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Abstract

How well can a phrase translation model per-
form if we permute the source words to fit tar-
get word order as perfectly as word alignment
might allow? And how well would it perform
if we limit the allowed permutations to ITG-
like tree-transduction operations on the source
parse tree? First we contribute oracle results
showing great potential for performance im-
provement by source-reordering, ranging from
1.5 to 4 BLEU points depending on language
pair. Although less outspoken, the potential
of tree-based source-reordering is also signif-
icant. Our second contribution is a source re-
ordering model that works with two kinds of
tree transductions: the one permutes the order
of sibling subtrees under a node, and the other
first deletes layers in the parse tree in order
to exploit sibling permutation at the remaining
levels.The statistical parameters of the model
we introduce concern individual tree trans-
ductionsconditioned on contextual featuresof
the tree resulting from all preceding transduc-
tions. Experiments in translating from En-
glish to Spanish/Dutch/Chinese show signifi-
cant improvements of respectively 0.6/1.2/2.0
BLEU points.

1 Motivation

Word order differences between languages are a
major challenge in Machine Translation (MT).
Phrase-based Statistical Machine Translation (PB-
SMT) (Och and Ney, 2004; Zens et al., 2002; Koehn

†Currently, the first author is employed by TAUS B.V., Am-
sterdam (The Netherlands).

et al., 2003) deals with word order differences in two
subcomponents of a translation model. Firstly, us-
ing the local word reordering implicitly encoded in
phrase pairs. Secondly, using an explicit reorder-
ing model which may reorder target phrases rela-
tive to their source sides, e.g., as a monotone phrase
sequence generation process with the possibility of
swapping neighboring phrases (Tillman, 2004).

Arguably, local phrase reordering models cannot
account for long-range reordering phenomena, e.g.,
(Chiang, 2005; Chiang, 2007). Hierarchical mod-
els of phrase reordering employ synchronous gram-
mars or tree transducers, e.g., (Wu and Wong, 1998;
Chiang, 2005). These models explore a more var-
ied range of reordering phenomena, e.g., defined by
at most inverting the order of sibling subtrees un-
der each node in binary source/target trees (akin to
ITG (Wu and Wong, 1998)).

Undoubtedly, the word order of source and tar-
get sentences is intertwined with the lexical choices
on both side. Statistically speaking, however, one
may first select a target word order given the source
only, and then choose target words given the selected
target word order and source words. One applica-
tion of this idea is known as source reordering (or
-permutation), e.g., (Collins et al., 2005; Xia and
McCord, 2004; Wang et al., 2007; Li et al., 2007;
Khalilov and Sima’an, 2010). Briefly, the words of
the source strings are reordered to minimize word
order differences with the target stringt, leading to
the source permuted string̀s. Presumably, a stan-
dard PBSMT system trained to translate froms̀ to t
should have an easier task than translating directly
from s to t. The source reordering part,s to s̀,
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can be realized in various ways and may manipu-
late morpho-syntactic parse trees ofs, e.g., (Collins
et al., 2005; Xia and McCord, 2004; Li et al., 2007).

It may seem that source reordering should provide
only limited improvement over the standard PB-
SMT approach. The literature reports mixed perfor-
mance improvements for different language pairs,
e.g., (Collins et al., 2005; Xia and McCord, 2004;
Wang et al., 2007; Li et al., 2007; Khalilov and
Sima’an, 2010). But what is thepotential improve-
mentof source reordering? We contribute experi-
ments measuring oracle performance improvement
for English to Dutch/Spanish/Chinese translations.
Beside string-driven oracles, we report results using
ITG-like transductions over a single syntactic parse
tree ofs. Our results confirm that reordering a sin-
gle syntactic tree could be insufficient (e.g., (Huang
et al., 2009)), yet they show substantial potential.

Our second contribution is a novel source reorder-
ing model that manipulates the source parse tree
with two kinds of tree transduction operators: the
one permutes the order of sibling subtrees under a
node, and the other first abolishes layers in the parse
tree in order to exploit sibling permutation at the re-
maining levels. The latter is the opposite of parse bi-
narization using Expectation-Maximization (Huang
et al., 2009). We use Maximum-Entropy training
(Berger et al., 1996) to learn a sequence of tree
transductions, each conditioned on contextual fea-
tures in tree resulting from outcome of the preced-
ing transduction. The conditioning on the outcome
of preceding transductions is a departure from ear-
lier approaches at learning independent source per-
mutation steps, e.g., (Tromble and Eisner, 2009;
Visweswariah et al., 2010).

