features: {w_q, w_1, wy, lowercase(wy),
wordshape(wp),  suffix(wg),  suffixe(wp),
suffixs(wyg), w1, we}. For the explanation of the
feature functions see Table 2.

For inducing classes for this task we use the
North American News Text Corpus described in
section 5.1. When evaluating word classes we add
to this feature set the Brown or LDA word class
features:

Brown Class IDs encode the path in the class
hierarchy, we thus use ID prefixes of differ-
ent lengths to include classes at several lev-
els of granularity. We also add feature con-
junctions.  The additional Brown class fea-
tures are thus: prefix,, (z(wy,)) (for tokens
at positions m € {—1,0,1}, class id pre-
fix of length n for n € {4,6,10,20})
and feature conjunctions {prefix,o(z(wo))} x
{lowercase(wg), wordshape(wy), suffixj(wy),
suffixa(wy), suffixg(wg)}. The class ID prefix
sizes we adopted were shown to be effective in
Ratinov and Roth (2009) and Turian et al. (2010).

LDA We rank the classes according to posterior
probability and take the 3 top ranked classes given
the current word d, the 1 top ranked class given the
previous word w_1, and 1 top ranked class given
the next word w1: {rank!P(z|d), rank?P(z|d),
rank® P(z|d), rank! P(z|w_1), rank! P(z|w1)}.
We add the following feature conjunctions:
{lowercase(wg), wordshape(wy), suffixj(wy),
suffixg(wp), suffixz(wg)} x {rank!P(z|d),
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ANIMAL CARDINAL DATE:AGE DATE:DATE DATE:DURATION DATE:OTHER DISEASE EVENT:OTHER FAC:BUILDING
FAC:HIGHWAY-STREET GPE:CITY GPE:COUNTRY GPE:OTHER GPE:STATE-PROVINCE LAW LOCATION:CONTINENT
LOCATION:OTHER LOCATION:REGION MONEY NORP:NATIONALITY NORP:POLITICAL ORDINAL
ORGANIZATION:CORPORATION ORGANIZATION:EDUCATIONAL ORGANIZATION:GOVERNMENT
ORGANIZATION:OTHER ORGANIZATION:POLITICAL PERCENT PERSON PLANT PRODUCT:OTHER PRODUCT:VEHICLE
QUANTITY: 1D QUANTITY:WEIGHT SUBSTANCE:CHEMICAL SUBSTANCE:DRUG SUBSTANCE:FOOD
SUBSTANCE:OTHER TIME WORK-OF-ART:OTHER

Table 1: BBN named entity labels

<
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Figure 5: F1 error on NER dev. set with word
classes

rank! P(z|w_1), rank! P(z|wy1)}.

Figure 5 shows the F1 error on section 22 for the
baseline and for Brown and LDA classes of differ-
ent granularity. A large number of classes (500 or
1000) is needed to achieve low error with Brown
classes. With LDA, a lower number (100 or 200)
is sufficient, and in fact the error rates are lower
for LDA word class features than for Brown. The
results for the test set (section 23) using Brown
with 1000 classes and LDA with 200 classes are
shown in the NER column of Table 5. We are un-
aware of previous published results on BBN at a
comparable level of NE label granularity.

5.2.2 Morphological analysis

We next evaluate the induced word classes on a
morphological analysis task. The goal is to learn
to assign morpho-syntactic descriptors (MSD)
(roughly speaking, fine-grained POS tags) and
lemmas to tokens in sentences. The MSD tags
encode all relevant inflectional features of a to-
ken such as gender, case and number for nouns
or tense, aspect, person and number for verbs. A
morphological tagger which performs this type of
analysis is an important component for processing
languages with rich inflectional morphology. Fig-
ure 6 shows example morphological annotation of
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Token Lemma MSD Gloss
Pero pero cc but
cuando cuando cs when

era ser vsii3s0 he was
nifio nifio ncms000 boy

le el pp3csd00  to him
gustaba gustar  vmii3pO0 it pleased

Figure 6: Morphosyntactic annotation of a Span-
ish which translates as When he was a boy he liked
it.

a short sentence in Spanish.

As the supervised model we use the Morfette
system (Chrupata et al. 2008)!. Morfette trains
two classifiers, one for morphological tags (i.e.
fine-grained POS tags) and one for lemmatization
classes. The classifiers are trained separately; their
output is combined during decoding. For the base-
line we used the default features (see Chrupata
et al. 2008) and trained the POS and lemma mod-
els for 10 and 3 iterations respectively. We added
word-class features to the POS model.

Brown We use class id prefixes for the focus
word: prefix, (z(wp)), n € {4,6,10,20}

LDA Morfette can use real-valued features and
initial tests on this task with class distributions
showed that using them directly works as well as
discretizing them. We use classes for the focus to-
ken (wgp) and set probabilities below 0.15 to O for
sparseness.

Data sets We chose two data sets for evaluation:

e Spanish Ancora corpus (Taulé et al. 2008):
portion corresponding to data used by
Chrupata et al. (2008), 188.803 tokens,
10.000 dev. and 10.000 test, 279 tags.

! Available
morfette/

at http://code.google.com/p/



CAUSE-EFFECT INSTRUMENT-AGENCY
PRODUCT-PRODUCER CONTENT-CONTAINER
ENTITY-ORIGIN ENTITY-DESTINATION
COMPONENT-WHOLE MEMBER-COLLECTION
COMMUNICATION-TOPIC

Table 3: Relation classification labels

e French Treebank (Abeillé et al. 2003),
351.873 tokens, 36.297 dev. and 37.967 test,
214 tags.

For inducing word classes we used (i) Spanish Eu-
roparl (Koehn 2005), SOM words and (ii) Est Re-
publicain? 147M words.

