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Abstract

How well can a phrase translation model per-
form if we permute the source words to fit tar-
get word order as perfectly as word alignment
might allow? And how well would it perform

if we limit the allowed permutations to ITG-
like tree-transduction operations on the source
parse tree? First we contribute oracle results
showing great potential for performance im-
provementby source-reordering, ranging from
1.5 to 4 BLEU points depending on language
pair. Although less outspoken, the potential
of tree-based source-reordering is also signif-
icant. Our second contribution is a source re-
ordering model that works with two kinds of
tree transductions: the one permutes the order
of sibling subtrees under a node, and the other
first deletes layers in the parse tree in order
to exploit sibling permutation at the remaining
levels.The statistical parameters of the model
we introduce concern individual tree trans-
ductionsconditioned on contextual feature
the tree resulting from all preceding transduc-
tions. Experiments in translating from En-
glish to Spanish/Dutch/Chinese show signifi-
cant improvements of respectively 0.6/1.2/2.0
BLEU points.

et al., 2003) deals with word order differences in two
subcomponents of a translation model. Firstly, us-
ing the local word reordering implicitly encoded in
phrase pairs. Secondly, using an explicit reorder-
ing model which may reorder target phrases rela-
tive to their source sides, e.g., as a monotone phrase
sequence generation process with the possibility of
swapping neighboring phrases (Tillman, 2004).

Arguably, local phrase reordering models cannot
account for long-range reordering phenomena, e.g.,
(Chiang, 2005; Chiang, 2007). Hierarchical mod-
els of phrase reordering employ synchronous gram-
mars or tree transducers, e.g., (Wu and Wong, 1998;
Chiang, 2005). These models explore a more var-
ied range of reordering phenomena, e.g., defined by
at most inverting the order of sibling subtrees un-
der each node in binary source/target trees (akin to
ITG (Wu and Wong, 1998)).

Undoubtedly, the word order of source and tar-
get sentences is intertwined with the lexical choices
on both side. Statistically speaking, however, one
may first select a target word order given the source
only, and then choose target words given the selected
target word order and source words. One applica-
tion of this idea is known as source reordering (or
-permutation), e.g., (Collins et al., 2005; Xia and

McCord, 2004; Wang et al., 2007; Li et al., 2007;
, Khalilov and Sima’an, 2010). Briefly, the words of
Word order differences between languages arege source string are reordered to minimize word
major challenge in Machine Translation (MT).q der differences with the target stringleading to
Phrase-based Statistical Machine Translation (PBre source permuted string Presumably, a stan-
SMT) (Och and Ney, 2004; Zens et al., 2002; Koehgyarg pBSMT system trained to translate fréro ¢
fCurrently, the first author is employed by TAUS B.V., Am- Should have an easier task than translating directly
sterdam (The Netherlands). from s to t. The source reordering parg, to 3,

