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Abstract

Extracting semantic relations between enti-
ties from natural language text is an impor-
tant step towards automatic knowledge ex-
traction from large text collections and the
Web. The state-of-the-art approach to rela-
tion extraction employs Support Vector Ma-
chines (SVM) and kernel methods for classi-
fication. Despite the diversity of kernels and
the near exhaustive trial-and-error on ker-
nel combination, there lacks a clear under-
standing of how these kernels relate to each
other and why some are superior than oth-
ers. In this paper, we provide an analysis of
the relative strength and weakness of several
kernels through systematic experimentation.
We show that relation extraction can bene-
fit from increasing the feature space through
convolution kernel and introducing bias to-
wards more syntactically meaningful feature
space. Based on our analysis, we propose
a new convolution dependency path kernel
that combines the above two benefits. Our
experimental results on the standard ACE
2003 datasets demonstrate that our new ker-
nel gives consistent and significantly better
performance than baseline methods, obtain-
ing very competitive results to the state-of-
the-art performance.

Introduction

Two types of collections are commonly studied
for relation extraction. The first type is annotated
newswire text made available by programs such as
Message Understanding Conferences (MUC) and
Automatic Content Extraction (ACE). The types of
entities that are of interest to these programs include
person, organization, facilities, location and GPE
(Geo-political entities). Given entities in a docu-
ment, the relation extraction task is to identify ex-
plicit semantic relationship such ascated-In and
Citizen-Of between pairs of entities. For example, in
the sentence “The funeral was scheduled for Thurs-
day in Parisat the Saint-Germain-des-Pres Chdrch
the organizatioraint-Germain-des-Pres Church is
“Located-In" GPE Paris. The second type of collec-
tion that has been widely studied is biomedical liter-
ature (Bunescu and Mooney, 2005b; Giuliano et al.,
2006; McDonald et al., 2005b), promoted by evalu-
ation programs such as BioCreAtlvE and JNLPBA
2004. In this particular domain, studies often focus
on specific entities such as genes and proteins. And
the kinds of relations to extract are usually gene-to-
protein interactions.

The predominant approach to relation extraction
treats the task as a multi-class classification prob-
lem, in which different relation types form differ-
ent output classes. Early work employed a diverse
range of features in a linear classifier (commonly
referred to as “feature-based” approaches), includ-
ing lexical features, syntactic parse features, de-
pendency features and semantic features (Jiang and
Zhai, 2007; Kambhatla, 2004; Zhou et al., 2005).

There exists a large body of knowledge embedded ifhese approaches were hindered by drawbacks such
unstructured natural language text on the Web. Thes limited feature space and excessive feature en-
sheer volume and heterogeneity of such knowledggineering. Kernel methods (Cortes and Vapnik,
renders traditional rule-based and manually-crafte@i995; Cristianini and Shawe-Taylor, 2000) on the
knowledge extraction systems unsuitable. Thus dther hand can explore a much larger feature space
calls for methods that automatically extract knowlvery efficiently. Recent studies on relation extrac-
edge from natural language text. An important stefon have shown that by combining kernels with
towards automatic knowledge discovery is to extrackupport-vector Machines (SVM), one can obtain re-
semantic relations between entities. sults superior to feature-based methods (Bunescu
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and Mooney, 2005b; Bunescu and Mooney, 2005a; One drawback of these feature-based methods is
Culotta and Sorensen, 2004; Cumby and Rothhat the feature space that can be explored is often
2003; Zelenko et al., 2003; Zhang et al., 2006djmited. On the other hand, kernel-based methods
Zhang et al., 2006b; Zhao and Grishman, 2005). offer efficient solutions that allow us to explore a
Despite the large number of recently propose¢huch larger (often exponential, or in some cases, in-
kernels and their reported success, there lacks a cldnite) feature space in polynomial time, without the
understanding of their relative strength and weakaeed to explicitly represent the features.
ness. In this study, we provide a systematic com- Lodhi et al. (2002) described a convolution string
parison and analysis of three such kernels — sulkernel, which measures the similarity between two
sequence kernel (Bunescu and Mooney, 2005b), detrings by recursively computing matching of all
pendency tree kernel (Culotta and Sorensen, 200@pssible subsequences of the two strings. Bunescu
and dependency path kernel (Bunescu and Moone¥,Mooney (2005b) generalized the string kernel to
2005a). We replicated these kernels and conduct&rk with vectors of objects occurred in relation ex-
experiments on the standard ACE 2003 newswirtsaction. In a later work also done by Bunescu &
text evaluation set. We show that whereas some kéviooney (2005a), they proposed a kernel that com-
nels are less effective than others, they exhibit progutes similarities between nodes on the shortest de-
erties that are complementary to each other. In papendency paths that connect the entities. Their ker-
ticular, We found that relation extraction can benefinel assigns no-match to paths that are of different
from increasing the feature space through convoldength. And for paths that are of the same length, it
tion kernel and introducing bias towards more synsimply computes the product of the similarity score
tactically meaningful feature space. of node pairs at each index. The dependency tree
Drawn from our analysis, we further proposekernel proposed by Zelenko et al. (2003) was also
a new convolution dependency path kernel whichspired by the string kernel of Lodhi et al. (2002).
combines the benefits of the subsequence kernel ahieir kernel walks down the parse trees from the
shortest path dependency kernel. Comparing to tgot and computes a similarity score for children
previous kernels, our new kernel gives consisteritodes at each depth level using the same subse-
and significantly better performance than all thregluence algorithm as the string kernel. Culotta &

