Language Independent Text Correction using Finite State Automata

Ahmed Hassan*

Sara Noeman

Hany Hassan

IBM Cairo Technology Development Center
Giza, Egypt
hasanah, noemans, hanyh@eg.ibm.com

Abstract

Many natural language applications, like
machine translation and information extrac-
tion, are required to operate on text with
spelling errors. Those spelling mistakes
have to be corrected automatically to avoid
deteriorating the performance of such ap-
plications. In this work, we introduce a
novel approach for automatic correction of
spelling mistakes by deploying finite state
automata to propose candidates corrections
within a specified edit distance from the mis-
spelled word. After choosing candidate cor-
rections, a language model is used to assign
scores the candidate corrections and choose
best correction in the given context. The
proposed approach is language independent
and requires only a dictionary and text data
for building a language model. The ap-
proach have been tested on both Arabic and
English text and achieved accuracy of 89%.

1 Introduction

The problem of detecting and correcting misspelled
words in text has received great attention due to
its importance in several applications like text edit-
ing systems, optical character recognition systems,
and morphological analysis and tagging (Roche and
Schabes, 1995). Other applications, like machine
translation and information extraction, operate on
text that might have spelling errors. The automatic
detection, and correction of spelling erros should be
of great help to those applications.

The problem of detecting and correcting mis-
spelled words in text is usually solved by checking
whether a word already exists in the dictionary or
not. If not, we try to extract words from the dictio-
nary that are most similar to the word in question.

Now with the University of Michigan Ann Arbor, has-
sanam@umich.edu

Those words are reported as candidate corrections
for the misspelled word.

Similarity between the misspelled word and dic-
tionary words is measured by the Levenshtein edit
distance (Levenshtein, 1966; Wagner and M.Fisher,
1974). The Levenshtein edit distance is usu-
ally calculated using a dynamic programming tech-
nique with quadratic time complexity (Wagner and
M.Fisher, 1974). Hence, it is not reasonable to com-
pare the misspelled word to each word in the dictio-
nary while trying to find candidate corrections.

The proposed approach uses techniques from fi-
nite state theory to detect misspelled words and to
generate a set of candidate corrections for each mis-
spelled word. It also uses a language model to select
the best correction from the set of candidate correc-
tions using the context of the misspelled word. Us-
ing techniques from finite state theory, and avoiding
calculating edit distances makes the approach very
fast and efficient. The approach is completely lan-
guage independent, and can be used with any lan-
guage that has a dictionary and text data to building
a language model.

The rest of this paper will proceed as follows.
Section 2 will present an overview of related work.
Section 3 will discuss the different aspects of the
proposed approach. Section 4 presents a perfor-
mance evaluation of the system. Finally a conclu-
sion is presented in section 5.

2 Related Work

Several solutions were suggested to avoid comput-
ing the Levenshtein edit distance while finding can-
didate corrections. Most of those solutions select
a number of dictionary words that are supposed to
contain the correction, and then measure the dis-
tance between the misspelled word and all selected
words. The most popular of those methods are the
similarity keys methods (Kukich, 1992; Zobel and
Dart, 1995; De Beuvron and Trigano, 1995). In

913

those methods, the dictionary words are divided into
classes according to some word features. The input
word is compared to words in classes that have sim-
ilar features only.

In addition to the techniques discussed above,
other techniques from finite state automata have
been recently proposed. (Oflazer, 1996) suggested
a method where all words in a dictionary are treated
as a regular language over an alphabet of letters. All
the words are represented by a finite state machine
automaton. For each garbled input word, an exhaus-
tive traversal of the dictionary automaton is initiated
using a variant of Wagner-Fisher algorithm (Wag-
ner and M.Fisher, 1974) to control the traversal of
the dictionary. In this approach Levenshtein dis-
tance is calculated several times during the traversal.
The method carefully traverses the dictionary such
that the inspection of most of the dictionary states
is avoided. (Schulz and Mihov, 2002) presents a
variant of Oflazers’s approach where the dictionary
is also represented as deterministic finite state au-
tomaton. However, they avoid the computation of
Levenshtein distance during the traversal of the dic-
tionary automaton. In this technique, a finite state
acceptor is constructed for each input word. This
acceptor accepts all words that are within an edit dis-
tance k from the input word. The dictionary automa-
ton and the Levenshtein-automaton are then tra-
versed in parallel to extract candidate corrections for
the misspelled word. The authors present an algo-
rithm that can construct a deterministic Levenshtein-
automaton for an arbitrary word of degrees 1, and
2 which corresponds to 1 or 2 errors only. They
suggest another algorithm that can construct a non-
deterministic Levenshtein-automaton for any other
degree. They report results using a Levenshtein-
automaton of degree 1(i.e. words having a single
insertion, substitution, or deletion) only.

