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Abstract

Duplicate document detection is the problem
of finding all document-pairs rapidly whose
similarities are equal to or greater than a
given threshold. There is a method pro-
posed recently called prefix-filter that finds
document-pairs whose similarities never
reach the threshold based on the number
of uncommon terms (words/characters) in
a document-pair and removes them before
similarity calculation. However, prefix-filter
cannot decrease the number of similarity
calculations sufficiently because it leaves
many document-pairs whose similarities are
less than the threshold. In this paper, we
propose multi-level prefix-filter, which re-
duces the number of similarity calculations
more efficiently and maintains the advan-
tage of prefix-filter (no detection loss, no ex-
tra parameter) by applying multiple different
prefix-filters.

Introduction

The naive implementation of DDD requires simi-
larity calculations of all document pairs, but it de-
mands huge time according to the number of tar-
get documents. The current techniques apply the
two-stage approach: (i) Reduce document pairs us-
ing shallow filtering methods, and then (ii) calcu-
late similarities between the remaining document
pairs. Among them, prefix-filter(Sarawagi and Kir-
pal, 2004)(Chaudhuri et al., 2006)(Bayardo et al.,
2007) is a filtering method that finds document-
pairs whose similarities never reach the thresh-
old based on the number of uncommon terms
(words/characters) in a document-pair, and that re-
moves them before similarity calculation.

For example, suppose that a document pair is
composed of 10 terms, and 80% similarity means
8 terms are in common in the document pair. In this
case, if the similarity of a document pair is equal to
or greater than 80% and 3 terms are selected from
one document, the other document must contain at
least one of the 3 terms. Therefore, prefix-filter can
remove document pairs where one document does
not contain any of the 3 terms selected from the
other. It can be implemented rapidly by index files.

Duplicate Document Detection (DDD) is the IOrob_Preﬁx-fiIter has two advantages compared with other
lem of finding all document-pairs rapidly whoseflltéring methods: (i) All document pairs equal to
similarities are equal to or greater than a givefQ" greater than the similarity threshold (ST) are ob-

threshold. DDD is often used for data cleaning of2in€d without any detection loss, and (i) no extra

customer databases, trend analysis of failure caB@rameter for filtering is required other than ST.

databases in contact centers, and can be appliedThe problem with prefix-filter is that it cannot re-
for spam filtering by detecting duplicate blog doc-duce similarity calculations sufficiently because it
uments. After receiving target documents and thikeaves many document-pairs whose similarities are
similarity threshold (ST), the Duplicate Documentess than ST. Document-pairs that prefix-filter can
Detection System (DDDS) shows users all docuremove depend on terms selected from each docu-
ment pairs whose similarities are equal or greatenent (in the above example, which 3 terms are se-
than ST, or document groups these document pailected). At worst, document pairs where only one
unify. In the case of data cleaning, DDDS additionterm is in common might remain. The processing
ally requires users to confirm whether each docuime of DDD can be approximated by the product
ment pair result is truly duplicated. of the number of similarity calculations and the pro-
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cessingime of each similarity calculation. In order and sets the similarity threshold &7" = 0.6 and
to identify the same document pairs correctly, a deeghooses edit-similarity as the similarity function.
similarity function considering synonyms and vari-Note that edit-similarity between document d1 and
ants is essential. Therefore, the number of similaritlocument d2, denoted aglit_sim(d1,d2), is de-
calculations should decrease as mush as possiblefined as follows.