1 Motivation
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can be realized in various ways and may manipwword alignmentz. Source reordering assumes that
late morpho-syntactic parse treesspe.g., (Collins a permutation ok, called s, is first generated with
etal., 2005; Xia and McCord, 2004; Li et al., 2007).a modelP, (s | s) followed by a phrase translation
It may seem that source reordering should provideodel P,(¢ | 5). The desired permutatiohis one
only limited improvement over the standard PBthathas minimum word order divergence frome.,
SMT approach. The literature reports mixed perforwhen word-aligned again with would have least
mance improvements for different language pairgjumber of crossing alignments.
e.g., (Collins et al., 2005; Xia and McCord, 2004; Practically, the original parallel corpyss, a, t)}
Wang et al., 2007; Li et al., 2007; Khalilov andis split to two parallel corpora: (1) a source-to-
Sima’an, 2010). But what is theotential improve- permutation parallel corpus (consisting @f a, $))
mentof source reordering? We contribute experiand (2) a permutation-to-target parallel corpus (con-
ments measuring oracle performance improvemesisting of (¢s, a,t)), where gs is the output of a
for English to Dutch/Spanish/Chinese translationssource reordering model (guessingsatanda re-
Beside string-driven oracles, we report results usingults from automatically word aligningys, t). The
ITG-like transductions over a single syntactic parséatter parallel corpus is used for training a phrase-
tree ofs. Our results confirm that reordering a sin-based translation systef (¢ | gs), while the for-
gle syntactic tree could be insufficient (e.g., (Huangner corpus is used for training a source reordering
et al., 2009)), yet they show substantial potential. model P,(3 | s). The problem of permuting the
Our second contribution is a novel source reorder-
ing model that manipulates the source parse tree N e v
with two kinds of tree transduction operators: the thet PR VED  BP
one permutes the order of sibling subtrees under a e went 19 <
node, and the other first abolishes layers in the parse !
tree in order to exploit sibling permutation at the re-
maining levels. The latter is the opposite of parse bi-
narization using Expectation-Maximization (Huang
et al.,, 2009). We use Maximum-Entropy training
(Berger et al., 1996) to learn a sequence of tregigure 1: Example crossing alignments and long-distance
transductions, each conditioned on contextual feaeordering using a source parse tree.
turesin tree resulting from outcome of the preced-
ing transduction The conditioning on the outcome source string to unfold the crossing alignments is
of preceding transductions is a departure from eagomputationally intractable (see (Tromble and Eis-
lier approaches at learning independent source péter, 2009)). However, various constraints can be
mutation steps, e.g., (Tromble and Eisner, 2009nade on unfolding the crossing alignments:inA
Visweswariah et al., 2010). common approach is to assume a binary parse tree
The aim for the rest of this paper is firstly, tofor the source string, and define a set of eligible per-
quantify the potential performance improvement ofutations by binary ITG transductions. This defines
a standard PBSMT system if preceded by sourd@ermutations resulting from at most inverting pairs
reordering and secondly, to show that statistic&tf children under nodes of the source tree. Fig-
Markov approach to tree transduction, where thére 1 exhibits a long-range reordering of the verb
probability of each transduction step is conditionedn English-to-Dutch translation: inverting the order
on the outcome of preceding steps, can improve ti¥ the children of theVP node would unfold the

SBAR

dat hij ndar [..] huis ging

quality of PBSMT output significantly. crossing alignment. However, crossing alignments
represented as non-constituents cannot be resolved.
2 Source-Reordering: Framework This difficulty can be circumvented by employing

multiple alternative parse trees, by applying heuris-
We start out from a word-aligned parallel corpustic transforms (e.g., binarization) to the tree to fit the
consisting of triplegs, a, t), a sources, targett and alignments (Wang et al., June 2010), or by defin-
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ing new local transductions, on top child permutaf2) works with the unmodified alignment matrix but

tion (ITG) as we do next. learns reorderings only from those alignments that
are consistent with the tree, thereby avoiding the ef-
3 Existing work on source per mutation fects of heuristics for pruning alignments to fit the

tree-structure, e.g., (Li et al., 2007).

Source reordering has been shown useful for PB- | this paper we take the idea of learning source
SMT for a wide variety of language pairs with highpermutation one step further along a few dimen-
mutual word order disparity (Collins et al., 2005;sjons. We show the utility of other kinds of tree
Popovic’ and Ney, 2006; Zwarts and Dras, 2007§ransduction operations, besides those promoted by
Xia and McCord, 2004). In Costa-jussa and FOnolTg, stress the importance of using a wide range of
losa (2006) statistical word classes as well as PQ@nditioning context features during learning, and
tags are used as patterns for reordering the input s§@port oracle and test results thmeelanguage pairs.
tences and producing a new bilingual pair. The majority of existing work reports encourag-

A rather popular class of source reordering aling performance improvements by source reorder-
gorithms involves syntactic information and aimsing. Next we aim at quantifying the potential im-
at minimizing the need for reordering during transprovement by oracle source reordering at the string
lation by permuting the source sentence (Collingevel, if all permutations were to be allowed, and at
et al., 2005; Wang et al., 2007; Khalilov andthe source syntactic tree level, by limiting the per-

Sima’an, 2010; Li et al.,, 2007). Some systemsgnutations with two kinds of local transductions.
perform source permutation using a set of hand- _
crafted rules (Collins et al., 2005; Wang et al.4 Oraclesourcereordering results