The method we propose in this work also assumes
that the dictionary is represented as a determinis-
tic finite state automaton. However, we completely
avoid computing the Levenshtein-distance at any
step. We also avoid reconstructing a Levenshtein-
automaton for each input word. The proposed
method does not impose any constraints on the
bound k, where k is the edit distance between the
input word and the candidate corrections. The ap-
proach can adopt several constraints on which char-

Figure 1: An FSM representation of a word list

acters can substitute certain other characters. Those
constraints are obtained from a phonetic and spatial
confusion matrix of characters.

The purpose of context-dependent error correc-
tion is to rank a set of candidate corrections tak-
ing the misspelled word context into account. A
number of approaches have been proposed to tackle
this problem that use insights from statistical ma-
chine learning (Golding and Roth, 1999), lexical
semantics (Hirst and Budanitsky, 2005), and web
crawls (Ringlstetter et al., 2007).

3 Error Detection and Correction in Text
Using FSMs

The approach consists of three main phases: detect-
ing misspelled words, generating candidate correc-
tions for them, and ranking corrections. A detailed
description of each phase is given in the following
subsections.

3.1 Detecting Misspelled Words

The most direct way for detecting misspelled words
is to search the dictionary for each word, and report
words not found in the dictionary. However, we can
make use of the finite state automaton representation
of the dictionary to make this step more efficient.
In the proposed method, we build a finite state ma-
chine (FSM) that contains a path for each word in
the input string. This FSM is then composed with
the dictionary FSM. The result of the composition
is merely the intersection of the words that exist in
both the input string and the dictionary. If we calcu-
lated the difference between the FSM containing all
words and this FSM, we get an FSM with a path for

914

each misspelled word. Figure 1 illustrate an FSM
that contain all words in an input string.

3.2 Generating Candidate Corrections

The task of generating candidate corrections for mis-
spelled words can be divided into two sub tasks:
Generating a list of words that have edit distance
less than or equal k to the input word, and select-
ing a subset of those words that also exist in the dic-
tionary. To accomplish those tasks, we create a sin-
gle transducer(Levenshtein-transducer) that is when
composed with an FSM representing a word, gen-
erates all words withing any edit distance k£ from
the input word. After composing the misspelled
word with Levenshtein-transducer, we compose the
resulting FSM with the dictionary FSM to filter out
words that do not exist in the dictionary.

3.2.1 Levenshtein-transducers for primitive
edit distances

To generate a finite state automaton that con-
tain all words within some edit distance to the in-
put word, we use a finite state transducer that al-
lows editing its input according to the standard
Levenshtein-distance primitive operations: substitu-
tion, deletion, and insertion.

A Afinite-state transducers (FST) is a a 6-tuple
(Q,%1,%2,0,1, F), where @ is a set of states, ¥;
is the input alphabet, 35 is the output alphabet, 7 is
the initial state, F' C () is a set of final states, and o
is a transition function (Hopcroft and Ullman, 1979;
Roche and Shabes, 1997). A finite state acceptor is a
special case of an FST that has the same input/output
at each arc.

