
Learning Decision Lists with Known Rules for Text Mining

Venkatesan Chakravarthy
IBM India Research Lab

vechakra@in.ibm.com

Sachindra Joshi
IBM India Research Lab

jsachind@in.ibm.com

Ganesh Ramakrishnan
IBM India Research Lab

ganramkr@in.ibm.com

Shantanu Godbole
IBM India Research Lab

shgodbol@in.ibm.com

Sreeram Balakrishnan
IBM Silicon Valley Lab
sreevb@us.ibm.com

Abstract
Many real-world systems for handling unstructured
text data are rule-based. Examples of such systems
are named entity annotators, information extraction
systems, and text classifiers. In each of these appli-
cations, ordering rules into a decision list is an im-
portant issue. In this paper, we assume that a set of
rules is given and study the problem (MaxDL) of or-
dering them into an optimal decision list with respect
to a given training set. We formalize this problem
and show that it is NP-Hard and cannot be approxi-
mated within any reasonable factors. We then propose
some heuristic algorithms and conduct exhaustive ex-
periments to evaluate their performance. In our ex-
periments we also observe performance improvement
over an existing decision list learning algorithm, by
merely re-ordering the rules output by it.

1 Introduction

Rule-based systems have been extensively used for
several problems in text mining. Some problems
in text mining where rule-based systems have been
successfully used are part of speech tagging (Brill,
1992), named entity annotation (Grishman, 1997;
Appelt et al., 1995), information extraction (May-
nard et al., 2001), question answering (Riloff and
Thelen, 2000) and classification (Han et al., 2003; Li
and Yamanishi, 1999; Sasaki and Kita, 1998). Sev-
eral studies have been conducted that compare the
performance of rule-based systems and other ma-
chine learning techniques with mixed results. While
there is no clear winner between the two approaches
in terms of performance, the rule-based approach
is clearly preferred in operational settings (Borth-
wick, 1999; Varadarajan et al., 2002). Rule-based
systems are human comprehensible and can be im-
proved over time. Therefore, it is imperative to de-
velop methods that assist in building rule-based sys-
tems.

A rule-based system consists of a set of rules.
These rules can either be manually designed or
could be learnt from a training set using rule-
induction techniques (J. and G, 1994; Cohen, 1995).
Each rule consists of an antecedent or pattern and
a consequent or predicted annotation. In this paper,
we will restrict our attention to a broad class of rules
in which the antecedent describes a series of condi-
tions on the input item and the consequent specifies
the label that applies to instances covered by the an-
tecedent. The conditions could also be expressed as
patterns in regular or more powerful grammars.

In general, rules could be ambiguous, i.e., multi-
ple rules could cover an instance. A common ap-
proach for resolving this ambiguity is to define an
ordering on the rules (Maynard et al., 2001; Borth-
wick, 1999). A decision list is one such mecha-
nism (Rivest, 1987). A set of rules that are intended
to be interpreted in a sequence is called a decision
list. In other words, a decision list is an ordering of
the given set of rules. Given an instance t, the rules
are applied in the specified order until a pattern of a
rule R covers t. The instance t is assigned the pre-
dicted annotation associated with R.

In this paper, we study the problem of arranging a
given set of rules into the “best” decision list. Learn-
ing decision lists using training data has been stud-
ied in the past (Rivest, 1987; J. and G, 1994; Cohen,
1995; Li and Yamanishi, 1999). These methods at-
tempt to simultaneously learn rules and their order-
ing. Typically they use separate and conquer (Wit-
ten and Frank, 2005) strategy and order generated
rules as they are discovered. The generation and or-
dering of rules are not considered as two separate

835

tasks. In contrast, we assume that the rules are given
to us and study the problem of arranging them into
an optimal decision list, where optimality is deter-
mined over a training data set. Our approach is mo-
tivated by the observation that in many operational
settings, it is easier and preferred to get a set of rules
designed by domain experts (Lewis et al., 2003). Al-
ternatively, the set of rules can be determined using
existing techniques for rule learning (J. and G, 1994;
Cohen, 1995; Califf and Mooney, 1998). The sepa-
ration of rule ordering from rule generation allows
us to analyze the problem of ordering in detail and
to develop effective methods for rule ordering. We
demonstrate the usefulness of the proposed methods
for ordering manually designed rules in the task of
named entity annotation and machine learnt rules in
the task of classification.

