
Proceedings of the IJCNLP-08 Workshop on NLP for Less Privileged Languages, pages 73–80,
Hyderabad, India, January 2008. c©2008 Asian Federation of Natural Language Processing

Finite State Solutions For Reduplication In Kinyarwanda Language

Jackson Muhirwe
Makerere University

Ugandaj muhirwe@cit.mak.ac.ug

Trond Trosterud
University of Troms

t rond.trosterud@hum.uit.no

Abstract

Reduplication, the remaining problem in
computational morphology is a morpholog-
ical process that involves copying the base
form wholly or partially. Reduplication can
also be classified as either bounded or un-
bounded reduplication. Some solutions have
been proposed for bounded reduplication.
Some of the proposed solutions use ordered
replace rules while others use simultaneous
two-level rules. In our attempt to solve both
bounded and unbounded reduplication we
used a combination of two-level rules and
replace rules. All our experiments were
are carried out on Kinyarwanda an under-
resourced language with complex agglutina-
tive morphology.

1 Introduction

Reduplication is known to many computational mor-
phologists as the remaining problem. Unlike con-
catenative morphology, which involves concatena-
tion of different components to create a word, redu-
plication involves copying. Reduplication is there-
fore non-concatenative, and involves copying of ei-
ther the whole word or part of the word. The redupli-
cated part of the word could be a prefix or part of the
stem or even a suffix. This copying is what makes
reduplication an outstanding problem. Depending
on the language, reduplication may be used to show
plurality, iterativity, intensification or completeness
(Kimenyi, 2004). Some of the notable examples
of reduplication in computational morphology that

have been reported include Kinande, Latin, Bam-
bara (Roark and Sproat, 2007); Tagalog and Malay
(Beesley and Karttunen, 2003; Antworth, 1990). In
these cases, one language may be exhibiting full
stem reduplication while another may be exhibiting
partial stem reduplication (Syllable).

Reduplication may generally be divided into two:
bounded and unbounded. Bounded reduplication is
the kind that involves just repeating a given part
of the word. Unbounded reduplication differs from
bounded reduplication in that bounded reduplication
involves copying of a fixed number of morphemes.
Unbounded reduplication is considerably more chal-
lenging to deal with compared with bounded redu-
plication. Unbounded reduplication has received lit-
tle attention from researchers no wonder it is yet
to be fully solved (Roark and Sproat, 2007). In
principle, finite state methods are capable of han-
dling bounded reduplication, and here some solu-
tions have been proposed. In this paper we present
our attempt to solve both bounded and unbounded
reduplication in Kinyarwanda a typical Bantu lan-
guage. Kinyarwanda is the national and official lan-
guage of Rwanda. It is closely related to Kirundi
the national language of Burundi. It is the mother
tongue of about 20 million people living in the
great lakes region of East and Central Africa. Kin-
yarwanda is a less privileged language characterised
by lack of electronic resources and insignificant
presence on the Internet. The language has an offi-
cial orthography where tones, long vowels and con-
sonants are not marked. Kinyarwanda is agglutina-
tive in nature, with complex, mainly prefixing mor-
phology. Verb forms may have slots of up to 20 af-

73

fixes to be attached to the root on both sides: left
and right. Reduplication is a common feature and
generally all verbs undergo some form of redupli-
cation. Adjectives and adverbs tend to undergo full
word reduplication, as we shall see in section 2.

2 Kinyarwanda Reduplication

Kinyarwanda exhibits full word reduplication, full
stem reduplication and partial stem reduplication or
syllable reduplication. Full word reduplication in-
volves copying of the whole word, this phenomenon
has been observed mainly in adjectives and adverbs.
Full stem reduplication involves copying a full stem
of either a verb or a noun. Part of a stem is copied
in partial stem reduplication. To a large extent this
copying is uniform (the large number of example
given below show that) but there are also cases of
un uniformity. There are cases when a nasal (n or m)
and an associative morpheme is inserted between the
copied morpheme and its base form. Kinyarwanda
language exhibits also cases of suffix reduplication
attested mainly in verb extensions which are not
considered in this paper.

For our discussion in this section we shall look at
full word reduplication full stem reduplication and
partial stem reduplication will be considered last.