previous kernels that we look at. Sorensen (2004) worked on the same idea but ap-
plied it to dependency parse trees. Prior to these two
2 Related Work tree kernels, Collins & Duffy (2001) proposed a con-

volution tree kernel for natural language tasks. Their
Statistical methods for relation extraction can bé&ernel has since been applied to relation extraction
roughly categorized into two categories: featureby Zhang et al. (2006a). The tree kernel consid-
based and kernel-based. ers matching of all subtrees that share the same
Feature-based methods (Jiang and Zhai, 200@roduction rule at the root of the subtree. Zhang
Kambhatla, 2004; Zhou et al., 2005) use pre-definegt al. (2006a) showed results that are significantly
feature sets to extract features to train classificdbetter than the previous two dependency tree ker-
tion models. Zhou et al. (2005) manually craftechels. They obtained further improvements in their
a wide range of features drawn from sources sudhater paper (2006b) by composing the tree kernel
as lexical, syntactic and semantic analyses. Comith a simple entity kernel and raising the compos-
bined with SVM, they reported the best results aite kernel to polynomial degree 2. Another study on
the time on ACE corpus. Kambhatla (2004) tookernel composition is the work by Zhao & Grish-
a similar approach but used multivariate logistic reman (2005).
gression (Kambhatla, 2004). Jiang & Zhai (2007) It is worth noting that although there exist stan-
gave a systematic examination of the efficacy of urdard evaluation datasets such as ACE 2003 and
igram, bigram and trigram features drawn from dif-2004, many of the aforementioned work report re-
ferent representations — surface text, constituencgults on non-standard datasets or splits, making it
parse tree and dependency parse tree. difficult to directly compare the performance. We
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feel that there is a sense of increasing confusioby two feature vectors,y € X, using function
down this line of research. Although partly due toc(z,y). Let s, ¢ be two sequences over the feature
the lack of compatibility in evaluation results, wesetX,, we use|s| to denote the length of. Thuss
believe it is more due to the lack of understanding ican be written out as; - - - s,|. We uses[i : j] to
the relative strength and weakness of these kernetienote a continuous subsequenge: - s; of s. Let

Therefore we focus on analyzing and understanding = (i, - - -,7;) be a sequence df| indices ins,
the pros and cons of different kernels, through syswve define thdength of the index sequenceto be
tematic comparison and experimentation. I(i) = i)y — i1 + 1. Similarly we have index se-

quencej in t of lengthl(j).

LetXy, = X1 UXoU---UX, be the set of all
In this Section we first give a very brief introduc- possible features. A sequengec XY is a subse-
tion to kernel methods. We then present the alguence of feature vector sequenci there exists a
gorithms behind three kernels that we are particusequence ofu| indicesi, such thaty, € s;,, Yk €
larly interested in: subsequence kernel (Bunescu add, - - -, |u|}. Follow the notions in (Bunescu and
Mooney, 2005b), dependency tree kernel (Culotttooney, 2005b; Cumby and Roth, 2003), we use
and Sorensen, 2004) and shortest path dependency< s[i] as a shorthand for the above component-
kernel (Bunescu and Mooney, 2005a). wise ‘e’ relationship. Now we can define the kernel
function K,, (s, t) to be the total number of weighted
3.1 SVMand Kemels common subsequence of lengttbetween the two
Support-Vector Machines (Cortes and Vapnik, 199%equeneces andt.
Cristianini and Shawe-Taylor, 2000) learn to find
hyperplanes that separate the positive and negative Dl
data points so that the margin between the support- Kn(s,t) = Z Z Z NG ()
vector points and the hyperplane is maximized. The
dual formulation of the optimization problem in-
volves only computing the dot product of featureVhereA is a decaying factox 1, penalizing long,
vectors. This is equivalent to mapping the dat&Parse subsequence. We can re-write this kernel
points into a high dimensional space. And the sepdunction as
rating plane learnt in the high dimensional space can