We determine the ordering of the given set of rules
based on a training set. A training set consists of a
set of pairs (ti, ai) where ti is an instance and ai

is its actual annotation. Given a set of rules and a
training data set, we define the problem as follows:
Arrange the rules into a decision list such that max-
imum number of instances are assigned the correct
annotation. We refer to this problem as the MAXDL
problem. We show that this problem is NP hard
and cannot approximated within a factor of n1−ε,
for any ε > 0. We then propose some heuristics
and present an experimental study of these heuris-
tics. Our experimental results show performance im-
provement over an existing decision list learning al-
gorithm, by merely reordering the rules output by
that algorithm. We also illustrate the performance
improvements obtained by applying our algorithms
for ordering named entity annotation rules and clas-
sification rules.

In the rest of the paper we formalize the MAXDL
problem (§2), show it is NP-hard and can’t be
approximated within reasonable factors (§3), and
propose heuristics in a greedy framework (§4).
We present experiments (§5) and conclude with
Section§6.

2 MAXDL Problem Definition and
Notations

The input consists of a set of instances T =
{t1, t2, . . . , tm}, a set of annotations A and a set of

rulesR = {R1, R2, . . . , Rn}. Each rule Ri = (p, a)
is a pair, where p is called the pattern and a ∈ A is
called the predicted annotation. The patten p will be
given as a set p ⊆ I; we say that the instances in
p are covered by R. The input also includes a map-
ping A : T 7→ A, that provides for each instance t
an annotation A(t), called the actual annotation of
t. The pair (T , A) is the training data.

Given the above input, a decision list L is an or-
dering (i.e. permutation) of the input rules. The list
L assigns an annotation to each instance t as defined
below. We consider each rule according to the order-
ing given by L until we find a rule Ri = (p, a) that
covers t and assign the annotation a to t. We denote
by L(t) the annotation assigned by L to t. Thus, L
defines a function L : I 7→ A. We say that the list
L correctly annotates an instance t, if the annota-
tion assigned by L matches the actual annotation of
t, i.e., L(t) = A(t).

Given the above input, the MAXDL problem is to
to construct a decision list L such that the number
of instances correctly annotated by L, is maximized
i.e., we want to maximize |{t|A(t) = L(t)}| .
Notations:
Let R = (p, a) be a rule and t be an instance covered
by R. We say that a rule R correctly covers t, if
a = A(t). Similarly, R said to incorrectly cover t, if
a 6= A(t).

Let L be a decision list. We say that an instance
t is happy under L, if L correctly annotates t, i.e.,
L(t) = A(t). Let Happy(L) denote the set of in-
stances that are happy under L. Notice that the
MAXDL problem asks for a decision list L such that
|Happy(L)| is maximized.

3 NP-Hardness and Inapproximability

In this section, we prove that the MAXDL problem
is NP-Hard and also show that the problem cannot
even be approximated with any constant factor.

Theorem 1 The MAXDL problem is NP-Hard.

Proof: We give a reduction from the maximum inde-
pendent set problem (MAXIS), a well-known NP-
Hard problem (Garey and Johnson, 1979). Recall
that an independent set in a graph refers to any sub-
set of vertices such that no two vertices from the set
share an edge. The MAXIS problem is to find the
largest independent set in a given undirected graph.

836

Let G = (V,E) be the input graph having vertex
set V = {v1, v2, . . . , vn}. We create an instance of
the MAXDL problem as follows. For each vertex
vi, we add an annotation ai to A, an instance ti to T
and a rule Ri to R. We declare ai to be the actual
annotation of ti. The predicted annotation of Ri is
set to ai. We define Ri to cover only the instance
ti and the instances corresponding to the neighbors
of vi. Meaning, Ri covers the instances in the set
{ti} ∪ {tj |(vi, vj) ∈ E}. This completes the reduc-
tion. We claim that given a decision list L having
k happy instances, we can construct an independent
set of size k and vice versa. The NP-Hardness of
MAXDL follows from the claim. We now proceed
to prove the claim.