2007; Rgmanathan etal, 200_8)’ others make use §Burce reordering for PBSMT assumes that permut-
automatlcally'learn('ad' reordering patterns extraf:telﬂg the source words to minimize the order differ-
from the plain training data, the correspondingy,ceg with the target sentence could improve trans-
pgrse-or dependﬁncyltrees and the alignment Mtion performance. However, the question “how
trix (Vlg\{veswa_lrla etal., 2010). ) much?" is rarely asked. Here, we attempt answering
Inspiring this work, source reordering as a preg;s question with a set of oracle systégis which
translation step is viewed as a word permutatiofye perform unfolding operations on the crossing
learning problem in Tromble and Eisner (2009) anglnks in alignmenta (estimated between corpoka
Li et al. (2007). The space of permutations is @panq¢) that leads to a more monotone alignmaént
proached efficiently using a binary ITG-like SYN-(betweens, which is a permutation of, andt). We
chronous context-free grammar put on the parallghiroguce a set of tree-based constraints that control
data. Similarly, a local ITG-based tree transducéffye ynfolding of alignment crossings. We measure
with contextual conditioning is used in Khalilov andpe impact of (un)folded alignment crossings on the

Sima'an (2010) and Li et al. (2007), and prelimi-performance of the PBSMT system (see Table 1).
nary experiments on a single language pair show im-
proved performance. Oracle String.  This method scans the alignment

Particularly, the model in (Li et al., 2007) is ex- from left-to-right and unfolds all the crossing links
plicitly aimed at long-distance reorderings (EnglishPetween bilingual phrase®(acle string. Figure 2

Chinese), prunes the alignment matrix graduallf"OWs an example of word reordering done on the
to fit the source syntactic parse and emp|0y§tr|ng level. NULL aligned words do not move from

Maximum-Entropy modeling to choose the optimafheir positions.

local ITG-like permutation step of sister subtrees bupy acle par setree with permutesiblings.  The or-

interleaves that step with a translation step. Thgcle system unfolds an alignment crossing if and
model which we present in Section 2 differs substan— _ o
All the source permutation methods presented in this Sec-

tially from (Li et al., 2007) and other earlier work _. o om e
. ; . tion are based on automatic alignments, which inevitably co
because it (1) incorporates other kinds of tree trangsin wrong links. In the future we plan to involve manual alig

duction operations than those promoted by ITG, andents to the computation of oracle permutation
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only if the source side of the alignment crossing i9e moved to the beginning of the sentence in Fig-

covered by the same node in the syntactic sourage 3a byOracle tree Instead, this is done in two

tree, and the alignment pair subject to crossing casteps. Firstly, th&/P dominating the wordsrust”

be unfolded by permuting the order of the siblingand “apply” is deleted under the current no&

nodes. NULL aligned words do not prevent unfoldthe transformed tree is shown in Figure 3b. Sub-

ing crossings because we include them with the adequently, the siblings und& in the resulting tree

jacent words that are involved in the crossings. Ware permuted,rhust” is reordered across the whole

call this configuratiorOracle tree clause and placed to the first position (see Figure 3c).
Figure 1 shows an example. According to @e  We call this systen©racle mod

acle treeconstraint, the wordwent” can be placed Figure 4 shows an example in which crossing align-

in the end of the sentence since the replacement carent links cannot be unfolded without deleting 4 in-

be done as a swapping ofBP” and “PP” cate- tervening layers.

gories. The same happens for the wordflect”

swapping with ‘S” constituent in Figure 1, but not Oracleresults Table 1 contrasts the oracle results

with the performance shown by standard PBSMT

for the chunks the positions” and “not properly”: . . N
) . P properly systems. The experimental setup is detailed in Sec-
this crossing cannot be resolved under the tree cop- . . .
ion 6. We consider the following baseline con-

stra_lnt since t_hey are not dominated by sibling Synﬁgurations: PBSMT - Moses-based PBSMT with
tactic categories.

distance-based reordering mod&BSMT+MSD-
Oracletreewith delete descendants, permutesib- Moses-based PBSMT with distance-based reorder-
lings. This oracle implements an additional meching model and MSD an#loses-chart hierarchical
anism of tree modification to increase the numbe¥loses-chart-based PBSMT.

of reordering permutations in comparison wina- Depending on number of parse tree levels allowed
cle treealgorithm. Here we allow for an additional to be deleted, we consider thr&racle modsys-
tree transduction operation that deletes intervenintgms: with two RIt), three 8It) and five blt) levels
layers before applying sibling permutation. This iof descendants allowed to be deleted for a more flat
illustrated in Figure 3. The wordmiust” can not parse tree structure before sibling permutation.

to insist that the international community be able to follow the proceedings from start to finish

hlijéij onz&e @tionalegﬁnschap hét proces vdan hét bedqin tot hét einde moet kumnen volgen

(a) Original bilingual phrase.

to insist that the international community the proceedings from start to finish be able to follow

blijéij anz&e ;&tiona@bmokr&Mgen

(b) Reordered bilingual phrase.