For readers with an orientation towards theo-
retical linguistics we shall categorise our exam-
ples according to whether they are lexical or gram-
matical, but for implementation purposes this will
not be considered. Lexical reduplication is con-
cerned with words that may appear in the dictio-
nary. Reduplicated words may appear in a dictio-
nary as distinct words from the original word which
underwent reduplication. Grammatical reduplica-
tion is concerned with words or sentences that are
reduplicated based on grammatical rules. For in-
stance, only monosyllabic verbs are reduplicated, bi-
syllabic and polysyllabic are never reduplicated (Ki-
menyi, 2004).

2.1 Full Word Reduplication

All adjectives, adverbs and numerals may undergo
full word reduplication. In this case, the complete
word is copied to form a new word.

Adjectives
munini”big” > muninimunini ”big”

muto”small” > mutomuto ””small /young”
mashya”new” > mashyamashya ”very new”

Adverbs
vuba”fast” > vubavuba ”very fast”
buhoro”slowly” > buhorobuhoro ”very slowly”
buke”little” > bukebuke ”very little”

Numerals
rimwe ‘’one’ rimwerimwe ’one by one or once in a
while’
kabiri ’two’ kabirikabiri ’two by two’
gatatu’three’ gatatugatatu ’three by three’

2.2 Full Stem Reduplication

This involves reduplication of the whole stem result-
ing in a new word with a different meaning from
its parent. This kind of reduplication has been ob-
served in both verbs and nouns and can be both at
lexical and grammatical level. Formally, it differs
from word reduplication in that the verb and noun
class prefix does not participate in the reduplication,
whereas word reduplication reduplicates the class
prefix as well, cf.ka-birika-biri vs. gu-taga=taga.

Verbs differ from nouns in that all verbs may be
reduplicated. In many cases, the resulting redupli-
cated verb keeps the same basic meaning, but adds
iterativity , continuity, etc. In other cases, the re-
sult is a change in meaning. For nouns, the situation
is different. Here, reduplication is semantically re-
stricted to meaning ”kind of”, ”associated to”, and
only a subset of the nouns undergo reduplication.

In our transducer, we open for reduplication for
all verbs, whereas reduplicating nouns are singled
out as a separate group in the lexicon.

In all the verb cases we see iterativity, continu-
ity of events or an activity done many times. In the
noun examples it may be noticed that reduplication
refers to the description of an object, to what an ob-
ject does, or to an association based upon the origi-
nal meaning.

2.2.1 Grammatical Reduplication

The examples given below mainly concern lexical
reduplication. Grammatical reduplication involves
reduplication of existing word forms, thereby form-
ing new words with different meanings. Grammat-
ical reduplication may be realized at word level or

74

at sentence level. Here we shall consider redupli-
cation at word level only; sentence level processes
are outside the scope of a morphological transducer.
The reader is advised to consult Kimenyi (1986) for
sentence level reduplication.

Also in this category it is the whole stem that is
reduplicated. Most of the examples belonging to this
category are of verb reduplication.

Examples include the following:
kugenda ”to walk” > kugendagenda ”to walk
around”
kubunda ”to bend” > kubundabunda ”to walk
bending”
kubumba”to mould” > kubumbabumba ”to con-
tinue moulding”
guhonda”to knock” > guhondahonda ”to knock
repeatedly”

Notice from the examples above that this type of
reduplication is limited to two-syllable stems, and
most of these verbs end with a nasal clusterNC.
Two syllable verbs referring to continuous events
are never grammatically reduplicated, e.g gukunda
”to love”, kwanga ”to hate” guhinga ”to cultivate”.
They may undergo lexical reduplication, though. So,
in an analysis invoking semantic disambiguation, tri-
syllabic reduplicated verbs will be discarded as can-
didates for grammatical reduplications.

2.3 Partial Stem Reduplication

In this case the initial reduplicated syllable has the
form CV , V C or CV N .

Verbs
kujejeta ”to drop /leak”
gusesera ”to go through a fence with a bent back”
kubabara ”to fill pain”
kunyunyuza ”to suck”

Nouns
iseseme”nausea”
ingegera ”crook”
umururumba”greed”
ibijojoba ”rain drops”

2.4 Unbounded Reduplication

This is still a challenge, and it involves two cases
in Kinyarwanda, nasal insertion and the insertion of

the associative between the reduplicates.

2.4.1 Nasal Insertion

These cases may be few but they do exist. The
majority of the cases are verbs. Few nouns exhibit
this kind of behaviour.