Consider a decision list L. Notice that for any
instance ti, Ri is the only rule that correctly covers
ti. Take any two different instances ti and tj that are
happy under L. Without loss of generality, assume
that Ri appears before Rj in L. Now, if Ri covers
tj , tj would be unhappy under L. So, Ri does not
cover tj , which implies that vj is not a neighbor of
vi (i.e., (vi, vj) 6∈ E). Hence, the set I = {vi|ti ∈
Happy(L)} is an independent set of G. We note that
|I| = |Happy(L)|.

Conversely, consider an independent set I of G.
Let R(I) = {Ri|vi ∈ I}. Form a decision list L by
first arranging the rules from R(I) in any arbitrary
order followed by arranging the rest of rules in any
arbitray order. Notice that for any vertex vi ∈ I ,
Ri correctly covers ti and no other rule appearing
before Ri covers ti. Thus, ti is happy under L. It
follows that |Happy(L)| ≥ |I|. We have proved
that the MAXDL problem is NP-Hard. 2

In our NP-Hardness reduction, we had shown that
given a decision list L, we can construct an inde-
pendent set I such that |Happy(L)| = |I|, and
vice versa. This means that any approximation algo-
rithm for the MAXDL problem can be translated (by
combining it with our NP-Hardness reduction) into
an equally good approximation algorithm for the
MAXIS problem. Corollary 1 follows from (Zuck-
erman, 2006).

Corollary 1 If NP 6= P then for any ε > 0,
the MAXDL problem cannot approximated within
a factor of n1−ε. In particular, the problem is not
approximable within any constant factor.

4 Heuristic Algorithms for the MAXDL
Problem

As the MAXDL problem is hard to approximate, we
turn to heuristic approaches. All our heuristics fall
into a natural greedy framework, described below.

4.1 A Greedy Framework

Our greedy framework for finding a decision list is
as follows. In each iteration we greedily choose a
rule and output it. For this purpose, we use some
scoring function for assigning scores to the rules and
choose the rule having the maximum score. Then
the chosen rule is deleted. The process is contin-
ued until all the rules are output. The above proce-
dure gives us a decision list. We present this general
framework in the Figure 1. The only unspecified part
in the above framework is the scoring function. In-
tuitively, the scoring function tries to measure the
goodness of a rule.

Given rule set R = {R1, R2, . . . , Rn}, instance set T and the actual annotations
A(·)
while R 6= null do

(re)compute scores for each rule in R, based on the scoring function
select the rule R that has the maximum score
remove R from the set R
remove from T all the instances covered by R

end while

Figure 1: A Greedy Framework for MAXDL prob-
lem

For a rule R and an instance t, we define follow-
ing notations for further use:

InstR = {t|R covers t}
Inst

+
R

= {t|R correctly covers t}
Inst

−
R

= {t|R incorrectly covers t}

Rulest = {R|t is covered by R}
Rules

+
t = {R|t is correctly covered by R}

Rules
−
t = {R|t is incorrectly covered by R}

4.2 Simple Precision Scoring
We now present our first candidate scoring function,
which we call simple precision scoring. A natural
score for a rule R is its precision: the fraction of in-
stances covered correctly by R among the instances
covered by it.

ScoreSP(R) =
|Inst+

R
|

|InstR|
=

|Inst+
R
|

|Inst+
R
| + |Inst−

R
|

4.3 Weighted Precision Scoring
Under ScoreSP, the score of a rule R is determined
only by the number of instances covered correctly
(|Inst+

R|) and incorrectly (|Inst−R|). The nature of
instances are not taken into account. The variants of
ScoreSP proposed here assigns weights to instances,
based on which the scores are computed. We assign
weights to the instances based on how easy it is to

837

make them happy. For an instance t, define the hap-
piness quotient h(t) to be the fraction of rules that
correctly cover t among all the rules that cover t:

h(t) =
|Rules+t |
|Rulest|

.

The value h(t) is a measure of how easy it is to
make t happy; the larger the value of h(t), it is
easier to make t happy. For instance, if h(t) ≈ 1,
then |Rules+

t | ≈ |Rulest|, meaning that almost any
rule that covers t will annotate it correctly. Thus,
it is easy to make t happy. On the other extreme,
if h(t) ≈ 0, then only a small fraction of the rules
that cover t annotate it correctly. Thus it is harder to
make t happy.