Figure 2: Example oOracle stringunfolding.

S S S

NP VP NP MD VP MD NP VP
—_— —— —_— | | | —_— |
NP PP MD VP NP PP must VB must NP PP VB

| = 1 h

L I I L L I I
DT pil NN VBG NP must VB DT I NN VBG NE/// apply DT I NN VBG NP apply
I T I I e I I T I I — I T I I —L—
the same penalty regarding J]L//W apply the same penalty regardmg//j N‘N \ the same penalty regarding JH N‘N
\ /ﬁan fraud \ \ B\/)Wan fraud 5’ \ European fraud
\ \\ \— \\ \ f \ \ \ \
- — |
moeten dezelfde strafbepalingen inzake Europese fraude gelden mocten dezdlfde strafbepalingen inzake Europese fraude gelden moeten dezelfde strafbe\palmgen inzake Europese fraude gelden
(a) Original parse tree. (b) Parse tree with deleted VP category. (c) Reordered parse tree.

Figure 3: Example of text monotonization with tree transfation.
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The impact of corpus monotonization on transla
tion system performance is measured using the 1
nal point of weight optimization on the develop-
ment setDev BLEU), as well as on the test sdigst
BLEU/NIST).

The major conclusion that can be drawn fromr
the oracle results is that the source reordering di
fined in terms of parse tree transduction can potel
tially lead to increased translation quality (up to 1.z
BLEU points for English-Dutch, 0.5 for English-
Spanish and 1.7 for English-Chinese). At the sam
time, a huge gap between performance shown t
Oracle stringand tree oracle systems:2.2 BLEU
points for English-Dutchz1.3 for English-Spanish
and =~2.5 for English-Chinese) shows that there

are many crossing alignments which cannot be ur|
folded with simple, local transductions over a single
source-side syntactic tree.

5 Conditional Tree-Transductions

Our model aims at learning from the source
permuted parallel corpus (containing tu-
ples (s,a,8)) a probabilistic optimization
(arg maxy (s Pr(7(s) | s,75)), where 75 is the
source parse and(s) is some eligible permutation
of s. We view the permutations leading from
s to § as a sequence of local tree transductions
Tsy — ... — Ts,, Wheresy = s ands, = s,
and each transduction;, , — 73, is defined
using any of two kinds of local tree transduction
operations used in Section 4 or alternatively NOP
(No Operation).

The sequence;, — ... — 73, is obtained by
taking the next node in a top-down tree traversal,

SBAR

V—I—\
Il‘\l S
l—‘—l
if NP VP
|
f T 1
PRP VP ADVP VP
B O i
do  not properly reflect NP
!—‘—\
1
PP
l_‘_V
NP
Y—‘_\
in D‘T N'[‘*IS
/ the minutes
S 4@1& goed in notulen worden weergegeven

Figure 4: Example of unfoldable alignment crossings.

where(a,) is a permutation ofv, (the or-
dered sequence of node labels undeandC,,
is a local tree context of nodein treer s

i—1

e Select a child ofr to delete, pull its children

up directly underx, effectively changingy, to
somea?, and then permute the children of the
latter.

d

where (a; ~ af symbolizes the result of
deleting a subtree under a child :of This op-
eration applies also to subtrees of depthe
{1,2,3,5} underz, i.e., a child is depth 1, a
child with its children is deptt2 and so on.

then statistically selecting the most likely of threeobviously, the number of possible permutations of
transduction operations and applying the selected, is factorial in the length ofy,. Fortunately, the
operation to the current node. If the current tree isource permuted training data exhibits only a frac-

T3, ,, and the current node has addresis syntacti-
cally labeledN,, directly dominates,. (the ordered
sequence of node labels under, we approximate
the conditional probabilityP(r;, | 75, ,) with the

transduction operation it employs:

e Permute the children of in 7;, , with proba-
bility

~ P(m(ay) | Np — ag, Cy) 1)
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tion of possible permutations even for longer se-
guences. Furthermore, by conditioning the probabil-
ity on local contexiC., the number of permutations
is limited to a handful set.