Verbs
gutontoma”to make pig’s noise”
kuvumvura ”to talk (insulting)”
gutantamura”to tear up”

Nouns
igipampara ”a useless thing”

2.4.2 Associative insertion

Associative insertion has mainly been observed in
demonstratives when they reduplicate. An associa-
tive infix such asna ”and” andnga”such and such”
is inserted between the reduplicates.

Demonstratives
uyunguyu ”this one”, abangaba ”these ones”
ahangaha”Here”, ahanaha ”such and such a place”
ikiniki ”this and this one”.

3 The proposed approach

In order to handle the different issues presented
above we used a hybrid approach. The hybrid ap-
proach is a combination of two-level rules and re-
place rules. These two formalisms represent the
state of the art and practice in computational mor-
phology. The two formalisms are powerful, well de-
signed and well understood.

3.1 Two-level Formalism

The two-level formalism has been the dominant
formalism in Computational Morphology since its
invention by Koskenniemi in 1983 (Koskenniemi,
1983). Since then the approach has been used to
develop morphological analysers for very many lan-
guages around the world, including the Bantu lan-
guage Swahili (Hurskainen, 1992). This formalism
has been the major motivation force behind renewed
interests in computational morphology since 1983.
The two-level formalism is based on two-level rules
which are applied to a lexicon to facilitate lexical
to surface level mappings. The two-level rules are
compiled either by hand (Antworth, 1990) or by ma-
chine (Karttunen, 1992) into finite state networks.

75

The rule network may now be applied to a lexi-
con that has been compiled into a finite state net-
work. A two-level based morphological analyser
is developed by composing the two-level rule net-
work with the lower side of the finite state lexicon
network. The two-level rules are symbol to symbol
rules which apply to the lexicon in parallel. The de-
veloper does not have to worry about the order of
the rules. The only problem is that rules tend to con-
flict. With computerised compilers, such conflicts
are no longer a problem. The compiler shows which
rules are conflicting, so that the developer can re-
solve them. The output from a two-level morpho-
logical analyser is never affected by the order of the
rules.

Two-level rules are generally of the form
CP OP LC RC
whereCP = Correspondence Part;OP = Operator;
LC = Left Context;RC = Right Context

There are four different kinds of rules that may be
used to describe morphological alternations of any
language.

1. a:b => LC RC. This rule states that lexical
//a// can be realized as surface b ONLY in the
given context. This rule is a context restriction
rule

2. a:b<= LC RC This rule states that lexical //a//
has to be realized as surface b ALWAYS in the
given context. This rule is a surface coercion
rule.

3. a:b <=> LC RC this is a composite rule
which states that lexical //a// is realized as sur-
face be ALWAYS and ONLY in the given con-
text.

4. a:b /<= LC RC This is an exclusion rule that
states that lexical //a// is never realized as sur-
face //b// in the given context.

These rules may be compiled into finite state ac-
ceptors either by hand or automatically using one of
the available Two-level rule compilers. For the pur-
pose of this research we used the Xerox Finite State
Tools.

3.2 Replace Rules

On the other hand the replace rules were introduced
by Karttunen in 1995 motivated by the rewrite rules
model developed by Kay and Kaplan (1994). Re-
place rules were easily accepted by computational
linguistics because that is how linguistics has been
done every where. It was so natural for linguistics to
take up this formalism.

The replace rules are regular expressions that
make it possible to map the lexical level strings to
surface level strings. Replace rules have been very
popular in Computational Morphology and have
been used to develop many morphological analysers.

Replace rules are compiled into a finite state net-
work and this network is applied to the lower side
of the lexicon network to map the lower level strings
to the surface level strings. It is worthy noting that
replace rules are feeding rules and therefore apply
in a cascade. Each rule uses the result of the pre-
ceding rule. Because of this, a linguist writing lan-
guage grammar using replace rules notation must
order rules in a proper way, otherwise the results
may not be right. For implementation purposes, re-
place rules have one clear advantage over two-level
rules. They can map symbols to symbols; symbols
to strings; strings to symbols; and strings to strings.
Replace rules are very handy when it comes to writ-
ing string to string mappings. In this case you write
only one rule instead of the many rules you would
otherwise have to write while using two-level rules.
Replace rules take the following four forms:

Unconditional replacement

A -> B

Unconditional parallel replacement (Several rules
with no contexts)

A1 -> B1, A2 -> B2, An -> Bn

Conditional replacement. (One rule with contexts)

UPPER -> LOWER || LEFT _ RIGHT

Conditional parallel replacement.