In this paper, we propose multi-level prefix-filter, edit_distance(d1, d2)
which reduces the number of similarity calcula- edit_sim(dl,d2) =1 — :
: . . max(|dl|,|d2])
tions more efficiently and maintains the advantages
of prefix-filter (no detection loss, no extra paramHere,|d1| and|d2| denoteghe length ofd1 andd2
eter) by applying multiple different prefix-filters. respectively, ancddit_distance(dl,d2) represents
Each prefix-filter chooses terms from each docuhe minimum number of edit operations (insertion,
ment based on a different priority decision criteriondeletion, and substitution) that convéitto d2. For
and removes different document-pairs. It finally calexamplegedit_distance(dl, d5) in Fig.1is 4: delete
culates the similarities of the document-pairs left b§, H, and |, and insert M. Thempaz(|d1|, |d5]|) is
all of the prefix-filters. We conducted an experimen®, derived from|d1| = 9 and|d5| = 7. Therefore,
with a customer database composed of address antit_sim(dl,d5) =1 — (4/9) = 0.45.
company name fields, and used edit-similarity for In the first step, when the similarity function is
the similarity calculation. The result showed thaedit-similarity, the minimum proportion of common
multi-level prefix-filter could reduce the number ofterms (characters) in a document pair whose similar-
similarity calculations to 1/4 compared with the curdty is equal or greater thafT = 0.6 is z = 0.6.

rent prefix-filter. This means the similarity of a document pair in
o which the proportion of common terms is less than
2 Prefix-filter 0.6 never reaches 0.6z can be derived from the

Prefix-filter finds document-pairs whose similaritieSMilarity function (see Appendix A).

never reach the similarity threshold (ST) based on In step 2, DDDS decides the priorities of all terms

the number of uncommon terms in a document-pai?n target documents. Fig. 1 () gives all terms con-

and that removes them before the similarity calcyféined in the 6 documents priorities from the lowest

lation. A DDDS with prefix-filter processes the fol- dogument frequency (if the same frequgncy, "".'Pha'
lowing four steps? betical order). Regardless of the priority decision

criteria, the similarities of document pairs removed
Step 1: Definez: the minimum proportion of com- are always less than ST, but document pairs removed
mon terms in a document pair whose similaritydiffer. Empirically, it is known that giving high pri-
is equal to or greater tha$i’(0 < ST < 1). ority from the term of the lowest frequency is effec-
tive because the lower the frequency of a term, the
Step 2: Decide priorities of all terms on target doc-|ower the probability of a document pair containing
uments. that term(Chaudhuri et al., 2006).
In step 3, DDDS chooses terms from each docu-
ent according to the priority decision criterion of
step 2 in Fig.1 (a) until the proportion of selected
terms exceeds — x = 0.4. For example, the pro-

Step 4: Remove document pairs that share no termortion is over 0.4 when DDDS selects 4 terms from
selected in Step 3, and calculate the similaritied1, composed of 9 terms. DDDS selects 4 terms
of the remaining document pairs. according to (a){A, B,C, I}. Fig.1 (b) shows se-

lected terms using boldface and background color.
Let us illustrate how prefix-filter works briefly.  Finally, DDDS removes document pairs that share

For example, a user inputs 6 documents as in Figrio terms selected in step 3, and calculates similari-

mhow the simplest prefix-filter of (Chaudhuri ettieS of the remaining document pairs. The similari-

al., 2006) ties of document pairs with no common terms never

Step 3: Select terms from each document accordinﬁ1
to the priorities in Step 2 until the proportion of
selected terms exceetls- z.
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(a)

A>G>>K>L>M>B>C>D>F>E>H>J

filter can reduce the number of document pairs more

0 91 ABEDEF HIJ comprehensively than the current prefix-filter (with-
a2 E GH J & out any detection loss). Fig.2 illustrates an exam-
a3 BCDEF HI ple of multi-level prefix-filter, applying prefix-filter
94 E 6H JKD twice. After DDDS changes priority decision crite-
% WBcD E ] M rion between the first and second prefix-filter, terms

selected from each document vary. As a result, doc-
dé K M ument pairs filtered by each prefix-filter change as

(c)

edit_sim(d1, d3) = 1-(2/9) = 0.78
edit_sim(d1, d5) = 1-(4/9) = 0.45
edit_sim(d2, d4) = 1-(1/6) = 0.83
edit_sim(d3, d5) = 1-(4/7) = 0.43

well. The product of document pairs each prefix-
filter leaves leads to the reduction of similarity cal-
culations by 3 times.

edit_sim(d4, d6) = 1-(5/6) = 0.17 Let us explain two kinds of priority decision cri-

teria of terms in the following sections.