Figure 2 illustrates the Levenshtein-transducer for
edit distance 1 over a limited set of vocabulary (a,b,
and c). We can notice that we will stay in state zero
as long as the output is identical to the input. On
the other hand we can move from state zero, which
corresponds to edit distance zero, to state one, which
corresponds to edit distance one, with three different
ways:

e input is mapped to a different output (input is
consumed and a different symbol is emitted)
which corresponds to a substitution,

e input is mapped to an epsilon (input is con-
sumed and no output emitted) which corre-
sponds to a deletion, and

<epsilon>:a/0

<epsilon>:b/0

c:<epsilon>/0

b:<epsilon>/0

Figure 2: A Levenshtein-transducer (edit distance 1)

e an epsilon is mapped to an output (output is
emitted without consuming any input) which
corresponds to an insertion.

Once we reach state 1, the only possible transitions
are those that consume a symbol and emit the same
symbol again and hence allowing only one edit op-
eration to take place.

When we receive a new misspelled word, we rep-
resent it with a finite state acceptor that has a single
path representing the word, and then compose it with
the Levenshtein-transducer. The result of the com-
position is a new FSM that contains all words with
edit distance 1 to the input word.

3.2.2 Adding transposition

Another non-primitive edit distance operation that
is frequently seen in misspelled words is transposi-
tion. Transposition is the operation of exchanging
the order of two consecutive symbols (ab — ba).
Transposition is not a primitive operation because
it can be represented by other primitive operations.
However, this makes it a second degree operation.
As transposition occurs frequently in misspelled
words, adding it to the Levenshtein-transducer as a
single editing operation would be of great help.

915

<epsilon>:a/0

<epsilon>:b/0

a:<epsilon>/0

Figure 3: A Levenshtein-transducer for edit distance
1 with transposition

To add transposition, as a single editing opera-
tion, to the Levenshtein-transducer we add arcs be-
tween states zero and one that can map any symbol
sequence zy to the symbol sequence yx, where z,
and y are any two symbols in the vocabulary. Fig-
ure 3 shows the Levenshtein-transducer with degree
1 with transposition over a limited vocabulary (a and
b).

3.2.3 Adding symbol confusion matrices

Adding a symbol confusion matrix can help re-
duce the number of candidate corrections. The con-
fusion matrix determines for each symbol a set of
symbols that may have substituted it in the garbled
word. This matrix can be used to reduce the num-
ber of candidate corrections if incorporated into the
Levenshtein-transducer. For any symbol z, we add
an arc x : y between states zero, and one in the trans-
ducer where y € Confusion_Matriz(z) rather
than for all symbols y in the vocabulary.

The confusion matrix can help adopt the meth-
ods to different applications. For example, we can
build a confusion matrix for use with optical char-
acter recognition error correction that captures er-
rors that usually occur with OCRs. When used with
a text editing system, we can use a confusion ma-
trix that predicts the confused characters according
to their phonetic similarity, and their spatial location
on the keyboard.

<epsilon>:a/0

<epsilon>:a/0

a:b/0
bi<epsilon>/0

g,
\e =/

Figure 4: A Levenshtein-transducer for edit distance
2 with transposition

3.2.4 Using degrees greater than one

To create a Levenshtein-transducer that can gen-
erate all words within edit distance two of the input
word, we create a new state (2) that maps to two edit
operations, and repeat all arcs that moves from state
0 to state 1 to move from state 1 to state 2.

To allow the Levenshtein-transducer of degree
two to produce words with edit distance 1 and 2 from
the input word, we mark both state 1, and 2 as final
states. We may also favor corrections with lower
edit distances by assigning costs to final states, such
that final states with lower number of edit operations
get lower costs. A Levenshtein-transducer of degree
2 for the limited vocabulary (a and b) is shown in
figure 4.

3.3 Ranking Corrections

To select the best correction from a set of candidate
corrections, we use a language model to assign a
probability to a sequence of words containing the
corrected word. To get that word sequence, we go
back to the context where the misspelled word ap-
peared, replace the misspelled word with the candi-
date correction, and extract n ngrams containing the
candidate correction word in all possible positions
in the ngram. We then assign a score to each ngram
using the language model, and assign a score to the
candidate correction that equals the average score of
all ngrams. Before selecting the best scoring cor-
rection, we penalize corrections that resulted from
higher edit operations to favor corrections with the
minimal number of editing operations.