The aim for the rest of this paper is firstly, to
quantify the potential performance improvement of
a standard PBSMT system if preceded by source
reordering and secondly, to show that statistical
Markov approach to tree transduction, where the
probability of each transduction step is conditioned
on the outcome of preceding steps, can improve the
quality of PBSMT output significantly.

2 Source-Reordering: Framework

We start out from a word-aligned parallel corpus,
consisting of triples〈s, a, t〉, a sources, targett and

word alignmenta. Source reordering assumes that
a permutation ofs, called s̀, is first generated with
a modelPr(s̀ | s) followed by a phrase translation
modelPt(t | s̀). The desired permutatioǹs is one
that has minimum word order divergence fromt, i.e.,
when word-aligned again witht would have least
number of crossing alignments.

Practically, the original parallel corpus{〈s, a, t〉}
is split to two parallel corpora: (1) a source-to-
permutation parallel corpus (consisting of〈s, a, s̀〉)
and (2) a permutation-to-target parallel corpus (con-
sisting of 〈gs̀, à, t〉), where gs̀ is the output of a
source reordering model (guessing ats̀), and à re-
sults from automatically word aligning〈gs̀, t〉. The
latter parallel corpus is used for training a phrase-
based translation systemPt(t | gs̀), while the for-
mer corpus is used for training a source reordering
model Pr(s̀ | s). The problem of permuting the

Figure 1: Example crossing alignments and long-distance
reordering using a source parse tree.

source string to unfold the crossing alignments is
computationally intractable (see (Tromble and Eis-
ner, 2009)). However, various constraints can be
made on unfolding the crossing alignments ina. A
common approach is to assume a binary parse tree
for the source string, and define a set of eligible per-
mutations by binary ITG transductions. This defines
permutations resulting from at most inverting pairs
of children under nodes of the source tree. Fig-
ure 1 exhibits a long-range reordering of the verb
in English-to-Dutch translation: inverting the order
of the children of theVP node would unfold the
crossing alignment. However, crossing alignments
represented as non-constituents cannot be resolved.
This difficulty can be circumvented by employing
multiple alternative parse trees, by applying heuris-
tic transforms (e.g., binarization) to the tree to fit the
alignments (Wang et al., June 2010), or by defin-
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ing new local transductions, on top child permuta-
tion (ITG) as we do next.

3 Existing work on source permutation

Source reordering has been shown useful for PB-
SMT for a wide variety of language pairs with high
mutual word order disparity (Collins et al., 2005;
Popovic’ and Ney, 2006; Zwarts and Dras, 2007;
Xia and McCord, 2004). In Costa-jussà and Fonol-
losa (2006) statistical word classes as well as POS
tags are used as patterns for reordering the input sen-
tences and producing a new bilingual pair.

A rather popular class of source reordering al-
gorithms involves syntactic information and aims
at minimizing the need for reordering during trans-
lation by permuting the source sentence (Collins
et al., 2005; Wang et al., 2007; Khalilov and
Sima’an, 2010; Li et al., 2007). Some systems
perform source permutation using a set of hand-
crafted rules (Collins et al., 2005; Wang et al.,
2007; Ramanathan et al., 2008), others make use of
automatically learned reordering patterns extracted
from the plain training data, the corresponding
parse or dependency trees and the alignment ma-
trix (Visweswariah et al., 2010).

Inspiring this work, source reordering as a pre-
translation step is viewed as a word permutation
learning problem in Tromble and Eisner (2009) and
Li et al. (2007). The space of permutations is ap-
proached efficiently using a binary ITG-like syn-
chronous context-free grammar put on the parallel
data. Similarly, a local ITG-based tree transducer
with contextual conditioning is used in Khalilov and
Sima’an (2010) and Li et al. (2007), and prelimi-
nary experiments on a single language pair show im-
proved performance.

Particularly, the model in (Li et al., 2007) is ex-
plicitly aimed at long-distance reorderings (English-
Chinese), prunes the alignment matrix gradually
to fit the source syntactic parse and employs
Maximum-Entropy modeling to choose the optimal
local ITG-like permutation step of sister subtrees but
interleaves that step with a translation step. The
model which we present in Section 2 differs substan-
tially from (Li et al., 2007) and other earlier work
because it (1) incorporates other kinds of tree trans-
duction operations than those promoted by ITG, and

(2) works with the unmodified alignment matrix but
learns reorderings only from those alignments that
are consistent with the tree, thereby avoiding the ef-
fects of heuristics for pruning alignments to fit the
tree-structure, e.g., (Li et al., 2007).

