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Abstract

Extracting semantic relations between enti-
ties from natural language text is an impor-
tant step towards automatic knowledge ex-
traction from large text collections and the
Web. The state-of-the-art approach to rela-
tion extraction employs Support Vector Ma-
chines (SVM) and kernel methods for classi-
fication. Despite the diversity of kernels and
the near exhaustive trial-and-error on ker-
nel combination, there lacks a clear under-
standing of how these kernels relate to each
other and why some are superior than oth-
ers. In this paper, we provide an analysis of
the relative strength and weakness of several
kernels through systematic experimentation.
We show that relation extraction can bene-
fit from increasing the feature space through
convolution kernel and introducing bias to-
wards more syntactically meaningful feature
space. Based on our analysis, we propose
a new convolution dependency path kernel
that combines the above two benefits. Our
experimental results on the standard ACE
2003 datasets demonstrate that our new ker-
nel gives consistent and significantly better
performance than baseline methods, obtain-
ing very competitive results to the state-of-
the-art performance.

1 Introduction

There exists a large body of knowledge embedded in
unstructured natural language text on the Web. The
sheer volume and heterogeneity of such knowledge
renders traditional rule-based and manually-crafted
knowledge extraction systems unsuitable. Thus it
calls for methods that automatically extract knowl-
edge from natural language text. An important step
towards automatic knowledge discovery is to extract
semantic relations between entities.

Two types of collections are commonly studied
for relation extraction. The first type is annotated
newswire text made available by programs such as
Message Understanding Conferences (MUC) and
Automatic Content Extraction (ACE). The types of
entities that are of interest to these programs include
person, organization, facilities, location and GPE
(Geo-political entities). Given entities in a docu-
ment, the relation extraction task is to identify ex-
plicit semantic relationship such asLocated-In and
Citizen-Of between pairs of entities. For example, in
the sentence “The funeral was scheduled for Thurs-
day in Parisat the Saint-Germain-des-Pres Church”,
the organizationSaint-Germain-des-Pres Church is
“Located-In” GPEParis. The second type of collec-
tion that has been widely studied is biomedical liter-
ature (Bunescu and Mooney, 2005b; Giuliano et al.,
2006; McDonald et al., 2005b), promoted by evalu-
ation programs such as BioCreAtIvE and JNLPBA
2004. In this particular domain, studies often focus
on specific entities such as genes and proteins. And
the kinds of relations to extract are usually gene-to-
protein interactions.

The predominant approach to relation extraction
treats the task as a multi-class classification prob-
lem, in which different relation types form differ-
ent output classes. Early work employed a diverse
range of features in a linear classifier (commonly
referred to as “feature-based” approaches), includ-
ing lexical features, syntactic parse features, de-
pendency features and semantic features (Jiang and
Zhai, 2007; Kambhatla, 2004; Zhou et al., 2005).
These approaches were hindered by drawbacks such
as limited feature space and excessive feature en-
gineering. Kernel methods (Cortes and Vapnik,
1995; Cristianini and Shawe-Taylor, 2000) on the
other hand can explore a much larger feature space
very efficiently. Recent studies on relation extrac-
tion have shown that by combining kernels with
Support-vector Machines (SVM), one can obtain re-
sults superior to feature-based methods (Bunescu

841



and Mooney, 2005b; Bunescu and Mooney, 2005a;
Culotta and Sorensen, 2004; Cumby and Roth,
2003; Zelenko et al., 2003; Zhang et al., 2006a;
Zhang et al., 2006b; Zhao and Grishman, 2005).

Despite the large number of recently proposed
kernels and their reported success, there lacks a clear
understanding of their relative strength and weak-
ness. In this study, we provide a systematic com-
parison and analysis of three such kernels — sub-
sequence kernel (Bunescu and Mooney, 2005b), de-
pendency tree kernel (Culotta and Sorensen, 2004)
and dependency path kernel (Bunescu and Mooney,
2005a). We replicated these kernels and conducted
experiments on the standard ACE 2003 newswire
text evaluation set. We show that whereas some ker-
nels are less effective than others, they exhibit prop-
erties that are complementary to each other. In par-
ticular, We found that relation extraction can benefit
from increasing the feature space through convolu-
tion kernel and introducing bias towards more syn-
tactically meaningful feature space.