916

Edit 1/with trans. Edit 1/no trans. Edit 2/with trans. Edit 2 / no trans.
word len. | av. time | av. correcs. | av. time | av. correcs. av. time av. correcs. av. time av. correcs.
3 3.373273 18.769 2.983733 18.197 73.143538 532.637 69.709387 514.174
4 3.280419 4.797 2.796275 4715 67.864291 136.230 66.279842 131.680
5 3.321769 1.858 2.637421 1.838 73.718353 33.434 68.695935 32.461
6 3.590046 1.283 2.877242 1.277 75.465624 11.489 69.246055 11.258
7 3.817453 1.139 2.785156 1.139 78.231015 6.373 72.2057 6.277
8 4.073228 1.063 5.593761 1.062 77.096026 4.127 73.361455 4.066
9 4.321661 1.036 3.124661 1.036 76.991945 3.122 73.058418 3.091
10 4.739503 1.020 3.2084 1.020 75.427416 2.706 72.2143 2.685
11 4.892105 1.007 3.405101 1.007 77.045616 2.287 71.293116 2.281
12 5.052191 0.993 3.505089 0.993 78.616536 1.910 75.709801 1.904
13 5.403557 0.936 3.568391 0.936 81.145124 1.575 78.732955 1.568
Table 1: Results for English
Edit 1/with trans. Edit 1/no trans. Edit 2/with trans. Edit 2 / no trans.
word len. av. time av. correcs. | av. time | av. correcs. av. time av. correcs. av. time av. correcs.
3 5.710543 31.702 4.308018 30.697 83.971263 891.579 75.539547 862.495
4 6.033066 12.555 4.036479 12.196 80.481281 308.910 71.042372 296.776
5 7.060306 6.265 4.360373 6.162 79.320644 104.661 69.71572 100.428
6 9.08935 4.427 4.843784 4.359 79.878962 51.392 74.197127 48.991
7 8.469497 3.348 5.419919 3.329 82.231107 24.663 70.681298 23.781
8 10.078842 2.503 5.593761 2.492 85.32005 13.586 71.557569 13.267
9 10.127946 2.140 6.027077 2.136 83.788916 8.733 76.199034 8.645
10 11.04873 1.653 6.259901 1.653 92.671732 6.142 81.007893 6.089
11 12.060286 1.130 7.327353 1.129 94.726469 4.103 77.464609 4.084
12 13.093397 0.968 7.194902 0.967 95.35985 2.481 82.40306 2.462
13 13.925067 0.924 7.740105 0.921 106.66238 1.123 78.966914 1.109

Table 2: Results for Arabic

4 Experimental Setup

4.1 Time Performance

The proposed method was implemented in C++ on
a 2GHz processor machine under Linux. We used
11,000 words of length 3.,4,..., and 13, 1,000 word
for each word length, that have a single error and
computed correction candidates. We report both the
average correction time, and the average number of
corrections for each word length. The experiment
was run twice on different test data, one with con-
sidering transposition as primitive operation, and the
other without. We also repeated the experiments for
edit distance 2 errors, and also considered the two
cases where transposition is considered as a primi-
tive operation or not. Table 1 shows the results for
an English dictionary of size 225,400 entry, and Ta-
ble 2 shows the results for an Arabic dictionary that
has 526,492. entries.

4.2 Auto-correction accuracy

To measure the accuracy of the auto-correction pro-
cess, we used a list of 556 words having common

spelling errors of both edit distances 1 and 2. We put
a threshold on the number of characters per word to
decide whether it will be considered for edit distance
1 or 2 errors. When using a threshold of 7, the spell
engine managed to correct 87% of the words. This
percentage raised to 89% when all words were con-
sidered for edit distance 2 errors. The small degra-
dation in the performance occured because in 2% of
the cases, the words were checked for edit distance 1
errors although they had edit distance 2 errors. Fig-
ure 6 shows the effect of varying the characters limit
on the correction accuracy.

