Sixth SIGHAN Workshop on Chinese Language Processing

Stochastic Dependency Parsing Based on A* Admissible Search

Bor-shen Lin

National Taiwan University of Science and Technology / No. 43, Keelung Road,
Section 4, Taipei, Taiwan

bslin@cs.ntust.edu.tw

Abstract

Dependency parsing has gained attention in
natural language understanding because the
representation of dependency tree is simple,
compact and direct such that robust partial
understanding and task portability can be
achieved more easily. However, many de-
pendency parsers make hard decisions with
local information while selecting among
the next parse states. As a consequence,
though the obtained dependency trees are
good in some sense, the N-best output is
not guaranteed to be globally optimal in
general.

In this paper, a stochastic dependency pars-
ing scheme based on A* admissible search
is formally presented. By well representing
the parse state and appropriately designing
the cost and heuristic functions, depend-
ency parsing can be modeled as an A*
search problem, and solved with a generic
algorithm of state space search. When
evaluated on the Chinese Tree Bank, this
parser can obtain 85.99% dependency ac-
curacy at 68.39% sentence accuracy, and
14.62% node ratio for dynamic heuristic.
This parser can output N-best dependency
trees, and integrate the semantic processing
into the search process easily.

1 Introduction

Constituency grammar has long been the main way
for describing the sentence structure of natural lan-
guage for decades. The phrase structure of sen-
tences can be analyzed by such parsing algorithms
as Earley or CYK algorithms (Allen, 1995; Juraf-

45

sky and Martin 2001). To parse sentences with
constituency grammar, a set of grammar rules writ-
ten in linguistics is indispensable, while a corpus
of tree bank annotated manually is also necessary
if stochastic parsing scheme is adopted. In addition,
the many non-terminal or phrasal nodes make it
sophisticated to further interpret or disambiguate
the parse trees since deep linguistic knowledge is
often required. All these factors make language
understanding very difficult, labor-intensive and
not easy to be ported to various tasks.

T [T A | A [[
cn

with|yesterday|type| well| of [report|send| to | boss

E1Y

=

(Send to the boss the report typed well yesterday.)

FEC yesterday @

Figure 1. An example of dependency parsing
with unlabeled dependency tree.

Dependency grammar, on the other hand, describes
the syntactic and semantic relationships among
lexical terms directly with binary head-modifier
links. Such representation is very simple, compact,

Sixth SIGHAN Workshop on Chinese Language Processing

direct, and therefore helpful for simplifying the
process of language understanding and increasing
task portability. Figure 1 shows an example of de-
pendency parsing for the Chinese sentence “f°If=
STV Ao I (meaning “send to the
boss the report typed well yesterday”). According
to the binary head-modifier links, it is pretty easy
to transform the dependency tree into the predicate
“send(to:boss,object:report(typed(yesterday,well)))
” for further interpretation or interaction, since the
semantic gap between them is slight and the map-
pings are thus quite direct. Furthermore, robust
partial understanding can be achieved easily when
full parse is not obtainable, and measured precisely
by simply counting the correct attachments on the
dependency tree (Ohno et al., 2004). All these will
not be so simple provided that conventional con-
stituency grammar is used.

In the dependency parsing paradigm, several de-
terministic, stochastic or machine-learning-based
parsing algorithms have been proposed (Fisner,
1996; Covington 2001; Kudo and Matsumoto,
2002; Yamada and Matsumoto, 2003; Nivre 2003;
Nivre and Scholz, 2004; Chen et al., 2005). Many
of them make hard decisions with local informa-
tion while selecting among next parse states. As a
consequence, though the obtained dependency
trees are good in some sense, the N-best output is
not guaranteed to be globally optimal in general
(Klein and Manning, 2003).

On the other hand, A* search that guarantees opti-
mality has been applied to many areas including Al.
Klein and Manning (2003) proposed to use A*
search in PCFG parsing. Dienes et al. depicted
primarily the idea of applying A* search to de-
pendency parsing, but there is not yet formal
evaluation results and discussions based on the
literatures we have (Dienes et al., 2003).