When we schedule a rule R, the instances in
Inst+

R become happy and those in Inst−R become
unhappy. Our new scoring functions give credit to
R for each instance in Inst+

R and award a penalty
R for each instance in Inst−R. The credit and the
penalty depend on the happiness quotient of the in-
stance. Informally, we want to give more credit R
for making hard instances happy; similarly, we want
to penalize R for making easy instances unhappy. A
natural way of accomplishing the above is to award
a credit of (1 − h(t)) for each instance t ∈ Inst+

R

and a penalty of h(t) for each instance t ∈ Inst−R.
Below, we formally define the above quantities as
gain and loss associated with R. For each rule R,
define

Gain(R) =
X

t∈Inst
+
R

(1 − h(t))

Loss(R) =
X

t∈Inst
−
R

h(t)

Based on the above quantities, we define a natural
scoring function, called Weighted Precision:

ScoreWP(R) =
Gain(R)

Gain(R) + Loss(R)

4.4 Refined Weighted Precision Scoring
Our third scoring function is a refinement of the
weighted precision scoring. In ScoreWP, we com-
pute the happiness quotient of a token by taking in
account the number of rules that cover the token and
among those the ones that cover it correctly. The re-
finement is obtained by also considering the nature
of these rules. We define

hRP(t) =

P
R∈Rules

+
t

precision(R)

P
R∈Rulest

precision(R)
.

Gain, loss and the scoring function are defined sim-
ilar to that of ScoreWP:

GainRP(R) =
X

t∈Inst
+
R

(1 − hRP(t))

LossRP(R) =
X

t∈Inst
−
R

hRP(t)

ScoreRP(R) =
GainRP(R)

GainRP(R) + LossRP(R)

5 Experiments

In this section, we describe rule-ordering experi-
ments on two real-world tasks. 1) named-entity
(NE) annotation that relied on hand-crafted rules for
MUC-7 dataset. 2) The second application we con-
sider is rule-based multi-class text classification. We
order rules learnt on benchmark text classification
datasets and observe consistent improvements by
merely re-ordering rules learnt by other rule learn-
ers.

5.1 Named Entity Annotation
Rule-based named entity annotation is a natural in-
stance of a decision list problem. Typically, rule-
based NE annotation systems (Cunningham et al.,
2002) require rules to be manually written as well
as ordered manually. In this section, we show that
our proposed rule-ordering algorithms perform bet-
ter than the natural heuristic. Note that we do not
intend to build a rule-based decision list which per-
forms better than existing methods.
Setup: In our problem formulation of MAXDL ,
the set of instances T and mapping A from in-
stances to actual annotations, together form a train-
ing set. We have access to a set of documents
D = {d1, d2, . . . , dm}, that have all its named en-
tities annotated. To generate pairs (T , A) using the
set of documents D, let Tdi

represent the set of token
sequences that are annotated in a document di ∈ D.
Let A(t) be the actual annotation for an instance
t ∈ Tdi

. Given a set of rules R and a document
collection D, each rule R ∈ R is applied to each
document di ∈ D. The set of token sequences (in-
stances here) which R covers (InstR), is included
in the set of instances T . For all instances t ∈ Tdi

,
we add a mapping t → A(t) in A. For all other
instances t ∈ {InstR − Tdi

}, we have a mapping
t → null included in A. We perform these addi-
tions for each document and rule pair. Finally, we
add a rule R∗ = (∗, null) to the rule set R. The pat-
tern ∗ matches every instance t ∈

⋃
R∈R,R 6=R∗

InstR

838

and associates a null annotation with the instance.
We only consider “person name”, “organization”

and “place name” annotations. We use two different
rule sets containing about 30 rules each.

Table 1 presents accuracy achieved by our pro-
posed algorithms for the two chosen rule sets. In all
the cases our proposed methods perform better than
ScoreSP. The result also shows that our proposed
methods generalize better than simple ScoreSP.