UPPER1 -> LOWER1 ||
LEFT1 _ RIGHT1 ,, UPPER2 -> LOWER2 ||
LEFT2 _ RIGHT2,,..,,UPPERn -> LOWERn ||
LEFTn _ RIGHTn

76

3.3 Comparison of the two Formalisms

• Replace rules are organised vertically in a cas-
cade and feed each other. Two-level rules, on
the other hand side, are organised horizontally
and apply in parallel.

• Because replace rules are feeding rules, they
must be properly ordered. Order is not impor-
tant in two-level rules and would not affect the
output.

• Replace rules conceptually produce many in-
termediate levels when mapping from lexical to
surface level.

• Since two-level rules apply simultaneously,
there is no ordering problem. The only prob-
lem that arises are conflicts that the linguist
must deal with. But as we said earlier, this
is no longer a problem since current two-level
compilers can detect the rule conflicts and then
the grammar writer can deal with them accord-
ingly.

3.4 Towards a Hybrid Approach

As much as we have seen that these two formalisms
have differences, they all work very well and are
efficient at doing what they were designed to do.
Networks compiled from these two networks have
the same mathematical properties (Karttunen and
Beesley, 2005), and none of the formalisms can be
claimed to be superior over the other, per se. It is fur-
ther claimed that choosing between two-level rules
and replace rules is just a matter of personal choice.
This is true as far the general areas of application
of each of these rules are concerned. Our experi-
ence has shown that two-level rules are much easier
to learn and conceive how they work. This experi-
ence is also shared by Trosterud and Uibo who also
while working on Sami found it much easier to learn
two-level rules but again proposed that it would be
possible to combine both formalisms (Trosterud and
Uibo, 2005). Independently, Muhirwe and Barya
(2007) also found it easier to learn two-level rules
and they used them to develop their Kinyarwanda
Noun morphological analyser. Beesley and Kart-
tunen also realised that each one of these rules has
strong points and weak points. There are inci-
dences where it is much easier to use two-level rules

and there are other incidences where it is easier to
use replace rules over two-level rules (Beesley and
Karttunen, 2003). Let us look at an example to
strengthen our argument. In solving limited partial
stem reduplication in Tagalog, Antworth used two
level rules to model the solution. This same exam-
ple was repeated by Beesley and Karttunen (2003).
Efforts to rewrite the solution using replace rules re-
sulted in many rules. We used this approach to solve
the problem of partial reduplication in Kinyarwanda.

Alphabet %+:0 b c d f g h j k l m n
p q r s t v x y z a e i o u;
Sets
C = b c d f g h j k l m n p q r s t

v x y z;
V = a i e o u ;

Rules
"R for realisation as Consonant"
R:CC <=> _ E: %+: CC;
where CC in C;

"E realisation as vowel"
E:VV <=> _ %+: (C:) VV;
where VV in V;

Replace rules have an edge over two-level rules
when it comes to string to string mapping. When
the strings are of unknown length, two-level rules
cannot be applied, and we will have to use special
compilation routines from the xfst toolbox. In other
words, replace rules are more appropriate if the map-
ping requires replacement of a string, whereas two-
level rules are more appropriate when only symbols
are involved, and especially when sets of symbols
are involved. Based on this we decided to combine
the two approaches to take advantage of each for-
malism’s strength.

4 Implementation

At the onset, we wanted to solve three problems:
Full wordform reduplication (we will follow estab-
lished practice and refer to it as word reduplication),
stem reduplication and first syllable or partial stem
reduplication. Our hybrid approach was used as fol-
lows. We used the two-level rules to solve the prob-
lem they are best at solving: partial stem reduplica-
tions. Beesley and Karttunen’s compile-replace al-

77

gorithm was then used to handle full word and full
stem reduplication.