In this paper, a stochastic dependency parsing
scheme based on A* admissible search is formally
presented. By well representing the parse state and
appropriately designing the cost and heuristic func-
tions, dependency parsing can be modeled as an
A* search problem, and solved with a generic al-
gorithm of state space search. This parser has been
tested on the Chinese Tree Bank (Chen et al.,
1999), and 85.99% dependency accuracy at
68.39% sentence accuracy can be obtained. Among
three types of proposed admissible heuristics, dy-
namic heuristic can achieve the highest efficiency

46

with node ratio 14.62%. This parser can output N-
best dependency trees, and integrate the semantic
processing into the search process easily.

2 Fundamentals of A* Search

Search is an important issue in Al area, since the
solutions of many problems could be automated if
they could be modeled as search problems on state
space (Russell and Norvig, 2003). A well known
example is the traveling salesperson problem, as
shown in the example of Figure 2. In this section
basic constituents of A* search will be depicted.

2.1 State Representation

State representation is the first step for modeling
the problem domain. It involves not only designing
the data structure of search state but indicating the
way a state can be uniquely identified. This is defi-
nitely not a trivial issue, and depends on the how
the problem is defined. In Figure 2, for example,
search state cannot be represented simply with the
current city, because traveling salesperson problem
requires every city has to be visited exactly once.
The two nodes of city E on level 2 in Figure 2,
with paths A-B-E and A-C-E respectively, are
therefore regarded as different search states, and
generate their successor states individually. The
node E with the path A-C-E, for example, can gen-
erate successor B, but the one with the path A-B-E
cannot due to reentry of city B. In other words, the
search state here is the path, including all cities
visited so far, instead of the current city. However,
if the problem is changed as finding the shortest
path from city A to city F, the two paths A-B-E
and A-C-E can then be merged into a single node
of city E with shorter path tracked. In such case,
the search state will then be the current city instead
of the path.

A

F

Figure 2. An example of state space search for
traveling salesperson problem from
initial city A.

Sixth SIGHAN Workshop on Chinese Language Processing

In addition, for state representation three issues
need to be further addressed.

« Initial state: what the initial state is.

+ State transition: how successor states are gen-
erated from the current state.

+ Goal state: to judge whether the goal state is
achieved or not.

In the above example in Figure 2, the initial state is
the path containing city A only. The state transition
is to visit next cities from the current city under the
constraint of no reentry. The goal states are any
paths that depart from city A and pass every city
exactly once.

2.2 State Space Search

With the state well represented, two data structures
are utilized to guide the search.

« An open list (a priority queue, denoted as open
in Figure 3) used for tracking those states not
yet spanned.

+ A closed list (denoted as closed in Figure 3)
used for tracking those states visited so far to
avoid the reentry of the same states.

Then, a generic algorithm for state space search,
with pseudo codes in object-oriented style shown
in Figure 3, is performed to find the goal states.
The initial state is first inserted into the queue, and
an iterative search procedure (denoted as search()
in Figure 3) is then called. For each iteration in the
search procedure, the search state is popped from
the queue and inspected one by one. If it is the goal
state, the procedure terminates and returns the goal
state. Otherwise the successors of the current state
are generated, and inserted into the queue indi-
vidually according to the priority provided not yet
visited. The search procedure could be called mul-
tiple times if more than one goal states are desired.

Note that the algorithm in Figure 3 is generic
enough to be adapted for various search strategies,
including depth first search, breadth first search,
best first search, algorithm A, algorithm A* and so
on, by simply providing different evaluation func-
tion f{(n) of search state n for prioritizing the queue.
For depth first search, for example, those states
with the highest depth will have higher priority and
be inserted at the front of the queue, while for
breadth first search at the back.

47

open.add(initial);
goal = search();
search() {
while(true) {
state = open.pop();
if(state.isGoal()) return state;
successors = state.getSuccessors();
for(successor in successors) {
if(!closed.contains(successor)) {
closed.add(successor);
open.add(successor);
/
/
/

/

Figure 3. Generic algorithm for state space search.