Drawn from our analysis, we further propose
a new convolution dependency path kernel which
combines the benefits of the subsequence kernel and
shortest path dependency kernel. Comparing to the
previous kernels, our new kernel gives consistent
and significantly better performance than all three
previous kernels that we look at.

2 Related Work

Statistical methods for relation extraction can be
roughly categorized into two categories: feature-
based and kernel-based.

Feature-based methods (Jiang and Zhai, 2007;
Kambhatla, 2004; Zhou et al., 2005) use pre-defined
feature sets to extract features to train classifica-
tion models. Zhou et al. (2005) manually crafted
a wide range of features drawn from sources such
as lexical, syntactic and semantic analyses. Com-
bined with SVM, they reported the best results at
the time on ACE corpus. Kambhatla (2004) took
a similar approach but used multivariate logistic re-
gression (Kambhatla, 2004). Jiang & Zhai (2007)
gave a systematic examination of the efficacy of un-
igram, bigram and trigram features drawn from dif-
ferent representations — surface text, constituency
parse tree and dependency parse tree.

One drawback of these feature-based methods is
that the feature space that can be explored is often
limited. On the other hand, kernel-based methods
offer efficient solutions that allow us to explore a
much larger (often exponential, or in some cases, in-
finite) feature space in polynomial time, without the
need to explicitly represent the features.

Lodhi et al. (2002) described a convolution string
kernel, which measures the similarity between two
strings by recursively computing matching of all
possible subsequences of the two strings. Bunescu
& Mooney (2005b) generalized the string kernel to
work with vectors of objects occurred in relation ex-
traction. In a later work also done by Bunescu &
Mooney (2005a), they proposed a kernel that com-
putes similarities between nodes on the shortest de-
pendency paths that connect the entities. Their ker-
nel assigns no-match to paths that are of different
length. And for paths that are of the same length, it
simply computes the product of the similarity score
of node pairs at each index. The dependency tree
kernel proposed by Zelenko et al. (2003) was also
inspired by the string kernel of Lodhi et al. (2002).
Their kernel walks down the parse trees from the
root and computes a similarity score for children
nodes at each depth level using the same subse-
quence algorithm as the string kernel. Culotta &
Sorensen (2004) worked on the same idea but ap-
plied it to dependency parse trees. Prior to these two
tree kernels, Collins & Duffy (2001) proposed a con-
volution tree kernel for natural language tasks. Their
kernel has since been applied to relation extraction
by Zhang et al. (2006a). The tree kernel consid-
ers matching of all subtrees that share the same
production rule at the root of the subtree. Zhang
et al. (2006a) showed results that are significantly
better than the previous two dependency tree ker-
nels. They obtained further improvements in their
later paper (2006b) by composing the tree kernel
with a simple entity kernel and raising the compos-
ite kernel to polynomial degree 2. Another study on
kernel composition is the work by Zhao & Grish-
man (2005).

It is worth noting that although there exist stan-
dard evaluation datasets such as ACE 2003 and
2004, many of the aforementioned work report re-
sults on non-standard datasets or splits, making it
difficult to directly compare the performance. We
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feel that there is a sense of increasing confusion
down this line of research. Although partly due to
the lack of compatibility in evaluation results, we
believe it is more due to the lack of understanding in
the relative strength and weakness of these kernels.
Therefore we focus on analyzing and understanding
the pros and cons of different kernels, through sys-
tematic comparison and experimentation.

3 Kernel Methods for Relation Extraction

In this Section we first give a very brief introduc-
tion to kernel methods. We then present the al-
gorithms behind three kernels that we are particu-
larly interested in: subsequence kernel (Bunescu and
Mooney, 2005b), dependency tree kernel (Culotta
and Sorensen, 2004) and shortest path dependency
kernel (Bunescu and Mooney, 2005a).