Figure1: Overview of prefix-filter. 3.1 Priority decision usingScore(n, w)

_ We define Score(n,w), the score of a tetnon n-th
reach 0.6 because the proportion of common termsefiy.filter, as follows, and give a higher priority to
less than 0.6. Prefix-filter can be implemented eag; smaller value of Score(n,w).

ily using an index file, storing the relation of each
selected term and the list of document IDs includ-
ing the term. As a result, document d1 targets d3 Score(n, w) =
and d5 on similarity calculation. Finally, the number
of similarity calculations can be reduced by 5 times
while naive solution requires (6*5)/2=15 times.

n=1

df (w)
0.1 df (w)+

n—1
> osdf(i,w) n>2
i=1

wheredf (w) is the document frequency af over
the target documents, aneif(i,w) denotes the
number of documents in which was selected oix
The problem with prefix-filter is that it cannot re-th prefix-filter. The basic concept is to give a higher
duce similarity calculations sufficiently because ifpriority to a term of smaller frequency. As men-
leaves many document-pairs whose similarities atgoned before, this is effective because the lower the
less than ST. Document-pairs that prefix-filter cafrequency of a term, the lower the probability of a
remove depend on terms selected from each docglecument pair containing that term. On the other
ment. Atworst, document pairs where only one termand, it is expected that a multi-level prefix-filter be-
is in common might remain. In the case of selectingomes more effective if each prefix-filter can filter
terms according to priority decision criterion (a) indifferent document pairs. Therefore, after the sec-
Fig.1, for example, a document pdid4,d6}on (b) ond prefix-filter @ > 2), we give a higher prior-
remains although only K is in common. In order toity to a term whose frequency is small (first term)
identify the same document pairs correctly, a deegnd which was not selected by previous prefix-filters
similarity function such as edit-similarity is essen{second term).
tial. Therefore, the number of similarity calculations  Fig.3 illustrates the process of multi-level prefix-
should be decreased as much as possible. filter based on this creterion. This multi-level prefix-
We propose multi-level prefix-filter, which re- filter can be implimented using two kinds of index
duces the number of similarity calculations more effiles (W.INDEX, D_INDEX) rapidly. If PC with
ficiently by applying multiple different prefix-filters. multiple processers, it is easy to parallelize filtering
Each prefix-filter chooses terms from each docusrocess.
ment based on different priority decision criteria, o o ]
and removes different document-pairs. It finally cal3-2  Priority decision using Score(d, n, w)
culates the similarities of document-pairs left by alWe defineScore(d, n, w), the score of a terry con-
of the prefix-filters. That is why multi-level prefix- tained in document! on n-th prefix-filter, as fol-

3 Multi-level prefix-filter
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First prefix-filter Second prefix-filter N: Number of applying prefix-filter, D: Target documents, ST: Similarity Threshold

" A>G> I>K>L>M>B>CoD>F>E>H>J' 1 A>GoI>M>L>K>J >B>C>D>F>E>H: Index creation process:
L e 1. for(wED)
d1 JABCDEF HIlJ d1 JABCDEF HilJ 2. Score(1,w) = df(w)
d2 EGH JL d2 EGH J L 3. end for
d3 BCDEF HII d3 BCDEF HII 4. for(i=1: i=N; i++)
d4 E GH JKL d4 E GH JKL 5. for(=0: j= | D ; j++)
d5 |JABCD F J d5 ABCD F J M 6. W= terms chosen from wEd;: of the smallest Score(i,w)
@6 | 00 K M‘ d6 — K m until the proportion of selected terms exceeds 1-x.
—— ‘Za:]”d'é;" 7. for(we W)
(d1,d3) (d193) 8. push(D_INDEXG,dy), w)
Eg;;gig (d1.d5) 9. push(W_INDEX(,w), d)
(d3,d5) (d2,d4) 10. end for
(d4,d6) (d2,d5) 11. end for
| (d5,06) , 12, forweD)
B 77 [ 13. Score(i+1,w)= 0.1 * df(w) + X 1=k=i sdf(k,w)
edit_sim(d1, d3) = 1-(2/9) = 0.78 14. end for
edit_sim(d1, d5) = 1-(4/9) = 0.45 15. end for