Figure 5 shows the effect of varying the weight as-
signed to corrections with lower edit distances on the
accuracy. As indicated in the figure, when we only
consider the language model weight, we get accura-
cies as low as 79%. As we favor corrections with
lower edit distances the correction accuracy raises,
but occasionally starts to decay again when empha-
sis on the low edit distance is much larger than that
on the language model weights.

Finally, we repeated the experiments but with us-

917

Favoring lower edit distance factor

Figure 5: Effect of increasing lower edit distance
favoring factor on accuracy

0.91
0.9

0.89 N\
0.88
2 N,
S0
<
Eoss \\\
Eoss

© 083

0.82

081
08

Al- Ed2 Ed2 Ed2 Ed2 Ed2 Ed2 Ed2 Ed2 Ed2 Ed2 Al
Ed2 >3 >4 >5 >6 > >8 >9 >10 >11 >12 Edi
Num. Chars Limit

Figure 6: Effect of increasing Ed1/Ed2 char limits
on accuracy

ing a confusion matrix, as 3.2.3. We found out that
the average computation time dropped by 78% (be-
low 1 ms for edit distance 1 errors) at the price of
losing only 8% of the correction accuracy.

5 Conclusion

In this work, we present a finite state automata based
spelling errors detection and correction method.
The new method avoids calculating the edit dis-
tances at all steps of the correction process. It also
avoids building a Levenshtein-automata for each in-
put word. The method is multilingual and may work
for any language for which we have an electronic
dictionary, and a language model to assign probabil-
ity to word sequences. The preliminary experimen-
tal results show that the new method achieves good
performance for both correction time and accuracy.
The experiments done in this paper can be extended
in several directions. First, there is still much room
for optimizing the code to make it faster especially
the FST composition process. Second, we can allow
further editing operations like splitting and merging.

References

Francois De Bertrand De Beuvron and Philippe Trigano.
1995. Hierarchically coded lexicon with variants. In-
ternational Journal of Pattern Recognition and Artifi-
cial Intelligence, 9:145-165.

Andrew Golding and Dan Roth. 1999. A winnow-based
approach to context-sensitive spelling correction. Ma-
chine learning, 34:107-130.

Graeme Hirst and Alexander Budanitsky. 2005. Cor-
recting real-word spelling errors by restoring lexical
cohesion. Natural Language Engineering, 11:87-111.

J.E. Hopcroft and J.D. Ullman. 1979. Introduction to au-
tomata theory, languages, and computation. Reading,
Massachusetts: Addison-Wesley.

Karen Kukich. 1992. Techniques for automatically cor-
recting words in text. ACM Computing Surveys, pages
377-439.

V.I. Levenshtein. 1966. Binary codes capable of correct-
ing deletions, insertions, and reversals. Soviet Physics
- Doklady.

Kemal Oflazer. 1996. Error-tolerant finite-state recog-
nition with applications to morphological analysis
and spelling correction. Computational Linguistics,
22:73-89.

Christoph Ringlstetter, Max Hadersbeck, Klaus U.
Schulz, and Stoyan Mihov. 2007. Text correction
using domain dependent bigram models from web
crawls. In Proceedings of the International Joint Con-
ference on Artificial Intelligence (IJCAI-2007) Work-
shop on Analytics for Noisy Unstructured Text Data.

Emmanuel Roche and Yves Schabes. 1995. Determinis-
tic part-of-speech tagging with finite-state transducers.
Computational Linguistics, 2:227253.

Emmanuel Roche and Yves Shabes. 1997. Finite-state
language processing. Cambridge, MA, USA: MIT
Press.

Klaus Schulz and Stoyan Mihov. 2002. Fast string cor-
rection with levenshtein-automata. International Jour-
nal of Document Analysis and Recognition (IJDAR),
5:67-85.

R.A. Wagner and M.Fisher. 1974. The string-to-string
correction problem. Journal of the ACM.

Justin Zobel and Philip Dart. 1995. Finding approximate
matches in large lexicons. Software Practice and Ex-
perience, 25:331-345.

918