3.1 SVM and Kernels

Support-Vector Machines (Cortes and Vapnik, 1995;
Cristianini and Shawe-Taylor, 2000) learn to find
hyperplanes that separate the positive and negative
data points so that the margin between the support-
vector points and the hyperplane is maximized. The
dual formulation of the optimization problem in-
volves only computing the dot product of feature
vectors. This is equivalent to mapping the data
points into a high dimensional space. And the sepa-
rating plane learnt in the high dimensional space can
give non-linear decision boundaries. The dot prod-
uct of data points can be computed using a kernel
function K(X,Y ) = 〈φ(X), φ(Y )〉 for any map-
ping function. A valid kernel function satisfies cer-
tain properties: it is symmetric and theGram matrix
G formed byK(X,Y ) is positive semi-definite.

3.2 Subsequence Kernel

The subsequence kernel introduced in (Bunescu
and Mooney, 2005b) is a generalization of the
string kernel first introduced by Lodhi et al. (2002).
The feature space of the original string kernel
Σstringkernel is defined asΣstringkernel = Σchar,
whereΣchar is simply a set of characters. Bunescu
& Mooney (2005a) re-defined the feature space to
beΣx = Σ1×Σ2×· · ·×Σk, whereΣ1,Σ2, · · · ,Σk

can be some arbitray disjoint feature spaces, such as
the set of words, part-of-speech (POS) tags, etc. We
can measure the number of common features shared

by two feature vectorsx, y ∈ Σx using function
c(x, y). Let s, t be two sequences over the feature
setΣx, we use|s| to denote the length ofs. Thuss

can be written out ass1 · · · s|s|. We uses[i : j] to
denote a continuous subsequencesi · · · sj of s. Let
i = (i1, · · · , i|i|) be a sequence of|i| indices ins,
we define thelength of the index sequencei to be
l(i) = i|i| − i1 + 1. Similarly we have index se-
quencej in t of lengthl(j).

Let Σ∪ = Σ1 ∪ Σ2 ∪ · · · ∪ Σk be the set of all
possible features. A sequenceu ∈ Σ∗

∪ is a subse-
quence of feature vector sequences if there exists a
sequence of|u| indicesi, such thatuk ∈ sik

, ∀k ∈
{1, · · · , |u|}. Follow the notions in (Bunescu and
Mooney, 2005b; Cumby and Roth, 2003), we use
u ≺ s[i] as a shorthand for the above component-
wise ‘∈’ relationship. Now we can define the kernel
functionKn(s, t) to be the total number of weighted
common subsequence of lengthn between the two
sequenecess andt.

Kn(s, t) =
∑

u∈Σn
∪

∑

i:u≺s[i]

∑

j:u≺t[j]

λl(i)+l(j) (1)

whereλ is a decaying factor≤ 1, penalizing long,
sparse subsequence. We can re-write this kernel
function as

Kn(s, t) =
∑

i:|i|=n

∑

j:|j|=n

n
∏

k=1

c(sik
, tjk

)λl(i)+l(j) (2)

(Bunescu and Mooney, 2005b) showed that us-
ing the recursive dynamic programming algorithm
from (Cumby and Roth, 2003), the kernelKn(s, t)
can be computed inO(kn|s||t |) time.

3.3 From Subsequence to Tree Kernels

We will use an example to illustrate the relation be-
tween the dependency tree kernels proposed by (Cu-
lotta and Sorensen, 2004; Zelenko et al., 2003) and
the subsequence kernel we introduced above. Con-
sider two instances of the “Located-In” relations
“his actions inBrcko” and “his recent arrival inBei-
jing”. The dependency parse trees of these two sen-
tences are shown below.
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actions
NNS

NOUN

his
PRP

PERSON

in
IN

Brcko
NNP

NOUN

LOCATION

arrival
NN

NOUN

his
PRP

PERSON

recent
ADJ

in
IN

Beijing
NNP

NOUN

LOCATION

The entities in these two relations are the pro-
noun mentions of “his”, and two locations “Br-
cko” and ”Beijing”, all shown in italic. The de-
pendency tree kernel visits nodes in the two trees
starting from the root. And at each depth level, it
takes nodes that are at that level and form two se-
quences of nodes. For example, in the example in-
stances, nodes at one level below the root forms
vectors s=〈{his, PRP, PERSON},{in, IN}〉 and
t=〈{his,PRP,PERSON},{recent, ADJ},{in, IN}〉. It
then makes use of the subsequence kernel in the
previous section to compute the total number of
weighted subsequences between these two vectors.
The kernel returns the sum of subsequence match-
ing scores at each depth level as the final score.