edit_sim(d2, d4) = 1-(1/6) = 0.83 Matching process:
16. for(i=0; i< | D|:i++)

Filtering process:

H . H H H . 17. DS=D
Figure2: Overview of multi-level prefix-filter. 18 forGeli SN o)
19. for(w € W_INDEX(,d))
20. DSSw ={dx | dx € WfINDEX(j,w), k> i}
lows, and give a higher priority to a smaller value z; deSFDSSw U DS
of Score(d, n, w). 2. DS =DS N DS;j
24. end for
d w n = 1 i Similarity calculation process:
Score(d,n, w) = f( d) 2. forlds=DS) - )
|D Sn_ 1N DS Sw| n>2 26. push(RESULT, {d,ds}) if (sim(d, ds) =ST)
- 27. end for
28. end for

whereDS¢_, is target documents of similarity cal-
culation ofd left after then — 1-th prefix-filter, and
DSS,, is documents containing a term The ba- Figure3: Multi-level prefix-filter with Score(n,w).
sic concept is to give a higher priority to a term that

can filter many document_ pairs. It deC|dg§ the anLZ Experimental result
orities of terms om-th prefix-filter after waiting for

the result ofn — 1-th prefix-filter. Fig.4 (a) shows the comparison between multi-level
prefix-filter usingScore(d, n, w) and Score(n, w)

under the condition that the number of prefix-filters
4.1 Experimental method is one or two. The company name field was used

We compared multi-level prefix-filter with the cur- fOr target documents. Although multi-level prefix-
rent prefix-filter in order to clarify how much the filter usmg_Sco_re(n,w) succeeded in the reduction
proposed method could reduce the number of sinff Processing time, Score(d,n,w) failed because of
ilarity calculations. We used a customer databad@0 Many score calculations. Therefore, we used
in Japanese, composed of 200,000 records, and hagP”¢(n, w) in the following experiments.

been used for data cleaning. Each record has twoFig.4 (b) shows the number of similarity calcu-
fields, company name and address, averaging iations when the number of applied prefix-filters
terms and 18 terms, respectively. We selected ediaries. In this figure,n = 1 means the cur-
similarity as the similarity function, and set 80%rent prefix-filter. The number of similarity calcula-
as ST. The database contains 86031 (43%) duplions decreased most sharply in the case of applying
cated documents (records) in the company namplefix-filters twice on both the company name and
and 123068 (60%) in the address field when we agddress fields, and converged in 10 times. Multi-
sumed document pairs whose s|m||ar|ty was equﬁvel prefix-filter reduced the number of similarity
to or greater than 80%. A DDDS with multi-level calculations by 10 times, about to 1/4 (77% reduc-
prefix-filter ran on an NEC Express 5800 with Win-tion) in the company name field, and about to 1/3
dows 2000, 2.6GHz Pentium Xeon and 3.4 GByte of69% reduction) in the address field.