Theoretically, we could define the probabil-
ity of the sequence of local tree transductions

Tsg —* --- —> T3, @S

P(Téo .7 Tén) = HP(Téi | Téi—l) 3)

=1



EnNI EnEs Enzh
System Dev Test Dev Test Dev Test
BLEU | BLEU | NIST || BLEU | BLEU | NIST || BLEU | BLEU | NIST

Baselines

PBSMT 2388 | 24.04 | 6.29 || 32.31 | 31.70 | 7.48 || 18.71 | 22.21 | 5.28
PBSMT+MSD || 24.07 | 24.04 | 6.28 || 32.45| 31.85| 7.47 | 18,99 | 21.18 | 5.30
Moses-chart 2394 | 2493 | 6.39 || 30.58 | 31.80 | 7.41 || 19.93 | 23.90 | 541

Oracle results

Oracle tree 2470 | 24.80 | 6.32 || 32.76 | 32.21 | 7.51 || 20.23 | 23.44 | 5.35
Oracle string 26.28 | 27.02 | 6.50 || 34.09 | 33.52 | 7.60 || 23.01 | 26.08 | 5.52
Oracle mod+2It|| 25.05 | 25.04 | 6.36 || 32.24 | 32.18 | 7.51 || 20.64 | 23.75| 5.37
Oracle mod+3lt|| 25.11 | 25.27 | 6.37 || 32.22 | 32.34 | 7.52 || 20.71 | 23.59 | 5.37
Oracle mod+5It|| 25.07 | 25.23 | 6.37 || 32.51 | 32.37 | 7.55 || 20.93 | 23.93 | 5.39

Table 1: Summary of oracle results.

However, unlike earlier work (e.g., (Tromble andtree transductions that are syntactically motivated
Eisner, 2009)), we cannot afford to do so becaughat also lead to improved string permutation. In this
every local transduction conditions on conté4tof  sense, the tree transduction definitions can be seen as
an intermediate tree, which quickly risks becomingn efficient and syntactically informed way to define
intractable (even when we use packed forests). Fuhe space of possible permutations.

thermore, the problem of calculating the most likely_ , ) o
permutation under such a model is made difficult byrStimates.  We estimate the string probabilities
the fact that different transduction sequences makyim () Using 3-gram language models trained on
lead to the same permutation, which demands surfile 3 side of the source permuted parallel corpus
ming over these sequences (another intractable sufts: @: )} We estimate the conditional probability

mation). Earlier work has avoided conditioning cond (T BANS | Ny — ag, ;) using a Maximum-

text, effectively assuming that the each intermediatetroPy framework, where feature functions are de-
ned to capture the permutation as a class, the node

permutation is independent from the preceding onellf

Instead, we take a pragmatic approach and greef@P€!V> and its head POS tag, the child sequemge

ily select at every intermediate point_, — 7, the together with the corresponding sequence of hegd
single most likely local transduction that can be apP ©S t@gs and other features corresponding to dif-

plied to a node in the current intermediate tree,  [€'€Nt contextual information.

using an interpolation of the terms in Equations kestresin use. We used a set of 15 features to
and 2 with probability ratios of the language modelanyre reordering permutations from the syntac-

5 as follows: tic and linguistic perspectives:ocal tree topology:
P (3i—1) sub-tree instances that include parent node and the
P(I'RANS;| Ny = ag, Cy) X (31 ordered sequence of child node labels @gpen-
m 1

dency featuresfeatures that determine the POS tag
whereT'RAN S; is any of the two transduction oper- of the head word of the current node (2), together
ations or NOP, and,,,, is a language model trained with the sequence of POS tags of the head words of
on the s side of the corpuq(s,a, $)}. The ratio- its child nodes (3) and the POS tag of the head word
nale behind this log-linear interpolation is that ouiof the parent (4) and grandparent nodes ntac-
source permutation approach aims at finding the opic features:apart from the whole path from the cur-
timal permutations of s that can serve as input for rent node to the tree root node (6), we used three
a subsequent translation model. Hence, we aim hinary features from this class describe: (7) whether
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the parent node is a child of the node annotated witlzed English §) is modeled using-grams.