3.4 Shortest Path Dependency Kernel

The shortest path dependency kernel proposed by
Bunescu & Mooney (2005a) also works with depen-
dency parse trees. Reuse our example in the previ-
ous section, the shortest dependency path between
entity his andBrcko in the first sentence iss=〈{his,
PRP, PERSON}, {actions, NNS, NOUN}, {in, IN},
{Brcko, NNP, NOUN, LOCATION}〉; and the path
betweenhis and Beijing in the second sentence is
t=〈{his, PRP, PERSON}, {arrival, NN, NOUN},
{in, IN}, {Beijing, NNP, NOUN, LOCATION}〉.
Since most dependency parser output connected
trees, finding the shortest path between two nodes
is trivial. Once the two paths are found, the kernel
simply computes the product of the number of com-
mon features between a pair of nodes at each index
along the path. If the two paths have different num-
ber of nodes, the kernel assigns 0 (no-match) to the
pair. Formally, the kernel is defined as:

K(s, t) =

{

0, if |s| 6= |t|
∏

n

i=1
c(si, ti), if |s| = |t|

(3)

5-fold CV on ACE 2003
kernel method Precision Recall F1
subsequence 0.703 0.389 0.546
dependency tree 0.681 0.290 0.485
shortest path 0.747 0.376 0.562

Table 1: Results of different kernels on ACE 2003
training set using 5-fold cross-validation.

4 Experiments and Analysis

We implemented the above three kernels and con-
ducted a set of experiments to compare these ker-
nels. By minimizing divergence in our experiment
setup and implementation for these kernels, we hope
to reveal intrinsic properties of different kernels.

4.1 Experiment setup

We conducted experiments using the ACE 2003
standard evaluation set. Training set of this collec-
tion contains 674 doc and 9683 relations. The test
set contains 97 doc and 1386 relations. 5 entity types
(Person, Organization, Location, Facilities and Geo-
political Entities) and 5 top-level relation types (At,
Near, Part-of, Role and Social) are manually anno-
tated in this collection. Since no development set is
given, we report results in this section only on the
training set, using 5-fold cross-validation, and de-
fer the comparison of results on the test set till Sec-
tion 6. Corpus preprocessing is done as the follow-
ing: sentence segmentation was performed using the
tool from CCG group at UIUC1; words are then to-
kenized and tagged with part-of-speech using MX-
POST (Ratnaparkhi, 1996) and dependency parsing
is performed using MSTParser (McDonald et al.,
2005a). We used the SVM-light (Joachims, 2002)
toolkit and augmented it with our custom kernels.
SVM parameters are chosen using cross-validation
(C=2.4), and the decaying factor in all kernels are
uniformally set to be 0.75. We report precision (P),
recall (R) and F-measure (F) on the training (5-fold
cross-validation) and test set.

4.2 Comparison of Kernels

In table 1 we listed results of the above three kernels
on the training set using 5-fold cross-validation. A

1http://l2r.cs.uiuc.edu/∼cogcomp/atool.
php?tkey=SS
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first glimpse of the results tells us that the shortest
path kernel performs the best in terms of F-measure,
while the dependency tree kernel did the worst. The
performance of subsequence kernel is not as good
as the dependency path kernel, but the difference is
small. In particular, the subsequence kernel gave the
best recall, whereas the dependency path kernel gave
the highest precision.

To understand why shortest path kernel performs
better than the subsequence kernel, let us review the
definition of these two kernels. The subsequence
kernel considers all subsequences of feature vector
sequences that are formed by all words occurred in-
between two entities in a sentence; while the shortest
path kernel only considers feature vector sequences
formed by words that are connected through a de-
pendency path. In general, the sequences consid-
ered in the dependency path kernel are more com-
pact than the sequences used in the subsequence ker-
nel. Actually, in most cases the dependency path se-
quence is indeedone particular subsequence of the
entire subsequence used in subsequence kernel. Ar-
guably, this particular subsequence is the one that
captures the most important syntactic information.
Although the feature spaces of the dependency path
kernels are not subsets of the subsequence kernel,
we can clearly see that we get higher precisions
by introducing bias towards the syntactically more
meaningful feature space.