In this paper we take the idea of learning source
permutation one step further along a few dimen-
sions. We show the utility of other kinds of tree
transduction operations, besides those promoted by
ITG, stress the importance of using a wide range of
conditioning context features during learning, and
report oracle and test results onthreelanguage pairs.

The majority of existing work reports encourag-
ing performance improvements by source reorder-
ing. Next we aim at quantifying the potential im-
provement by oracle source reordering at the string
level, if all permutations were to be allowed, and at
the source syntactic tree level, by limiting the per-
mutations with two kinds of local transductions.

4 Oracle source reordering results

Source reordering for PBSMT assumes that permut-
ing the source words to minimize the order differ-
ences with the target sentence could improve trans-
lation performance. However, the question “how
much?" is rarely asked. Here, we attempt answering
this question with a set of oracle systems1, in which
we perform unfolding operations on the crossing
links in alignmenta (estimated between corporas
and t) that leads to a more monotone alignmentà
(betweeǹs, which is a permutation ofs, andt). We
introduce a set of tree-based constraints that control
the unfolding of alignment crossings. We measure
the impact of (un)folded alignment crossings on the
performance of the PBSMT system (see Table 1).

Oracle String. This method scans the alignmenta
from left-to-right and unfolds all the crossing links
between bilingual phrases (Oracle string). Figure 2
shows an example of word reordering done on the
string level. NULL aligned words do not move from
their positions.

Oracle parse tree with permute siblings. The or-
acle system unfolds an alignment crossing if and

1All the source permutation methods presented in this Sec-
tion are based on automatic alignments, which inevitably con-
tain wrong links. In the future we plan to involve manual align-
ments to the computation of oracle permutation
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only if the source side of the alignment crossing is
covered by the same node in the syntactic source
tree, and the alignment pair subject to crossing can
be unfolded by permuting the order of the sibling
nodes. NULL aligned words do not prevent unfold-
ing crossings because we include them with the ad-
jacent words that are involved in the crossings. We
call this configurationOracle tree.

Figure 1 shows an example. According to theOr-
acle treeconstraint, the word “went” can be placed
in the end of the sentence since the replacement can
be done as a swapping of “VBP” and “PP” cate-
gories. The same happens for the word “reflect”
swapping with “S” constituent in Figure 1, but not
for the chunks “the positions” and “not properly”:
this crossing cannot be resolved under the tree con-
straint since they are not dominated by sibling syn-
tactic categories.

Oracle tree with delete descendants, permute sib-
lings. This oracle implements an additional mech-
anism of tree modification to increase the number
of reordering permutations in comparison withOra-
cle treealgorithm. Here we allow for an additional
tree transduction operation that deletes intervening
layers before applying sibling permutation. This is
illustrated in Figure 3. The word “must” can not

be moved to the beginning of the sentence in Fig-
ure 3a byOracle tree. Instead, this is done in two
steps. Firstly, theVP dominating the words “must”
and “apply” is deleted under the current nodeS,
the transformed tree is shown in Figure 3b. Sub-
sequently, the siblings underS in the resulting tree
are permuted, “must” is reordered across the whole
clause and placed to the first position (see Figure 3c).
We call this systemOracle mod.
Figure 4 shows an example in which crossing align-
ment links cannot be unfolded without deleting 4 in-
tervening layers.

Oracle results Table 1 contrasts the oracle results
with the performance shown by standard PBSMT
systems. The experimental setup is detailed in Sec-
tion 6. We consider the following baseline con-
figurations: PBSMT - Moses-based PBSMT with
distance-based reordering model;PBSMT+MSD-
Moses-based PBSMT with distance-based reorder-
ing model and MSD andMoses-chart- hierarchical
Moses-chart-based PBSMT.

Depending on number of parse tree levels allowed
to be deleted, we consider threeOracle modsys-
tems: with two (2lt), three (3lt) and five (5lt) levels
of descendants allowed to be deleted for a more flat
parse tree structure before sibling permutation.

(a) Original bilingual phrase.

(b) Reordered bilingual phrase.

Figure 2: Example ofOracle stringunfolding.

(a) Original parse tree. (b) Parse tree with deleted VP category. (c) Reordered parse tree.

Figure 3: Example of text monotonization with tree transformation.
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The impact of corpus monotonization on transla-
tion system performance is measured using the fi-
nal point of weight optimization on the develop-
ment set (Dev BLEU), as well as on the test set (Test
BLEU/NIST).