2.3

If the evaluation function f(n) satisfies

Sf(n) = gm) + hn),

where g(n) is the real cost from the initial state
to the current state n and A(n) is the heuristic esti-
mate of the cost from the current state » to the goal
state, such type of algorithm is called algorithm A.
If further, the constraint of admissibility for A(n)
holds, 1.e.,

h(n) < h*(n),

Optimality and Efficiency

where /4*(n) is the true minimum cost from cur-
rent state n to the goal state, then optimality can be
guaranteed, or equivalently, the goal state obtained
first will give minimum cost. Such type of algo-
rithm is called algorithm A*. It can be proved that
for algorithm A*, the closer the heuristic /(n) is to
the true minimum cost, £*(n), the higher the search
efficiency is.

3 A*-based Dependency Parser

In this section, how dependency parsing is mod-
eled as an A* search problem will be depicted in
detail.

3.1

First, let W = {W,, W,, ...,W,} denote the word
list (sentence) to be parsed, where W; denotes the i-
th word in the list. And, each word W; is expressed
in the form,

Formulation

Sixth SIGHAN Workshop on Chinese Language Processing

W=(w1 (1)

where w is the lexical term and ¢ is the part-of-
speech tag. A dependency database can first be
built by extracting the dependency links among
words from a corpus of tree bank. Given the de-
pendency database, a directed dependency graph G
indicating valid links for the word list W can be
constructed, as shown in the example of Figure 4.
The direction of the link here indicates the direc-
tion of modification. Link W; = W, in Figure 4,
for example, means ; can modify (or be attached
to) W,. The dependency graph G will be used for
directing the state transition during search.

O=0
%
)

(W)
PO

Figure 4. Example dependency graph.

3.2 Representation of Parse State

Since the goal of dependency parsing is to find the
dependency tree, the search state can therefore be
represented as the dependency tree constructed so
far (denoted as T). Besides, a set containing those
words not yet attached to the dependency tree
(denoted as C, meaning “to be consumed”) can be
generated dynamically by excluding those words
on the dependency tree T from word list W. The
three issues depicted in Section 2.1 are then
addressed as follows.

« Initial state: the dependency tree T is empty
and the set C contains all words in list W.

« State transition: a word is extracted from C and
attached onto some node on the dependency
tree T, and a successor state 7° and C’ is then
generated. Whether an attachment is valid or
not is determined according to the dependency
graph G, under the constraints of uniqueness
(any word has at most one head) and projectiv-
ity' (Covington 2001, Nivre 2003).

' The projective constraint for new attachment is im-
posed by those attachments already on the dependency
tree. Each attachment already on the tree forms a non-

48

« Goal state: the set C is empty while all words
in W are attached onto the dependency tree T.

With the parse state represented well, the generic
algorithm for state space search depicted in Section
2.2 can then be performed to find the N-best de-
pendency trees. A partial search space based on
the dependency graph G in Figure 4 is displayed in
Figure 5, in which R denotes the root node of de-
pendency tree. As shown in Figure 5, for each
search state (denoted by the ovals enclosed with
double-lines), only a link in form of W, 2 R or W,
- W, is actually tracked Through tracing the
search tree back from the current state, all links can
be obtained, and the overall dependency tree T can
be constructed accordingly. For the search state W;
- W, in Figure 5, for example, the links ;> R,
W,> W, and W; = W, are obtained through back
tracing, which can then construct the dependency
tree, W3 2 W, =2 W, = R, as can be seen on the
left-hand side of Figure 5. This is similar to the
case of traveling salesperson problem in Figure 2,
in which only the current city is tracked for each
state, but the path that identifies the search state
uniquely can be obtained by back tracing.

Figure 5. A partial search space where some
search states are associated with their
dependency trees with dashed lines.

crossing region between its head and modifier to con-
strain new attachments for those words located within
that region.