4.1 Full word and full stem Reduplication

The full word and full stem reduplication was han-
dled by use of the replace rules and the compile-
replace algorithm. The compile-replace algorithm
is based on the insight that any stringS can be
reduplicated using regular expressions of the form
{S}ˆ2. The central idea behind the application of
the compile-replace algorithm therefore is looking
for a way to enclose the stem with the delimiters{
and}ˆ2. This was done by enclosing the whole stem
with ˆ[{S}ˆ2ˆ] in the lexicon, and given a redupli-
cation context, the compile-replace algorithm is ap-
plied to the lower side of the lexicon network, dou-
bling the stem. When the reduplication context is
not present, the delimiters were simply deleted. As
an example, take a look at part of thelexc lexicon
below:

LEXICON Root
0:ˆ[{ AdjRoots;
0:ˆ[{ AdvRoots;

This continues to the adverb and adjective or to
any other sublexicon

LEXICON AdjRoots
kinini AdjSuff;
kito AdjSuff;
muto AdjSuff;

Lastly we can add the suffix

LEXICON AdjSuff
+Adjective:0 Redupli;

LEXICON Redupli
+Reduplic:}ˆ2ˆ] #;
%+unmarked:0 #;

After compiling the lexicon and applying the
compile-replace algorithm to the lower side, the al-
ternation rules can then be applied to constrain the
surface realisation of the reduplicated words. In this
case most of the surface alternation rules were writ-
ten using replace rules formalism.

4.2 Partial stem reduplication

The solution provided by Antworth in PC Kimmo
is a good solution to handling limited length redu-

plication. We therefore adapted this solution to pro-
vide a solution to first syllable reduplication in Kin-
yarwanda. The rules we used were presented in the
previous section. We used the two-level rules be-
cause of their convenience, but, as noted, one will
get the same result by using replace rules. These
two-level rules were compiled into a finite state net-
work and then intersected using the two-level com-
piler twolc. The rule network was then applied to
the lower side of the lexicon network to produce the
required output on the surface. In the lexicon we had
to include a feature that would interact with the rules
to cause reduplication:

Lexicon PSPrefix
[Redupli]:RE+ PVRoot;
Lexicon PVRoot
jeta VFinal;

In Kinyarwanda, the partial stem reduplication is
of three types,CV , V C and CV N reduplication.
We thus made three different templates, all modeled
upon the rule shown here.

4.3 Emerging Problems in Kinyarwanda
reduplication

The solution provided above for partial reduplica-
tion seemed to work very well until we tested the
results, and then we found that there were some in-
teresting challenges.

1. some stems reduplicate and cause insertion of a
nasal. For example /gu + kama/> /gukankama/
/gu + toma/> / gutontoma/

2. there were cases of complex consonants which
when present makes the reduplication problem
harder. Evan Antworth’s solution was for fixed
length CV reduplicates and it is in this case ren-
dered inefficient (Antworth, 1990). Examples
/gucyocyora/
/kunyunyuza/
/gushwashwanya/

3. when demonstratives reduplication, a presenta-
tive affix /nga/ is inserted in the middle of the
reduplicates

In order to solve the first challenge, we carried out
more negative tests and looked for cases of words
that were not recognized. Of these we identified

78

reduplicates where a nasal is inserted and we found
that such cases are not very frequent. The majority
of verbs and nouns undergo full stem reduplication,
for which the provided solution was adequate. The
remaining few undergo partial stem or first syllable
reduplication. There are also cases of stems that un-
dergo both full stem and partial stem reduplication,
but these were not a challenge at all. So our solution
to the nasal insertion challenge was to write a rule
that would insert a nasal between the reduplicating
prefix and the base stem.

[] -> n || _ [[t o m a] |
[k a m a] || [v u r a]]

The second problem involving complex conso-
nants was solved by representing each complex by
a multicharacter symbol that is not used in the lex-
icon. For example, in /kunyunyuza/ there is a com-
plex consonantny which is part of the reduplicate.
We represent all occurrences ofny with N and the
following rule will be applied lastly to effect the sur-
face realisation.

N -> ny

The third problem was solved by using replace rules.
The problem of reduplication of demonstratives was
partly solved by application of the compile-replace
algorithm and replace rules. We used a replace rule
to insert /nga/ in all the reduplicated demonstratives.

[] -> [n g a] || _ demo .#.