The major conclusion that can be drawn from
the oracle results is that the source reordering de-
fined in terms of parse tree transduction can poten-
tially lead to increased translation quality (up to 1.2
BLEU points for English-Dutch, 0.5 for English-
Spanish and 1.7 for English-Chinese). At the same
time, a huge gap between performance shown by
Oracle stringand tree oracle systems (≈2.2 BLEU
points for English-Dutch,≈1.3 for English-Spanish
and ≈2.5 for English-Chinese) shows that there
are many crossing alignments which cannot be un-
folded with simple, local transductions over a single
source-side syntactic tree.

5 Conditional Tree-Transductions

Our model aims at learning from the source
permuted parallel corpus (containing tu-
ples 〈s, a, s̀〉) a probabilistic optimization
(argmaxπ(s) Pr(π(s) | s, τs)), where τs is the
source parse andπ(s) is some eligible permutation
of s. We view the permutations leading from
s to s̀ as a sequence of local tree transductions
τs̀0 → . . . → τs̀n , where s̀0 = s and s̀n = s̀,
and each transductionτs̀i−1

→ τs̀i is defined
using any of two kinds of local tree transduction
operations used in Section 4 or alternatively NOP
(No Operation).

The sequenceτs̀0 → . . . → τs̀n is obtained by
taking the next node in a top-down tree traversal,
then statistically selecting the most likely of three
transduction operations and applying the selected
operation to the current node. If the current tree is
τs̀i−1

, and the current node has addressx, is syntacti-
cally labeledNx, directly dominatesαx (the ordered
sequence of node labels underx), we approximate
the conditional probabilityP (τs̀i | τs̀i−1

) with the
transduction operation it employs:

• Permute the children ofx in τs̀i−1
with proba-

bility

≈ P (π(αx) | Nx → αx, Cx) (1)

Figure 4: Example of unfoldable alignment crossings.

whereπ(αx) is a permutation ofαx (the or-
dered sequence of node labels underx) andCx

is a local tree context of nodex in treeτ
s
′
i−1

.

• Select a child ofx to delete, pull its children
up directly underx, effectively changingαx to
someαd

x, and then permute the children of the
latter.

≈ P (αx ; αd
x, π(αx) | Nx → αx, Cx) (2)

where (αx ; αd
x symbolizes the result of

deleting a subtree under a child ofx. This op-
eration applies also to subtrees of depthn ∈
{1, 2, 3, 5} underx, i.e., a child is depth 1, a
child with its children is depth2 and so on.

Obviously, the number of possible permutations of
αx is factorial in the length ofαx. Fortunately, the
source permuted training data exhibits only a frac-
tion of possible permutations even for longerαx se-
quences. Furthermore, by conditioning the probabil-
ity on local contextCx, the number of permutations
is limited to a handful set.

Theoretically, we could define the probabil-
ity of the sequence of local tree transductions
τs̀0 → . . . → τs̀n as

P (τs̀0 → . . . → τs̀n) =

n∏

i=1

P (τs̀i | τs̀i−1
) (3)
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System
EnNl EnEs EnZh

Dev Test Dev Test Dev Test
BLEU BLEU NIST BLEU BLEU NIST BLEU BLEU NIST

Baselines

PBSMT 23.88 24.04 6.29 32.31 31.70 7.48 18.71 22.21 5.28
PBSMT+MSD 24.07 24.04 6.28 32.45 31.85 7.47 18.99 21.18 5.30
Moses-chart 23.94 24.93 6.39 30.58 31.80 7.41 19.93 23.90 5.41

Oracle results

Oracle tree 24.70 24.80 6.32 32.76 32.21 7.51 20.23 23.44 5.35
Oracle string 26.28 27.02 6.50 34.09 33.52 7.60 23.01 26.08 5.52
Oracle mod+2lt 25.05 25.04 6.36 32.24 32.18 7.51 20.64 23.75 5.37
Oracle mod+3lt 25.11 25.27 6.37 32.22 32.34 7.52 20.71 23.59 5.37
Oracle mod+5lt 25.07 25.23 6.37 32.51 32.37 7.55 20.93 23.93 5.39

Table 1: Summary of oracle results.

However, unlike earlier work (e.g., (Tromble and
Eisner, 2009)), we cannot afford to do so because
every local transduction conditions on contextCx of
an intermediate tree, which quickly risks becoming
intractable (even when we use packed forests). Fur-
thermore, the problem of calculating the most likely
permutation under such a model is made difficult by
the fact that different transduction sequences may
lead to the same permutation, which demands sum-
ming over these sequences (another intractable sum-
mation). Earlier work has avoided conditioning con-
text, effectively assuming that the each intermediate
permutation is independent from the preceding ones.