We optimized the number of classes on the de-
velopment set: for Brown the best was 500 for
both languages, for LDA the best setting was 50
for Spanish and 100 for French.

Table 5 (columns MA es and MA fr) shows the
joint morphological tagging-lemmatization scores
on the test set. Word classes give a moderate per-
formance boost and in both cases LDA improves
more. We do not know of published results on the
French data with this level of granularity. However
Seddah et al. (2010) show that Morfette on French
data with a reduced tagset compares well to state-
of-the-art, and thus can be assumed to be a strong
baseline. For Spanish, our baseline error is almost
identical to the error reported by Chrupata et al.
(2008) (4.98 vs 5.00): thus the word classes give
10% relative error reduction over previous results.

5.2.3 Classification of semantic relations

The last task on which we evaluate induced word
classes is multi-way classification of abstract se-
mantic relations between nominals (RC). This task
appeared at the Semeval 2007 and 2010 work-
shops. We use the task definition and the training
and testing data from 2010.

The relation inventory is shown in Table 3. For
example in the sentence The bowl was full of ap-
ples, pears and oranges the nominal pears is in a
CONTENT-CONTAINER relation with the nominal
bowl.

The training set consists of sentences annotated
with the relations and their directionality. The ar-
guments (nominals) participating in the relations
are marked in both the training and test examples.
We used the 2010 training set of 8000 sentences

http://www.cnrtl.fr/corpus/
estrepublicain/
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arg; The first argument

args The second argument

between,, | Each of the tokens between arg;
and args

before,,, Each of the 3 tokens before arg;

after,, Each of the 3 tokens after args

Table 4: Description of features for RC

and the test set of 2717 sentences. During develop-
ment, we split the training set in half, and trained
on the first half, while validating on the second
half. For the final evaluation we trained on all the
8000 training sentences.

We evaluated with the scoring script provided,
using the official macro-averaged F1 score.

Baseline For our baseline system we used the
Weka (Hall et al. 2009) implementation of the Se-
quential Minimal Optimization algorithm to train
an SVM classifier (Platt 1999), with the default
linear kernel. We treat each combination of the
relation label and the direction label together as a
single atomic class to be learned.

Table 4 describes the features we extracted from
each sentence for the RC task.

Corpus For this task we initially used the word
classes induced from The North American News
Text Corpus described in section 5.1. The im-
provements we achieved were smaller than we ex-
pected. We suspected that the reason for this was
that the training data for the RC task come from
a variety of Web sources and are much less re-
stricted in genre than the text in the NANT cor-
pus. We thus decided to retrain word classes on
the more balanced 100M-word BNC corpus (BNC
Consortium 2001). As expected, the word classes
from the BNC worked better. Due to time con-
straints, for Brown we were able to induce only up
to 500 classes.

Brown With Brown classes we use class ID pre-
fix prefix,, (z(f)), n € {4,6,10,20}, for each of
the baseline features f listed in Table 4.

LDA For this task we use the probabilities of the
classes as real-valued features, and we took classes
for each of the baseline features f listed Table 4.

We optimized the number of classes on the de-
velopment data (second half of training data). We
found 500 classes for Brown and 100 classes for
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Figure 7: Relation classification error as a function
of the number of training examples. The x-axis is
plotted on a logarithmic scale.

LDA to give the best results, and we used these
values for the final evaluation.

The impact of adding word classes can be ap-
preciated in Figure 7, which plots the test error
with and without word classes while varying the
number of training examples (1000, 2000, 4000
and 8000). It can be seen that adding LDA word
class features corresponds to almost doubling the
amount of training data.

Table 5 (column labeled RC) shows the macro-
averaged F1 error on test data. Similarly to the
previous tasks, the improvement is larger with
LDA than with Brown classes.

For comparison, during the Semeval 2010 eval-
uation the F1 error of the top-scoring system (Rink
and Harabagiu 2010) was 17.81%; the system
ranked second (Tymoshenko and Giuliano 2010)
achieved 22.37%.

Both these systems used large amounts of exter-
nal resources and heavy-duty linguistic processing
tools. Rink and Harabagiu (2010) extracted fea-
tures from dependency parses, from PropBank and
FrameNet parses, from WordNet and NomLex as
well as using Google n-grams and the output of
TextRunner>. Tymoshenko and Giuliano (2010)
extracted features from syntactic parses and from
the massive semantic knowledge database Cyc
(Lenat 1995).

In comparison, our system is extremely
resource-light since our features do not rely on any
manually created databases or linguistic process-
ing tools (not even POS tags). It is thus satisfy-
ing that by automatically and efficiently inducing
simple word class features we can achieve results

3A system for open information extraction from the Web
(Yates et al. 2007).
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%Error

Model | NER | MAes | MAfr| RC
Bascline | 1342 | 500 | 7.80 | 26.78
Brown | 11.82 | 470 | 7.51 | 25.66
LDA 1170 | 450 | 7.39 | 22.97

Table 5: Test set results on NER, MA, RC

which are close to state-of-the-art.

6 Discussion

To our knowledge LDA word class induction
has not been previously used in this particular
scenario. LDA variants have been proposed in
other settings: Brody and Lapata (2009) use LDA
to induce latent variables corresponding to word
senses; Toutanova and Johnson (2007) propose an
LDA-inspired model where induced word-classes
are used for semi-supervised POS tagging; Dinu
and Lapata (2010) use LDA-induced word-classes
for measuring word similarity in context. Rather
than focus on adapting LDA to a particular task,
we instead induce generic word classes that can
be plugged in as features in a number of NLP ap-
plications.

We show that the LDA word clustering algo-
rithm is an attractive choice for semi-supervised
learning. It is efficient to train and beats a compet-
itive baseline provided by Brown clustering.
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