give non-linear decision boundaries. The dot prod- B L WG)HG)
uct of data points can be computed using a kerneIK"(s’t) - Z Z H olSi 1) A 2)

3 Kernel Methods for Relation Extraction

ueX iru=sli] jiu<t[j]

n

function K (X,Y) = (#(X),#(Y)) for any map- Elij=n jilil=n k=1

ping function. A valid kernel function satisfies cer-

tain properties: it is symmetric and tk&am matrix (Bunescu and Mooney, 2005b) showed that us-
G formed by K (X,Y") is positive semi-definite. ing the recursive dynamic programming algorithm

from (Cumby and Roth, 2003), the kernkl, (s, t)

can be computed i0 (kn|s||t]) time.

The subsequence kernel introduced in (Bunescu

anq Mooney,_ 2Q05b) is a general_ization of th%_3 From Subsequence to Tree Kernels

string kernel first introduced by Lodhi et al. (2002).

The feature space of the original string kerneWe will use an example to illustrate the relation be-
Ystringgernel 1S 0efined asyyring ernet = Xcnar,  tween the dependency tree kernels proposed by (Cu-
whereX .. is simply a set of characters. Bunescuotta and Sorensen, 2004; Zelenko et al., 2003) and
& Mooney (2005a) re-defined the feature space tthe subsequence kernel we introduced above. Con-
beX, =X x X9 x---x X, whereXy,Xs,---,%, sider two instances of the “Located-In" relations
can be some arbitray disjoint feature spaces, such &iis actions inBrcko” and “his recent arrival inBei-

the set of words, part-of-speech (POS) tags, etc. Wing”. The dependency parse trees of these two sen-
can measure the number of common features shartghces are shown below.

3.2 Subsequence Kernel
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actions arrival 5'f0|d CV on ACE 2003
A o kernel method | Precision| Recall| F1
P subsequence 0.703 | 0.389 | 0.546
S " ’ . dependency tre¢ 0.681 | 0.290 | 0.485
IS recent n
PERSON | PRP ADJ IN shortest path 0.747 | 0.376 | 0.562
Iilrﬁkg PERSON Ba]_ng
NOUN NP Table 1: Results of different kernels on ACE 2003
LOCATION NouN .. . . .
LOCATION training set using 5-fold cross-validation.

The entities in these two relations are the pro-
noun mentions of KHis’, and two locations Br-
cko” and "Beijing”, all shown in italic. The de-
pendency tree kernel visits nodes in the two treed/e implemented the above three kernels and con-
starting from the root. And at each depth level, iducted a set of experiments to compare these ker-
takes nodes that are at that level and form two s&els. By minimizing divergence in our experiment
guences of nodes. For example, in the example isetup and implementation for these kernels, we hope
stances, nodes at one level below the root forme reveal intrinsic properties of different kernels.
vectors s=({his, PRP, PERSOMN{in, IN}) and .
t=({his,PRP,PERSOMN{recent, AD} {in, IN}). It 41 Experimentsetup
then makes use of the subsequence kernel in thge conducted experiments using the ACE 2003
previous section to compute the total number oftandard evaluation set. Training set of this collec-
weighted subsequences between these two vectaien contains 674 doc and 9683 relations. The test
The kernel returns the sum of subsequence matcset contains 97 doc and 1386 relations. 5 entity types
ing scores at each depth level as the final score. (Person, Organization, Location, Facilities and Geo-

political Entities) and 5 top-level relation types (At,
3.4 Shortest Path Dependency Kernel Near, Part-of, Role and Social) are manually anno-

he sh hd q K | q tated in this collection. Since no development set is
The shortest path dependency kemel propose t§1¥ven, we report results in this section only on the