Instead, we take a pragmatic approach and greed-
ily select at every intermediate pointτs̀i−1

→ τs̀i the
single most likely local transduction that can be ap-
plied to a node in the current intermediate treeτs̀i−1

using an interpolation of the terms in Equations 1
and 2 with probability ratios of the language model
s̀ as follows:

P (TRANSi| Nx → αx, Cx)×
Plm(s̀i−1)

Plm(s̀i)

whereTRANSi is any of the two transduction oper-
ations or NOP, andPlm is a language model trained
on the s̀ side of the corpus{〈s, a, s̀〉}. The ratio-
nale behind this log-linear interpolation is that our
source permutation approach aims at finding the op-
timal permutatioǹs of s that can serve as input for
a subsequent translation model. Hence, we aim at

tree transductions that are syntactically motivated
that also lead to improved string permutation. In this
sense, the tree transduction definitions can be seen as
an efficient and syntactically informed way to define
the space of possible permutations.

Estimates. We estimate the string probabilities
Plm(.) using 3-gram language models trained on
the s̀ side of the source permuted parallel corpus
{〈s, a, s̀〉}. We estimate the conditional probability
Pr(TRANS | Nx → αx, Cx) using a Maximum-
Entropy framework, where feature functions are de-
fined to capture the permutation as a class, the node
labelNx and its head POS tag, the child sequenceαx

together with the corresponding sequence of head
POS tags and other features corresponding to dif-
ferent contextual information.

Features in use. We used a set of 15 features to
capture reordering permutations from the syntac-
tic and linguistic perspectives:Local tree topology:
sub-tree instances that include parent node and the
ordered sequence of child node labels (1);Depen-
dency features:features that determine the POS tag
of the head word of the current node (2), together
with the sequence of POS tags of the head words of
its child nodes (3) and the POS tag of the head word
of the parent (4) and grandparent nodes (5);Syntac-
tic features:apart from the whole path from the cur-
rent node to the tree root node (6), we used three
binary features from this class describe: (7) whether
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the parent node is a child of the node annotated with
the same syntactic category, (8) whether the parent
node is a descendant of the node annotated with the
same syntactic category, and (9) if the current sub-
tree is embedded into a “S-SBAR” sub-tree2; POS
lexical features: bi- and tri-grams of POS tags of
the left- and right-hand side neighboring words (10-
13); Counters: a number of words covered by a
given constituent (14) and a number of children of
the given node (15).

6 Translation and reordering experiments

Data. In our experiments we used English-Dutch
and English-Spanish European Parliament data and
an extraction from the English-Chinese Hong Kong
Parallel Corpus. All the sets were provided with
one reference translation. Basic statistics of the
training data can be found in Table 2, development
datasets contained 0.5K, 1.9K and 0.5K lines and
test datasets contained 1K, 1.9K and 0.5K for Dutch,
Spanish and English, respectively.

Experimental setup. Word alignment was found
using GIZA++3 (Och, 2003), supported bymk-
cls4 (Och, 1999) tool. The PBSMT systems we con-
sider in this study is based onMoses toolkit (Koehn
et al., 2007). We followed the guidelines provided
on the Moses web page5.

Two phrase reordering methods are widely used
in phrase-based systems. A distance-based reorder-
ing model providing the decoder with a cost linear
to the distance between words that are being re-
ordered. This model constitutes the default for the
Moses system. And, a lexicalized block-oriented
data-driven reordering model (Tillman, 2004) con-
siders three orientations: monotone (M), swap (S),
and discontinuous (D), while the reordering proba-
bilities are conditioned on the lexical context of each
phrase pair.

All language models were trained withSRI LM
toolkit (Stolcke, 2002). Language models for Dutch,
Spanish and Chinese use5-grams, while the ideal-

2The latter feature intends to model the divergence in word
order in relative clauses between Dutch and English which is
illustrated in Figure 1.

3code.google.com/p/giza-pp/
4http://www.fjoch.com/mkcls.html
5http://www.statmt.org/moses/

ized English (̀s) is modeled using3-grams.
We useStanford parser6 (Klein and Manning,

2003) as a source-side parsing engine. The parser
was trained on the WSJ Penn treebank provided with
14 syntactic categories and 48 POS tags. The eval-
uation conditions were case-sensitive and included
punctuation marks. For Maximum Entropy model-
ing we used themaxent toolkit7.