the same syntactic category, (8) whether the parentWe useStanford parser® (Klein and Manning,
node is a descendant of the node annotated with tR603) as a source-side parsing engine. The parser
same syntactic category, and (9) if the current sulwas trained on the WSJ Penn treebank provided with
tree is embedded into &5*SBAR sub-tre€; POS 14 syntactic categories and 48 POS tags. The eval-
lexical features: bi- and tri-grams of POS tags of uation conditions were case-sensitive and included
the left- and right-hand side neighboring words (10punctuation marks. For Maximum Entropy model-
13); Counters: a number of words covered by aing we used thenaxent toolkit’.

iven constituent (14) and a number of children of )
'?he given node (15() ) Tranglation scores. Table 3 shows the results of

automatic evaluation using BLEU (Papineni et al.,
6 Trandation and reordering experiments 2002) and NIST (qudington, 2002) metrics.
MERrd configuration corresponds to the PBSMT
Data. In our experiments we used English-Dutchsystem with the source side of the parallel corpus re-
and English-Spanish European Parliament data anddered using our Maximum Entropy model, but the
an extraction from the English-Chinese Hong Kongransduction operations are limited to permutation of
Parallel Corpus. All the sets were provided withthe children only. MERrd+xIt configuration refers
one reference translation. Basic statistics of th# the set of systems which, beside child permuta-
training data can be found in Table 2, developmertton, includes a deletion operation with the maxi-
datasets contained 0.5K, 1.9K and 0.5K lines anchum number of tree layers that can be deleted set
test datasets contained 1K, 1.9K and 0.5K for Dutchp x. All reordered systems include a MSD model
Spanish and English, respectively. as a supporting reordering mechanism.
BLEU scores measured on the test data, which are
statistically significant from the best PBSMT results

4 are marked with bold. The statistical significance
cls™ (Och, 1999) tool. The PBSMT systems we Nt jations have been done for a 95% confidence

sider in this study is based dfoses toolkit (Koehn - jyieral and 1000 resamples, following the guide-
et al., 2007). We followed the guidelines providedinas in Koehn (2004).

on the Moses web page

Two phrase reordering methods are widely use@nalysis. Our results show that source-reordering
in phrase-based systems. A distance-based reordigrbeneficial for the language pairs with high mutual
ing model providing the decoder with a cost lineaivord order disparity. In contrast to English-Dutch
to the distance between words that are being r@nd English-Chinese translation tasks, the statistical
ordered. This model constitutes the default for th&ignificance test reveals that all but thEERrd+5It
Moses system. And, a lexicalized block-orientedEnglish-Spanish PBSMT systems with rearranged
data-driven reordering model (Tillman, 2004) coninput are not different from the translation qual-
siders three orientations: monotone (M), swap (Sity delivered by Moses. This disappointing result
and discontinuous (D), while the reordering probafor the English-to-Spanish translation task may be
bilities are conditioned on the lexical context of eacleXxplained by the fact that many reordering differ-
phrase pair. ences are resolved by standard reordering models

All language models were trained wiRI LM  (distance-based and MSD).
toolkit (Stolcke, 2002). Language models for Dutch, Table 3 shows the results of automatic transla-

Spanish and Chinese usegrams, while the ideal- tion quality evaluation. A gap between the max-
imum reachable performance shown by tree trans-

®The latter feature intends to model the divergence in worgjyction systems and the translation quality delivered
order in relative clauses between Dutch and English which is

Experimental setup. Word alignment was found
using GIZA++3 (Och, 2003), supported bynk-

illustrated in Figure 1. Shttp://nlp. stanford. edu/ sof t war e/
Scode. googl e. cont p/ gi za- pp/ | ex- parser. shtnl
“http://ww. fjoch. coml mkcl s. ht ’http:// honepages.inf. ed. ac. uk/ | zhang10/
Shttp://ww. statnt.org/ nobses/ maxent _tool kit. htm
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| Parameter | Dutch | English| Spanish| English || Chinese| English |
Training corpus

Sentences 1.2M 1.2M 14M 1.4 M 15M 15M
Words 329M| 33.0M 40.1M | 3854M| 3535M| 35.00M
Vocabulary 228 K 104 K 168 K 119K 136 K 245 K
Average sentence length 27.20 27.28 28.80 27.67 24.06 23.83

Table 2: Statistics of the training, development and tegi@@.

by our model is 0.05-0.29 BLEU points for English-operations over the source parse trees.