Bunescu & Mooney (2005a) also works with delOenfraining set, using 5-fold cross-validation, and de-

dency parse trees. Reuse our example in the PreYEr the comparison of results on the test set till Sec-
ous section, the shortest dependency path betwe{?&1 6. Corpus preprocessing is done as the follow-

entity his andBroko n the first sentence '§:<{h's’ ing: sentence segmentation was performed using the
PRP, PERSON {actions, NNS, MUN}, {in, IN}, tool from CCG group at UIUG; words are then to-

{Brcko, NNP, Noun, LOCATION}); and the path kenized and tagged with part-of-speech using MX-

betwgenhls and Beijing in the _second sentence iSpHgT (Ratnaparkhi, 1996) and dependency parsing
t:_<{h|s, PRP’___PERSON {arrival, NN, NOUN}, is performed using MSTParser (McDonald et al.,
{in, IN}, {Beijing, NNP, Noun, LOCATION}).  54054)  We used the SVM-light (Joachims, 2002)
Since _mo_st dependency parser output ConneCt?golkit and augmented it with our custom kernels.
trees _flndmg the shortest path between two nOde§VM parameters are chosen using cross-validation
is trivial. Once the two paths are found, the kerne{cz2_4)’ and the decaying factor in all kernels are
simply computes the product of the number of COml'miformally set to be 0.75. We report precision (P),

mon features between a pair of nodes_at each index. (R) and F-measure (F) on the training (5-fold
along the path. If the two paths have different numéross—validation) and test set

ber of nodes, the kernel assigns 0 (no-match) to the
pair. Formally, the kernel is defined as: 4.2 Comparison of Kernels

4 Experiments and Analysis

In table 1 we listed results of the above three kernels

K(s,t) = { 0, if |s] 7 || (3) on the training set using 5-fold cross-validation. A

[Ty e(siti), i [s| = [¢] —
http://12r.cs. ui uc. edu/ ~cogconp/ at ool .
php?t key=SS
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first glimpse of the results tells us that the shortest ACE 2003 test set

path kernel performs the best in terms of F-measurg kernel method Precision| Recall| F1

while the dependency tree kernel did the worst. Thesubsequence 0.673 | 0.499 | 0.586
performance of subsequence kernel is not as gopdlependency tree 0.621 | 0.362 | 0.492
as the dependency path kernel, but the difference|ishortest path 0.691 | 0.462 | 0.577
small. In particular, the subsequence kernel gave theonvolution dep. path 0.725 | 0.541 | 0.633
best recall, whereas the dependency path kernel gavi&hang et al., 2006b) 0.773 0.656 | 0.709

the highest precision. _
To understand why shortest path kernel performgable 2: Results on the ACE 2003 test set. We ref-

better than the subsequence kernel, let us review tREENCE the best-reported score (in italic) on this test
definition of these two kerels. The subsequenceft given by (Zhang etal., 2006b)
kernel considers all subsequences of feature vector

sequences that are formed by all words occurred in- The disappointing performance of the depen-
between two entities in a sentence; while the ShOf‘tegbncy tree kernel can also be explained by our anal-
path kernel only considers feature vector sequencgsis. Although the dependency tree kernel performs
formed by words that are connected through a de&ubsequence matching for nodes at each depth level,
pendency path. In general, the sequences consiglis unclear what the relative syntactic or semantic
ered in the dependency path kernel are more corfelation is among sibling nodes in the dependency
pact than the sequences used in the subsequence kgfe. The sequence formed by sibling nodes is far
nel. Actually, in most cases the dependency path sgsss intuitive from a linguistic point of view than the
quence is indeedne particular subsequence of the  sequence formed by nodes on a dependency path.
entire subsequence used in subsequence kernel. ArTo summarize the above results, we found that de-
guably, this particular subsequence is the one thgbndency path kernel benefits from a reduction in
captures the most important syntactic informationf.eature space by using syntactic dependency infor-
Although the feature spaces of the dependency paghation. But the subsequence kernel has an edge in
kernels are not subsets of the subsequence kerngleall by allowing fuzzy matching and expanding the
we can clearly see that we get higher precisionfeature space into convolution space. We will show
by introducing bias towards the syntactically moren the following section that these two benefits are

meaningful feature space. complementary and can be combined to give better
However, the dependency path kernel is fairlyherformance.