However, the dependency path kernel is fairly
rigid and imposes many hard constraints such as re-
quiring the two paths to have exactly the same num-
ber of nodes. This restriction is counter-intuitive. To
illustrate this, let us reconsider the example given in
Section 3. In that example, it is obviously the case
that the two instances of relations have very similar
dependency path connecting the entities. However,
the second path is one node longer than the first path,
and therefore the dependency path kernel will de-
clare no match for them. The subsequence kernel, on
the other hand, considers subsequence matching and
therefore inherently incorporates a notion of fuzzy
matching. Furthermore, we have observed from the
training data that many short word sequences carry
strong relational information; hence only part of the
entire dependency path is truly meaningful in most
cases. It also helps to understand why subsequence
kernel has better recall than dependency path kernel.

ACE 2003 test set
kernel method Precision Recall F1
subsequence 0.673 0.499 0.586
dependency tree 0.621 0.362 0.492
shortest path 0.691 0.462 0.577
convolution dep. path 0.725 0.541 0.633
(Zhang et al., 2006b) 0.773 0.656 0.709

Table 2: Results on the ACE 2003 test set. We ref-
erence the best-reported score (in italic) on this test
set, given by (Zhang et al., 2006b)

The disappointing performance of the depen-
dency tree kernel can also be explained by our anal-
ysis. Although the dependency tree kernel performs
subsequence matching for nodes at each depth level,
it is unclear what the relative syntactic or semantic
relation is among sibling nodes in the dependency
tree. The sequence formed by sibling nodes is far
less intuitive from a linguistic point of view than the
sequence formed by nodes on a dependency path.

To summarize the above results, we found that de-
pendency path kernel benefits from a reduction in
feature space by using syntactic dependency infor-
mation. But the subsequence kernel has an edge in
recall by allowing fuzzy matching and expanding the
feature space into convolution space. We will show
in the following section that these two benefits are
complementary and can be combined to give better
performance.

5 Combining the Benefits – A New Kernel

It is a natural extension to combine the two bene-
fits that we have identified in the previous section.
The idea is simple: we want to allow subsequence
matching in order to gain more flexibility and there-
fore higher recall, but constrain the sequence from
which to deduce subsequences to be the dependency
path sequence. We call the combined kernel a “con-
volution dependency path kernel”.

6 Final Test Results

We obtained the final results on the test set of the
ACE 2003 collection, using the same experimental
setting as above. The results are listed in Table 2.
From the table we can see that the performances of
the previous three kernels hold up qualitatively on
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the test set as cross-validation on training set. There
is one exception that the shortest path kernel’s F-
measure score is no longer better than the subse-
quence kernel on the test set, but the difference is
small. And our new convolution dependency path
kernel beats all above three kernels in precision, re-
call and F-measure, suggesting that our analysis is
accurate and the benefits we outlined are truly com-
plementary.

Comparing to the best reported results on the
same test set from (Zhang et al., 2006b), our scores
are not as high, but the results are quite competitive,
given our minimum efforts on tuning kernel param-
eters and trying out kernel combinations.

7 Conclusion

We re-examined three existing kernel methods for
relation extraction. We conducted experiments on
the standard ACE 2003 evaluation set and showed
that whereas some kernels are less effective than
others, they exhibit properties that are complemen-
tary to each other. In particular, we found that rela-
tion extraction can benefit from increasing the fea-
ture space through convolution kernel and introduc-
ing bias towards more syntactically meaningful fea-
ture space. Drawn from our analysis, we proposed
a new convolution dependency path kernel which
combines the benefits of the subsequence kernel and
shortest path dependency kernel. Comparing with
previous kernels, our new kernel consistently and
significantly outperforms all three previous kernels,
suggesting that our analyses of the previously pro-
posed kernels are correct.
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