Sixth SIGHAN Workshop on Chinese Language Processing

3.3

For given word list W, the dependency tree T with
the highest probability P(7) is desired, where

P(T) = {I1P(W,2R)] - {IIP(W; > W)}

Cost Function

)

The first term corresponds to those attachments on
the root node of dependency tree (i.e. headless
words), while the second term corresponds to the
other attachments. In A* search, the optimal goal
state obtained is guaranteed to give the minimal
cost. So, if the cost function, g(n), is defined as the
minus logarithm of P(7),

g(n) = -log (P(T))
= 2 (~log(P(W, 2R))) + X (-log(P(W;> W)
)

then the A* search algorithm that minimizes the
cost g(n) will eventually maximizes the probability
of the dependency tree, P(T). Here the minus loga-
rithms of the probabilities in Equation (3), —
log(P(W,2 R)) and —log(P(W;2W;)), can be re-
garded as the step cost for each attachment (or link)
accumulated during search. Furthermore, since
each word is expressed with a lexical term and a
part-of-speech tag as shown in Equation (1), the
probability for each link can be depicted as,

P(W; > R)=P(W,|R) =P(t|R) - Pw|t) (4)
PW; 2 W) = P(W;| W) = P(tft) - P(wjt) (5)

= X step-cost

assuming the word list W is generated by the
Baysian networks in Figure 6(a) and 6(b) respec-
tively. Note that here the probability for a link
P(W; =2 W) involves not only the lexical terms w;
and w; but also the part-of-speech tags #;and ¢;, and
is denoted as link bigram. Such formulation can be
generalized to high order link n-grams. Figure 6(c),
for example, displays the Baysian network for the
link W, = W, conditioned on W, W, based on
which the hnk trigram is defined as

PW, 2 W | W2 W) = P(W, | W, W)

=Ptc|t,t) - P(wi | ty). (6)
When comparing Figure 6(c) with Figure 6(d), the
Baysian networks for link trigram P(W; | W, W))
and conventional linear trigram P(W., | W, W)
respectively, it could be found that link n-gram is

flexible for long-distance stochastic dependencies,
though the two topologies look similar. Undoubt-

49

edly, the Baysian networks in Figure 6 appear too
simple to model the real statistics precisely. In the
link W;=> W,, for example, W, might depend on not
only its parent W; but the children of W, (Eisner,
1996). Also, the direction (sgn(i-j)) and the dis-
tance (|i-f|) of modification between W; and W,
might be important (Ohno et al., 2004). All these
factors could be taken into account by simply in-
cluding the minus logarithms of the corresponding

probabilities into the step cost.
POW; | W)

¢
@*@

@5@; ?1

PW, | Wi, W) PWio| Wi, Wivy)
(© (d)
Figure 6. Baysian networks of (a) link unigram
(b) link bigram (c) link trigram (d)
linear trigram.

P(W,|R)

(@)

@)

3.4 Heuristic Function

In A* search, the evaluation function f{n) consists
of g(n), the real cost from the initial state to the
current state 7, and Ai(n), the cost estimated heuris-
tically from the current state n to the goal state.
Now for dependency parsing, g(n) defined in
Equation (3) is the accumulated cost for those at-
tachments on current dependency tree 7, while i(n)
is the predicted cost of the attachments for the
words in C which have not yet been attached.
Since h(n) = h*(n) has to hold for admissibility, it
is necessary to estimate /(n) conservatively enough
so as not to exceed the true minimum cost /*(n).
To achieve higher search efficiency, however, it is
preferred to estimate /(n) more aggressively such
that h(n) can be as close to A*(m) as possible.
Therefore, in this paper, /#(n) is estimated with the
minimum of minus logarithms of link n-grams for
each word in C, with different levels of constraints
described below.

Sixth SIGHAN Workshop on Chinese Language Processing

+ Global heuristic: the minimum is static, and can
be calculated in advance before parsing any
sentence by considering all link n-grams for
each word.

+ Local heuristic: the minimum is calculated ac-
cording to the dependency graph G of current
parsing sentence by considering all possible
link n-grams with respect to G.