memory. Fig.4 (c) shows total processing time when the

4 Experiments
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numberof applied prefix-filters varies. It represents5 Related work

the sum of index creation/filtering time and similar-D licate D ¢ Detection for datab h
ity calculation time. When the number of applied uplicate Document Deteclion tor databases has

prefix-filters increased, the latter decreased becau gen researched for a Iong time(Elmagarmid et al.,
07). The current techniques apply the two-stage

the number of similarity calculations also decrease o : :
but the former increased instead. Note that we di pproach: (i) Reduce document pairs using shallow
litering methods, and then (ii) calculate similarity

not parallelize the filtering process here. Total pro- " ih ining d t pairs. Multi-level
cessing time decreased most sharply in the case ‘?\f’ye?_ﬂ E rlemalntln?h of(;ut[netn pairs. Multi-leve
applying prefix-filters 4 times on both the compampre befilter belongs to the first step (i).

name (to be 43%) and address fields (to be 49%). | C_urrgnt filter_ing methods were independent of the
Fig.4 (d) shows the reduction rate of the numbe§|m|larlty function. Jaro(Jaro, 1989) proposed Stan-

of similarity calculations and processing time WherﬁjarOI Blocking, which created many record blocks in

prefix-filter was applied 4 times and the size of tar\—NhICh each record shared the same firérms, and

get document sets varied. Here, the reduction rafgdculated the similarity of document-pairs included
))n the same record block. Hernandez(Hernandez

denotes the proportion of the number of similarit and Stolfo, 1995) proposed the Sorted Neighbor
calculations or processing time of multi-level prefix- ’ S )
P g P hood Method (SNM), which first sorted records by

filter, applying prefix-filter 4 times, to those of the' ™" Kev f . 4 th d adi
current prefix-filter, applying prefix-filter once. This@ 9IVEN KEY unctloq, an _t €n grouped a Jacent
records within the given window size as a block.

result reveals the effectiveness of multi-level prefix _
cCallum(McCallum et al., 2000) improved them

filter does not change for the size of the target dOCLgI . . .
ment set. y allowing a record to locate in plural blocks in or-

der to avoid detection loss.
4.3 Discussion However, the problems of these filtering methods
The experimental results indicated that multi-leve'Sing blocking ahre thf"_"t the usir ngedsdtrlag ;Td irror
prefix-filter could reduce the number of similarity Parameters such as firsterms for Standard Block-

calculations up to 1/4, and that this effectiveness wds9: and that these incur detection loss in spite of

not lost by changing the size of the target databasiProvements being attempted, caused by two doc-

In addition, it showed that the optimal number of apyments of a correct document pair existing in dif-

plied prefix-filters did not depend on the target ﬁelcIerent blocks. Prefix-filter solved these problems:

or the size of the target database. Therefore, mult@ all document pairs qual or more than S|m||§1r-
level prefix-filter proved to be more effective thany threshold (ST) are obtained without any detection

the current prefix-filter without losing the advan-loss’ and (ii) any extra parameter for filtering is not

tages of the current prefix-filter (no detection los r,equwed other than ST. As we clarified in Section 4,

no extra parameter). multi-level prefix-filter proved to be more effective

The experimental results also indicated that th@an the current prefix-filter without losing these ad-

company name field was more effective than the a(y_antag(re]s. filteri hod with q _
dress field. As mentioned, the address field was A"Other filtering method without any detection

longer than that of the company name field on a\)_oss, called PARTENUM, has been_ proposed re-
erage, and it contained more duplicated document_%‘.amly(Ar"’_1SU etal., 2006). However, it neec#s.to ad-
Therefore, we expect that the proposed method #gst_ two kinds of par.ametersL(, _"2) for obtglnlng
effective in the following situation: (i) the length optimal processing time apcprd_mg to the size of tar-
of each document (record) is short, (ii) the numJet document set or the similarity threshold.

ber of duplicate documents has been reduced beforg— Conclusion

hand by simple filtering methods such as deleting

exact match documents or documents different onliy this paper, we proposed multi-level prefix-filter,
in space, and (iii) detecting the remaining duplicatevhich reduces the number of similarity calculations
documents by using a deep similarity function sucimore efficiently and maintains the advantage of the
as edit-similarity. current prefix-filter by applying multiple different
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Figure4: Experimental result.
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