4.4 Evaluation and tests

The partial, full stem and full word reduplication
lexica were compiled and composed together in a fi-
nite state network. We applied the network of all the
rules described above for all the different issues to
the lower side of the lexicon network. We then car-
ried out tests for both analysis and generation. We
did both negative testing and positive testing. Pos-
itive involved testing the system on the words that
were part of the lexicon. These we found were all
correctly analysed. Below are some of the results:

apply up> ikigorigori
iki[CL7-SG]gori[stem_redupli][noun]
apply up> kugendagenda
ku[Inf]genda[stem_redupli][verb]
Demonstratives with nga insertion
aka[DEM-12][dem_redupli][Demonst]

akongako
ako[DEM-12][dem_redupli][Demonst]
Nasal insertion
gutontoma
ku[Inf][Redupli]toma[verb]
Complex consonants
kunyunyuza
ku[Inf][Redupli]Nuza[verb]
Full stem reduplication
gusomasoma
ku[Inf]soma[stem_redupli][verb]
Full word reduplication
muninimunini
munini+Adjective+Reduplic

Negative testing involved selecting words from
our untagged corpus of Kinyarwanda. Since these
words were not part of the lexicon, they were not
recognized and were then duly added to the lexicon.
Adding a new word to the lexicon is very easy since
it only involves identifying the reduplicating part of
the word and it is then added to the appropriate sub-
lexicon. This testing will be continued as we dis-
cover new reduplicated words.

The tests indicated above were manual tests. We
created another test set to be carried out automat-
ically. In this case we created a test file with about
100 known reduplicated forms of different word cat-
egories in Kinyarwanda. The results indicated that
the earlier problems due to unbounded reduplica-
tion: complex consonants, insertion of nasals and
the prefix /nga/ have now been fully solved.

5 Conclusion

The solutions provided in this paper have demon-
strated that existing extended finite state methods are
sufficient to handle all forms of reduplication in Kin-
yarwanda. The hybrid approach proposed in this pa-
per makes it easy to handle all forms of reduplication
problems attested in Kinyarwanda language. This
approach could also be used with other problems in
morphological analysis. The finite state developer
can solve morphological problems using the most
appropriate approach depending on whether what is
being replaced is a symbol or a string.

79

References

Antworth, E.,L. 1990.PC-KIMMO: a Two-level Proces-
sor for Morphological Analysis. No. 16 in Occasional
Publications in academic computing. Dallas: Summer
Institute of Linguistics.

Beesley, K. AND Karttunen L. 2003.Finite State Mor-
phology: CSLI Studies in Computational Linguistics.
Stanford University, CA: CSLI Publications.

Guthrie, M. 1971.Comparative Bantu. Vol. I-IV. Farn-
borough: Gregg International.

Hurskainen, A. 1992.A two-level computer formalism for
the analysis of Bantu Morphology an application to
SwahiliNordic journal of African studies 1(1): 87-119
(1992)

Karttunen, L., Kaplan, R., and Zaenen, A., (1992).Two-
level morphology with composition.Xerox Palo Alto
Research Center - Center for the Study of Language
and Information. Stanford University.

Karttunen, L. 1995.The replace Operator. Proceedings
of ACL-95, pp 16-23, Boston Massachusetts.

Karttunen, L., Beesley, K. R. 2005.Twenty-five years
of finite-state morphology. In Inquiries Into Words, a
Festschrift for Kimmo Koskenniemi on his 60th Birth-
day, CSLI Studies in Computational Linguistics. Stan-
ford CA: CSLI; 2005; 71-83.

Kay, M., Kaplan, R. 1994. Regular Models of Phonolog-
ical rule systems Computational Linguistics, Special
issue on Computational phonology, pg 331-378

Kimenyi, A. 1986.Syntax and semantics of reduplica-
tion: A semiotic account La LinguistiqueVol 22 Fasc
2/1986

Kimenyi, A. 2004.Kinyarwanda morphologyIn the In-
ternational Handbook for inflection and word forma-
tion vol2.

Koskenniemi, K. 1983.Two-level morphology: a gen-
eral computational model for word-form recognition
and production. Publication No. 11. University of
Helsinki: Department of General Linguistics.

Muhirwe, J. and V. Baryamureeba 2007. Towards Com-
putational Morphological Analysis for Kinyarwanda.
Proceedings of the 1st International conference on
Computer science and informatics,Feb 2007, Nairobi,
Kenya.

Roark, B and Sproat, R. 2007.Computational Ap-
proaches to Morphology and Syntax.Oxford Univer-
sity Press, in press.

Trosterud, T and Uibo, H. 2005.Consonant gradation
in Estonian and Smi: two-level solutionIn: Inquiries
into Words, Constraints and Contexts. Festschrift in
the Honour of Kimmo Koskenniemi 60th anniversary.
CSLI Publications 2005.

80