« Dynamic heuristic: the minimum is calculated
dynamically according to current dependency
tree T during parsing by considering only pro-
jective link n-grams with respect to G for cur-
rent dependency tree 7.

By virtue of taking the minimum of minus loga-
rithms of link n-grams, admissibility can be guar-
anteed for these heuristics. The latter with stricter
constraints on finding the minimum can give more
precise estimate of cost (with higher 4(n)) than the
former, and is thus expected to be more efficient,
as will be discussed in the next section.

4 Experiments

The stochastic dependency parsing scheme pro-
posed in this paper has been first tested on the Chi-
nese Tree Bank 3.0 licensed by Academia Sinica,
Taiwan, with six sets of data collected from differ-
ent sources (Chen et al., 1999). Head-modifier
links (with lexical term and part-of-speech tag) can
be extracted from the tree bank since it is produced
by a head-driven parser (Chen, 1996). In our ex-
periments, One set, named as oral.check, contain-
ing 4156 sentences manually transcribed from dia-
logue database is used to train the dependency da-
tabase, link statistics including conditional prob-
abilities, link unigrams and bigrams as shown in
Equation (4) and (5), and so on. Another set,
named as ev.check, containing 1797 sentences in
text books of elementary school is used to test the
A*-based dependency parser. Note here the train-
ing corpus and testing corpus are of different do-
mains, and each word in test sentences is tran-
scribed into (w, ¢) format with lexical term w and
associated part-of-speech tag ¢.

4.1 Coverage Rate

The number of occurrences and the coverage rate
for the conditional probability P(wjt;), link uni-
gram P(t;) and link bigram P(|t;) respectively are
shown in Table 1. As can be seen in this table, the

50

coverage rate for P(w;|t) is as low as 50.8%, since
the training and testing domains are quite different.
The coverage rates for link unigram and bigram,
however, can be up to 94.06% and 84.88% respec-
tively. This implies that, the link probabilities can
be estimated more appropriately and contribute
more in finding the dependency trees. To handle
the issue of data sparseness, in the following ex-
periments a simple n-gram backoff mechanism is
utilized for smoothing.

No. of occurrences | P(wj|t) P) Pt)
Training corpus 8137 120 3383
Testing corpus 2791 101 1468
Overlaps 1418 95 1246
Coverage rate 50.80% | 94.06% | 84.88%

Table 1. Coverage rates for link statistics.

4.2 Parsing Accuracy

The experiment settings for dependency parsing
are depicted as below. The first, denoted as BASE,
is the baseline setting, while the others describe the
search conditions applied to the baseline incremen-
tally. The heuristic i(n) used here is the dynamic
heuristic.

« BASE: baseline with the cost defined in Equa-
tion (3), (4) and (5).

+ RP: root penalty for every root attachment W,
= R is included into the step cost.

« DIR: the statistics for the direction of modifica-
tion, P(D|W; 2 W)=P(D|t, t), is included into
the step cost where D = sgn(j —i).

+ NA: the statistics for the number of attachments
(or valence), P(N;|W;)=P(Nj|t,), is included into
the step cost and updated incrementally for
every new attachment onto W,. N; is the current
number of words attached to W..

« REJ: the obtained dependency trees are in-
spected one by one, and rejected if any of the
conditions occurs: (a) the modifiers for con-
junction word (e.g. “*1”, meaning “and”) be-
long to different part-of-speech categories (in-
correct meaning) (b) illegal use of “fJ” (mean-
ing “of’) as leaf node (incomplete meaning).