Dutch, 0.01-0.09 for English-Spanish and 0.27- The method was tested on three different trans-
0.76 for English-Chinese. These numbers demothation tasks. The results show that our approach is
strate that there are some potentially usable regmore effective for language pairs with significant

larities not captured by our current conditional treedifference in word order. Another important ob-

transduction model. servation is that our model demonstrate translation
_ quality comparable with the one delivered by SMT
7 Conclusionsand future work systems based on hierarchical phrases.

We present a source reordering system for PBSMT. The mtroduced reordering algorlthnj.and the re-
. . . - - ults obtained present many opportunities for future
in which the reordering decisions are condltlone&'

work. We plan to perform a detailed analysis of the

on features from the source parse tree. Our syster‘{\ .

; structure of the extracted phrases to find out the par-

allows for two operations over the parse tree: per: .

. - . . ticular cases where the improvement comes from.
muting the order of sibling nodes and deleting chil

. e also propose to discover other possible trans-
nodes in order to make the tree flatter and explog . Propo P .
- . - uction operations to better explore the reordering
sibling permutations at the remaining layers.

o ) space.
Our contribution can be summarized as follows: P

(1) we report detailed results of maximum poteng  Acknowledgements
tial performance that can be achieved with source

reordering under different constraints, (2) we defindis work is supported by The Netherlands Orga-
a source-reordering process through an efficient sization for Scientific Research (NWO) under VIDI

quence of greedy, context-conditioned transductiogrant (nr. 639.022.604).

EnNI EnEs Enzh
System Dev Test Dev Test Dev Test
BLEU | BLEU | NIST || BLEU | BLEU | NIST || BLEU | BLEU | NIST
Baselines
PBSMT 23.88 | 24.04 | 6.29 | 3231 | 31.70| 7.48 || 18.71| 22.21 | 5.28

PBSMT+MSD| 24.07 | 24.04 | 6.28 || 3245 | 31.85| 7.47 | 18.99 | 21.18 | 5.30
Moses-chart 2394 | 2493 | 6.39 || 30.58| 31.80| 7.41 || 19.93| 23.90| 541

Reordering systems

MERrd 2464 | 2472 | 6.33 | 31.97| 3219 | 7.52 | 19.82 | 2317 | 5.33
MERrd+2It 2461 | 2499 | 6.35 || 31.70 | 32.11| 7.50 || 20.02 | 23.01 | 5.33
MERrd+3lIt 2482 | 2498 | 6.34 | 31.65| 32.25| 752 | 20.21 | 2314 | 5.34
MERrd+5It 2478 | 2512 | 6.37 || 31.99| 3238 | 7.52 | 20.29 | 2317 | 5.35

Table 3: Experimental results.

45



References F. Och. 2003. Minimum error rate training in statistical
A. Berger, S. Della Pietra, and V. Della Pietra. 1996. A machine translation. IRToceedings of ACL0Ppages

- 160-167, Sapporo, Japan.
maximum entropy appro_ach _to_ natural language Pz, Papineni, S. Roukos, T. Ward, and W. Zhu. 2002.
D cg;tsmg.Cozrggl;tatfnha}l ngrl:.'snlqgézz) '33_72('1 del Bleu: a method for automatic evaluation of machine
- ~hang. - A hierarchical phrase-based Model ., qjation. InProceedings of ACL'0O2pages 311—
for statistical machine translation. FProceedings of

ACL'05, pages 263-270, Ann Arbor, MI, USA. 318, Philadelphia, PA, USA.
D. Chi 2007. Hi hical ph based t lati M. Popovic’ and H. Ney. 2006. POS-based word re-
- ~nang. - riierarchical pnrase-based transiation. orderings for statistical machine translation. Rro-

Com.putatlonal Llngu|st|c52v(33):2,01—228. ceedings of LREC'Qfpages 1278-1283, Genoa, Italy,
M. Collins, P. Koehn, and I. KEerova. 2005. Clause re- May.

structuring for statistical machine translation. Rro-
. , A. Ramanathan, P. Bhattacharyya, J. Hegde, R.M. Shah,
(L:Jese:mgs of ACL'05pages 531-540, Ann Arbor, MI, and M. Sasikumar. 2008. Simple syntactic and mor-
) phological processing can help english-hindi statistical

M. R..C.osta-jussé} and J. A,' R. Fonollosa_. 2006. machine translation. Im Proceedings of IJCNLP’Q8
Statistical machine reordering. IRroceedings of Hyderabad, India.