Translation scores. Table 3 shows the results of
automatic evaluation using BLEU (Papineni et al.,
2002) and NIST (Doddington, 2002) metrics.

MERrdconfiguration corresponds to the PBSMT
system with the source side of the parallel corpus re-
ordered using our Maximum Entropy model, but the
transduction operations are limited to permutation of
the children only. MERrd+xlt configuration refers
to the set of systems which, beside child permuta-
tion, includes a deletion operation with the maxi-
mum number of tree layers that can be deleted set
to x. All reordered systems include a MSD model
as a supporting reordering mechanism.

BLEU scores measured on the test data, which are
statistically significant from the best PBSMT results
are marked with bold. The statistical significance
calculations have been done for a 95% confidence
interval and 1000 resamples, following the guide-
lines in Koehn (2004).

Analysis. Our results show that source-reordering
is beneficial for the language pairs with high mutual
word order disparity. In contrast to English-Dutch
and English-Chinese translation tasks, the statistical
significance test reveals that all but theMERrd+5lt
English-Spanish PBSMT systems with rearranged
input are not different from the translation qual-
ity delivered by Moses. This disappointing result
for the English-to-Spanish translation task may be
explained by the fact that many reordering differ-
ences are resolved by standard reordering models
(distance-based and MSD).

Table 3 shows the results of automatic transla-
tion quality evaluation. A gap between the max-
imum reachable performance shown by tree trans-
duction systems and the translation quality delivered

6http://nlp.stanford.edu/software/
lex-parser.shtml

7http://homepages.inf.ed.ac.uk/lzhang10/
maxent_toolkit.html
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Parameter Dutch English Spanish English Chinese English

Training corpus

Sentences 1.2 M 1.2 M 1.4 M 1.4 M 1.5 M 1.5 M
Words 32.9 M 33.0 M 40.1 M 38.54 M 35.35 M 35.00 M
Vocabulary 228 K 104 K 168 K 119 K 136 K 245 K
Average sentence length 27.20 27.28 28.80 27.67 24.06 23.83

Table 2: Statistics of the training, development and test corpora.

by our model is 0.05-0.29 BLEU points for English-
Dutch, 0.01-0.09 for English-Spanish and 0.27-
0.76 for English-Chinese. These numbers demon-
strate that there are some potentially usable regu-
larities not captured by our current conditional tree-
transduction model.

7 Conclusions and future work

We present a source reordering system for PBSMT,
in which the reordering decisions are conditioned
on features from the source parse tree. Our system
allows for two operations over the parse tree: per-
muting the order of sibling nodes and deleting child
nodes in order to make the tree flatter and exploit
sibling permutations at the remaining layers.

Our contribution can be summarized as follows:
(1) we report detailed results of maximum poten-
tial performance that can be achieved with source
reordering under different constraints, (2) we define
a source-reordering process through an efficient se-
quence of greedy, context-conditioned transduction

operations over the source parse trees.
The method was tested on three different trans-

lation tasks. The results show that our approach is
more effective for language pairs with significant
difference in word order. Another important ob-
servation is that our model demonstrate translation
quality comparable with the one delivered by SMT
systems based on hierarchical phrases.

The introduced reordering algorithm and the re-
sults obtained present many opportunities for future
work. We plan to perform a detailed analysis of the
structure of the extracted phrases to find out the par-
ticular cases where the improvement comes from.
We also propose to discover other possible trans-
duction operations to better explore the reordering
space.
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System
EnNl EnEs EnZh

Dev Test Dev Test Dev Test
BLEU BLEU NIST BLEU BLEU NIST BLEU BLEU NIST

Baselines

PBSMT 23.88 24.04 6.29 32.31 31.70 7.48 18.71 22.21 5.28
PBSMT+MSD 24.07 24.04 6.28 32.45 31.85 7.47 18.99 21.18 5.30
Moses-chart 23.94 24.93 6.39 30.58 31.80 7.41 19.93 23.90 5.41

Reordering systems

MERrd 24.64 24.72 6.33 31.97 32.19 7.52 19.82 23.17 5.33
MERrd+2lt 24.61 24.99 6.35 31.70 32.11 7.50 20.02 23.01 5.33
MERrd+3lt 24.82 24.98 6.34 31.65 32.25 7.52 20.21 23.14 5.34
MERrd+5lt 24.78 25.12 6.37 31.99 32.38 7.52 20.29 23.17 5.35

Table 3: Experimental results.
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