rigid and imposes many hard constraints such as re-
quiring the two paths to have exactly the same nund Combining the Benefits — A New Kernel

ber of nodes. This restriction is counter-intuitive. To

illustrate this, let us reconsider the example given iht 's a natural extt_ensm_n_ o _combme the two be_ne-
Section 3. In that example, it is obviously the caséIts that we hgve identified in the previous section.
that the two instances of relations have very simila-ll—he |d_ea IS simple: we want to allp w subsequence
dependency path connecting the entities. Howevematchlng in order to gain more flexibility and there-

the second path is one node longer than the first patf re higher recall, but constrain the sequence from

and therefore the dependency path kernel will dev-vhiCh to deduce subsequences to be the dependency

clare no match for them. The subsequence kernel, &?th sequence. we call the comt,),lned kemel a “con-
the other hand, considers subsequence matching a\hoAutlon dependency path keme".

therefqre inherently incorporates a notion of fuzzy6 Final Test Results

matching. Furthermore, we have observed from the

training data that many short word sequences carkfe obtained the final results on the test set of the
strong relational information; hence only part of theACE 2003 collection, using the same experimental

entire dependency path is truly meaningful in mossetting as above. The results are listed in Table 2.
cases. It also helps to understand why subsequeriéem the table we can see that the performances of
kernel has better recall than dependency path kernéhe previous three kernels hold up qualitatively on

845



the test set as cross-validation on training set. Thel Cristianini and J. Shawe-Taylor. 2008n Introduc-

is one exception that the shortest path kernel’s F- tion to Support-vector Machines. Cambridge Univer-

measure score is no longer better than the subse-S'Y Press.

guence kernel on the test set, but the difference 5. Culotta and J. Sorensen. 2004. Dependency tree ker-

small. And our new convolution dependency path nels for relation extraction. IRroceedings of ACL.

kernel beats all above three kernels in precision, r& m.cumby and D. Roth. 2003. On kernel methods for

call and F-measure, suggesting that our analysis isrelation learning. IrProceedings of ICML.

a;:curate and the benefits we outlined are truly coms Giliano, A. Lavelli and L. Romano. 2006. Ex-

p ementary. ploiting shallow linguistic information for relation ex-
Comparing to the best reported results on the traction from biomedical literature. IRroceedings of

same test set from (Zhang et al., 2006b), our scores EACL.

are not as high, but the results are quite competitivg, jiang and C. zhai. 2007. A systematic exploration of
given our minimum efforts on tuning kernel param- the feature space for relation extraction. Rroceed-

eters and trying out kernel combinations. ings of NAACL-HLT.
. T. Joachims. 2002 earning to Classify Text Using Sup-
7 Conclusion port Viector Machines. Ph.D. thesis, Universit Dort-
mund.

We re-examined three existing kernel methods for o _ _
relation extraction. We conducted experiments off- Kambhatla. 2004.  Combining lexical, syntactic and
h dard ACE 2003 luati d sh dsemantlc features with maximum entropy models for
the standar evaluation set and SNOWed gyiracting relations. IProceedings of ACL.

that whereas some kernels are less effective than

others, they exhibit properties that are complemer3- Lodhi, C Saunders, J. Shawe-Taylor, N. Cristianini,
y prop . P and C Watkins. 2002. Text classification using string
tary to each other. In particular, we found that rela- | o nels IMLR 2:419-444.

tion extraction can benefit from increasing the fea- .

ture space through convolution kernel and introduc®- McDonald, K. Crammer, and F. Pereira. 2005a. On-

ing bias towards more syntactically meaningful fea- line large-margin training of dependency parsers. In
g y y ] g Proceedings of ACL.

ture space. Drawn from our analysis, we proposed _ . . _

a new Convolutlon dependency path kernel Whmﬁ? MCDonaId, F. Pere|ra, S. KUI|Ck, S. W|nters, Y. J|n,

: . nd P. White. 2005b. Simple algorithms for complex
combines the benefits of the subsequence kernel arKfelation extraction with applications to biomedical ie.

shortest path dependency kernel. Comparing with |5 proceedings of ACL.

previous kernels, our new kernel consistently and

S . A. Ratnaparkhi. 1996. A maximum entropy part-of-
significantly outperforms all three previous kernels, speech tagger. IRroceedings of EMNLP.

suggesting that our analyses of the previously pro-
posed kernels are correct. D. Zelenko, C. Aone, and A. Richardella. 2003. Kernel
methods for relation extractiodMLR, 3:1083—-1106.
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