HLT/E_MNLP'OG pages 70_76’ New York, NY, USA: A. Stolcke. 2002. SRILM: an extensible language mod-
G. Doddington. 2002. Automatic evaluation of machine eling toolkit. InProceedings of SLP'Qages 901—
translation quality using n-grams co-occurrence statis- g4

tics. In Proceedings of HLT'02pages 128-132, San C. Tillman. 2004. A unigram orientation model for sta-

Diego, CA, USA. , , tistical machine translation. IRroceedings of HLT-
L. H_uan_g, H Zhang, D. Gildea, and K. Knight. 2009. NAACL'04 pages 101104, Boston, MA, USA.
Binarization of synchronous context-free grammarsg ryomple and J. Eisner. 2009. Learning linear order-

Computational LiHQUiStiC§5(4):559_595' L ing problems for better translation. Proceedings of
M. Khalilov and K. Sima’an. 2010. A discriminative  =MNLP'09 pages 1007—1016, Singapore.

syntactic model for source permutation via tree transy \isweswariah. J. Navratil. J. Sorensen. V. Chenthama-
duction. InProceedings of SSST-4 workshop at COL- rakshan, and N. Kambhatla. 2010. Syntax based re-

ING.’10, pages 92_,100’ Beijing, China. . ordering with automatically derived rules for improved
D. Klein and C. Manning. 2003. Accurate unlexicalized - gtagistical machine translation. Froceeding of COL-
parsing. InProceedings of ACL'03pages 423-430, |NG'10, pages 1119-1127, Beijing, China.

Sapporo, Japan. ___C. Wang, M. Collins, and Ph. Koehn. 2007. Chinese
Ph. Koehn, F. Och, and D. Marcu.  2003.  Statistical gy ntactic reordering for statistical machine translation
phrase-based machine translation. Pimceedings of |5 Proceedings of EMNLP-CoNLL'Qpages 737—745
the HLT-NAACL'03pages 48-54, Edmonton, Canada. Prague, Czech Republic. ’
Ph. Koehn, H. Hoang, A. Birch, C. Callison-Burch,\y \ang, J. May, K. Knight, and D. Marcu. June 2010.
M. Federico, N. Bertoldi, B. Cowan, W. Shen, pe._strycturing, re-labeling, and re-aligning for syntax-

C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin, - paseq machine translationComputational Linguis-
and E. Herbst. 2007. Moses: open-source toolkit s 36:247-277.

for statistical machine translation. Froceedings of 5 \w, and H. Wong. 1998. Machine translation wih
ACL'07, pages 177-180, Prague, Czech Republic. a stochastic grammatical channel. Pmoceedings of

Ph. Koehn. 2004. Statistical significance tests for ACL-COLING'98 pages 1408-1415, Columbus, OH
machine translation evaluation. Iroceedings of USA. ’ ' ’
EMNLP'04, pages 388-395, Barcelona, Spain. F. Xia and M. McCord. 2004. Improving a statistical MT

C. Li, L. Minghui, D. Zhang, M. Li, M. Zhou, and  gystem with automatically learned rewrite patterns. In

Y. Guan. 2007. A probabilistic approach to syntax- Proceedings of COLING'Q4ages 508-514, Geneva,
based reordering for statistical machine translation. gyitzerland.

In Proceedings of ACL'G7pages 720-727, Prague,g zens, F. Och, and H. Ney. 2002. Phrase-based sta-

Czech Republic. _ tistical machine translation. IRroceedings of KI: Ad-
F. Och and H. Ney. 2004. The alignment template ap- yances in Artificial Intelligencepages 18-32.
proach to statistical machine translatiol€omputa- g 7warts and M. Dras. 2007. Syntax-based word re-

tional Linguistics 3_0.(4):417_449' o . ordering in phrase-based statistical machine transla-
F. Och. 1999. An efficient method for determining bilin- - Why does it work? IrProceedings of the MT

gual word classes. IRroceedings of ACL'99pages

Summit X] Copenhagen, Denmark.
71-76, Maryland, MD, USA.

46