Rule-sets Accuracy ScoreSP ScoreWP ScorePR
WP

Rule-set 1
Trng 76.4 76.7 78.9
Test 50.0 52.7 54.5

Rule-set 2
Training 70.1 71.6 73.3
Test 49.1 51.4 52.0

Table 1: Accuracies (in %) for different algorithms

Dataset Acc-
(avg. # rules) -uracy JRip ScoreSP ScoreWP ScorePR

WP

la2s (37)
Trng 86.16±0.39 86.02±0.16 86.68±0.16 87.04±0.17
Test 76.93±0.43 77.88±0.16 78.05±0.17 78.1±0.15

oh5 (28)
Trng 86.95±0.41 88.26±0.21 88.8±0.16 89.06±0.17
Test 76.43±0.58 79.08±0.37 79.37±0.38 79.24±0.35

tr45 (17)
Trng 91.88±0.38 92.61±0.18 92.84±0.23 93.3±0.21
Test 78.9±0.47 80.99±0.29 81.19±0.28 81.3±0.3

Table 2: Accuracies (in %) for RipRules

Data set Accu- Multi-class
-racy J48 NaiveBayes ScoreSP ScoreWP ScorePR

WP

la2s (18)
Trng 94.75±0.39 85.78±0.29 94.64±0.14 95.9±0.03 95.99±0.01
Test 73.43±0.64 73.68±0.37 78.0±0.21 78.46±0.23 78.64±0.29

oh5 (30)
Trng 95.08±0.21 99.56±0.09 96.27±0.14 98.43±0.09 98.45±0.09
Test 78.08±0.76 74.16±0.77 82.72±0.25 83.16±0.24 83.98±0.26

tr45 (30)
Trng 97.91±0.11 87.16±1.18 97.71±0.14 98.93±0.06 98.98±0.05
Test 85.25±1.02 69.91±1.33 84.06±0.44 86.1±0.39 86.42±0.41

Table 3: Accuracies (in %) for BinRules

5.2 Ordering classification rules
In this section, we show another application of our
algorithms in ordering classification rules. The
antecedent of a classification rule is a series of tests
on the input and the consequent gives the class label.
Since different rules can assign conflicting classes,
rule-ordering becomes important in choosing a
correct class. These rules come from a variety of
sources and could be hand-crafted or machine-
learnt. Machine learnt rules could be generated
using association mining (Agrawal and Srikant,
1994), inductive logic programming (Lavrac and
Dzeroski, 1994), or Ripper (Cohen, 1995). Even
classifiers can be seen as rules, e.g., linear discrim-
inants are rules that assign one of two classes to
exclusive partitions of input space. Due to domain

specificity and unavailability of hand-tuned rules
we illustrate rule-ordering on: (1) rules induced
by Ripper (Cohen, 1995) (RipRules), and (2) a
heterogeneous set of rules obtained from naive
Bayes and decision trees (BinRules).

Setup: We used benchmark text classification
datasets (Forman, 2003) available from the Weka
site1. These multi-class datasets represent 229
binary text classification problems, with positive
class size avg. 149, and class skews avg. 1 : 31.
These are subsets of various benchmark tasks like
Reuters, TREC, and Ohsumed (oh). We present
only a subset of the results (with only ScoreWP

and ScorePR
WP) here for lack of space. We report

experiments over 10 random 50 : 50 train-test splits.
The training split is used to learn rules and their
ordering. The orderings are evaluated on the test
split and average train and test accuracies reported.

Results:
The RipRules setting: We induce rules (from
the train split) using the JRip implementation in
Weka2 (Witten and Frank, 2005). We apply our vari-
ous algorithms to merely re-order the rules output by
JRip. In Table 2 we present results comparing JRip
output with their re-ordered versions obtained from
ScoreSP, ScoreWP and ScorePR

WP. Along with the
name of each data set, the average number of rules
induced from the training splits are also mentioned
in parentheses. The best accuracies are marked in
bold. We observe that the re-ordered rule-sets us-
ing ScoreWP and ScorePR

WP perform better than both
baselines ScoreSP and JRip with lower deviations.
The BinRules setting: For an n-class problem we
obtain classification rules by training a heteroge-
neous collection of one-vs-rest binary classifiers.
Each classifier is either a naive Bayes or a decision
tree classifier trained to discriminate one class from
the rest (2n classifiers). We treat each binary clas-
sifier as a classification rule that covers an instance
if the binary classifier assigns its associated class to
that instance. In addition, corresponding to every
class, we introduce a default classification rule that
assigns the associated class to any instance it en-

1http://www.cs.waikato.ac.nz/ml/weka/
index_datasets.html

2http://www.cs.waikato.ac.nz/ml/weka/

839

counters. This gives us 3n rules. We used the naive
Bayes and J48 implementations in Weka to obtain
binary rules, ordered using ScoreWP and ScorePR

WP,
and compared with ScoreSP baseline in Table 3.
We also show individual classifier accuracy, and the
best are marked bold. It is encouraging to note that
all our rule-ordering techniques always outperform
their multi-class counterparts on the test data set. We
outperform the baseline ScoreSP method on all data
sets with lower deviations.