The baseline setting with Equation (3), (4) and (5)
is based on the Baysian networks depicted in Fig-

Sixth SIGHAN Workshop on Chinese Language Processing

ure 6(a) and 6(b). Finer statistics could be applied
in the settings RP, DIR and NA. The setting RP,
for example, can restrain the number of headless
words. The setting DIR can take into account the
cost due to the direction of modification, since it in
fact matters”, but the link probability P(w, > Ww)
in Equation (5) cannot differentiate between the
two directions. The distance of modification, [j-i|,
might matter too, but is not considered here due to
quite limited amount of training data. The setting
NA can include the cost due to the number of at-
tachments. Verbs, for example, often require more
attachments, and may produce lower cost for
higher number of attachments. Here for simplifica-
tion, the statistics of P(N|t;) are gathered only for
N; = 0,1,2, and >=3, respectively. In addition to
using finer statistics, it is also feasible to use se-
mantic or lexical rules to reject the dependency
trees with incorrect or incomplete meanings. In the
setting REJ, two rules are utilized. One is, the con-
junction word should have modifiers in the same
part-of-speech category, while the other is, the
word “f*)” must have at least one modifier.

No. of
Accurate SA DA
Sentences

BASE 867 48.25% | 77.42%
Cross +RP 1039 57.82% | 80.74%
Domain + DIR 1102 61.32% | 82.72%
+NA 1211 67.39% | 85.21%
+ REJ 1229 68.39% | 85.99%
BASE 1109 61.71% | 85.93%
Within +RP 1314 73.12% | 89.91%
Domain + DIR 1340 74.57% | 90.66%
+NA 1476 82.16% | 92.81%
+ REJ 1484 82.58% | 93.20%

Table 2. Parsing accuracy for various settings.

The parsing performance can be measured with
sentence accuracy (SA) and dependency accuracy
(DA). Table 2 shows the experimental results for
the above settings. The results for within-domain
test by using the set ev.check for both training and
testing are also listed here for comparison. It can
be found in this table that, the performance of
cross-domain test is not so good for the baseline

? In the Chinese phrase “7: (in).. [P 1(front)”, for example,

“71” is the head while “F]']E‘I” is the modifier, and “H'J F17
always modifies “7” backwards.

51

setting, but can be persistently improved when
finer statistics are applied. Rejection of incorrect or
incomplete dependency trees is also helpful (REJ),
though very few semantic or lexical constraints are
utilized here. When the constraints of all settings
are applied, 85.99% dependency accuracy can be
obtained at 68.39% sentence accuracy.

4.3 N-best Output

Note that due to data sparseness and the limitation
of simplified Baysian networks, some parsing er-
rors are intrinsic and difficult to avoid. Figure 7
shows the parsing result for a clause “Pzugrfy E\ﬂj
fz (meaning “at the time for eating dinner”). The
incorrect parsing result on the right-hand side
(meaning “to eat the time of dinner”) is syntacti-
cally correct and inevitable in fact, since the link
probabilities (P(t;) or P(t]t)) dominate over the
conditional probabilities (P(w;|t))), as illustrated in
Section 4.1. Such problem could possibly be alle-
viated to some extent if deep semantic constraints
(e.g. a transitive verb may require a subject and an
object) or lexical constraints (e.g. some adjectives
may modify only specific nouns) could be utilized
for rejection while reprocessing the N-best output.

time eat
of @ time
dinner dinner

correct dependency tree incorrect result

Figure 7. The parsing result for the clause “Jzfsi
B E.ﬂj fz> (time for eating dinner).

Table 3 shows the experimental results of N-best
output for the setting REJ. In Table 3 it can be seen
that higher sentence accuracy, 80.08%, for top-5
output can be achieved, which implies large space
for improvement in N-best processing.

Topl | Top2 | Top3 | Top4 | Top 5

SA |68.39%|75.24%78.02%79.41% | 80.08%

Table 3. Sentence accuracy for N-best output.

Sixth SIGHAN Workshop on Chinese Language Processing

4.4 Search Efficiency

The search efficiency for each test sentence can be
measured heuristically by the order of complexity,
defined as

C = log,N (7

where 7 is number of words in the test sentence
and N is the total number of the search nodes for
that sentence. C,,. is then used to denote the aver-
age complexity over all test sentences. In addition,
N.j is the total number of search nodes for all test
sentences, and can produce the node ratio Ry when
normalized. The experimental results for different
heuristics depicted in Section 3.4 are shown in Ta-
ble 4. As can be observed in this table, much
higher search efficiency can be obtained for more
precise heuristic estimate, but with compatible top
1 sentence accuracy. For dynamic heuristic with
real-time estimate of the cost according to the cur-
rent dependency tree, the highest efficiency can be
obtained at 2.38 average complexity and 14.62%
node ratio, respectively.

Heuristic SA Cave Naii Ry
None 68.84% | 2.91 4748268 | 100%
Global | 68.34% | 2.82 | 3417766 |66.29%
Local 68.50% | 2.39 | 841716 [17.73%

Dynamic | 68.39% | 2.38 | 694193 |14.62%

Table 4. Search efficiency for different heuristics.

5 Conclusions

We have presented a stochastic dependency pars-
ing scheme based on A* admissible search, and
verified its parsing accuracy and search efficiency
on the Chinese Tree Bank 3.0. 85.99% dependency
accuracy at 68.39% sentence accuracy can be ob-
tained under cross-domain test. Among three types
of admissible heuristics proposed, dynamic heuris-
tic can achieve the highest efficiency with node
ratio 14.62%. This parser can output N-best de-
pendency trees, and reprocess them flexibly with
more semantic constraints so as to achieve higher
parsing accuracy. This parsing scheme is the basis
for natural language understanding in our research
project on dialogue systems for mission delegation
tasks. We plan to perform comparative studies with
other non-stochastic approaches, and evaluate our
approach on the shared task of dependency parsing.

52

References

Allen James, 1995. Natural Language Understanding,
The Benjamin/Cummings Publishing Company.

Chen K. J. 1996. A Model for Robust Chinese Parser,
Computational Linguistics and Chinese Language
Processing, Vol. 1, no. 1, pp. 183-205.

Chen K. J., et al. 1999. The CKIP Chinese Treebank:
Guidelines for Annotation, ATALA Workshop —
Treebanks, Paris, pp. 85-96.

Chen Yuchang, Asahara Masayuki and Matsumoto Yuji.
2005. Machine Learning-based Dependency Ana-
lyzer for Chinese, ICCC-2005.

Covington Michael A. 2001. 4 Fundamental Algorithm
for Dependency Parsing, Proc. of the 39th Annual
ACM Southeast Conference, pp. 95-102.

Dienes Peter, Koller Alexander and Kuhlmann Macro.
2003. Statistical A* Dependency Parsing, Proc.
Workshop on Prospects and Advances in the Syn-
tax/Semantics Interface.

Eisner Jason M. 1996. Three Probabilistic Models for
Dependency Parsing: An Exploration, Proc. COL-
ING, pp. 340-345.

Jurafsky Daniel and Martin James H. 2001. Speech and
Language Processing, Prentice Hall, NJ.

Klein Dan and Manning Christopher D. 2003. A* Pars-
ing: Fast FExact Viterbi Parse Selection, Proc.
NAACL/HLT.

Klein Dan and Manning Christopher D. 2003. Fast Ex-
act Inference with a Factored Model for Natural
Language Parsing, Proc. Advances in Neural Infor-
mation Processing Systems.

Kudo Taku and Matsumoto Yuji. 2002. Japanese De-
pendency Analysis using Cascaded Chunking, Proc.
CONLL.

Nivre Joakim, 2003, An Efficient Algorithm for Projec-
tive Dependency Parsing, Proc. International Work-
shop on Parsing Technologies (IWPT).

Nivre Joakim and Scholz Mario. 2004. Deterministic
Dependency Parsing of English Text, Proc. COLING.

Ohno Tomohiro, et al, 2004. Robust Dependency Pars-
ing of Spontaneous Japanese Speech and Its Evalua-
tion, Proc. ICSLP.

Russell S. and Norvig P. 2003. Artificial Intelligence: A
Modern Approach, Prentice Hall.

Yamada Hiroyasu and Matsumoto Yuji. 2003. Statisti-
cal Dependency Analysis with Support Vector Ma-
chines, Proc. IWPT