6 Conclusions

In this paper, we formulated and studied the
MAXDL problem. We proved the hardness of the
problem. We then proposed some heuristic ap-
proaches and established the usefulness of our meth-
ods experimentally. We observed improved perfor-
mance in classification task by merely reordering the
rules obtained by an existing decision list learning
algorithm. In future work, we would like to ex-
plore how rule-ordering formulation can be applied
to ordering heterogeneous classifiers in the ensem-
ble learning setting.

References
Rakesh Agrawal and Ramakrishnan Srikant. 1994. Fast

algorithms for mining association rules. In VLDB,
pages 487–499.

D. Appelt, J. Hobbs, J. Bear, D. Israel, M. Kameyama,
D. Martin, K. Myers, and M. Tyson. 1995. Sri inter-
national fastus system: Muc-6 test results and analysis.
In MUC6 ’95: Proc. of the 6th conf. on Message un-
derstanding.

A. Borthwick. 1999. A Maximum Entropy Approach to
Named Entity Recognition. Ph.D. thesis, New York
University.

Eric Brill. 1992. A simple rule-based part-of-speech tag-
ger. In Proceedings of ANLP.

M. E. Califf and R. J. Mooney. 1998. Relational learning
of pattern-match rules for information extraction. In
Working Notes of AAAI Spring Symposium on Apply-
ing Machine Learning to Discourse Processing.

William W. Cohen. 1995. Fast effective rule induction.
In ICML, pages 115–123.

H. Cunningham, D. Maynard, K. Bontcheva, and
V. Tablan. 2002. GATE: A framework and graphi-
cal development environment for robust NLP tools and
applications. In Proceedings of ACL.

George Forman. 2003. An extensive empirical study
of feature selection metrics for text classification.
JMLR Special Issue on Variable and Feature Selection,
3:1289–1305.

M. R. Garey and D. S. Johnson. 1979. Computers and
Intractability. Freeman.

R. Grishman. 1997. Information extraction: Techniques
and challenges. In SCIE ’97: Intnl. summer School on
Information Extraction.

Hui Han, Eren Manavoglu, C. Lee Giles, and Hongyuan
Zha. 2003. Rule-based word clustering for text classi-
fication. In SIGIR, pages 445–446. ACM Press.

Furnkranz J. and Widmer G. 1994. Incremental re-
duced error pruning. In Machine Learning: Proc. of
the Eleventh International Conference.

Nada Lavrac and Saso Dzeroski. 1994. Inductive
Logic Programming:Techniques and Applications. El-
lis Horwood, New York.

David D. Lewis, Rayid Ghani, Dunja Mladenic, Isabelle
Moulinier, and Mark Wasson. 2003. Workshop on
operational text classification. In conjunction with
SIGKDD.

Hang Li and Kenji Yamanishi. 1999. Text classification
using ESC-based stochastic decision lists. In CIKM.

D. Maynard, V. Tablan, C. Ursu, H. Cunningham, and
Y. Wilks. 2001. Named entity recognition from di-
verse text types. In RANLP.

Ellen Riloff and Michael Thelen. 2000. A rule-based
question answering system for reading comprehension
tests. In ANLP/NAACL 2000 Workshop on Reading
comprehension tests as evaluation for computer-based
language understanding sytems.

Ronald L. Rivest. 1987. Learning decision lists. Ma-
chine Learning, 2(3):229–246.

Minoru Sasaki and Kenji Kita. 1998. Rule-based text
categorization using hierarchical categories. In Pro-
ceedings of SMC-98, IEEE International Conference
on Systems, Man, and Cybernetics, pages 2827–2830.

Sundar Varadarajan, Kas Kasravi, and Ronen Feldman.
2002. Text-mining: Application development chal-
lenges. In Proceedings of the Twenty-second SGAI In-
ternational Conference on Knowledge Based Systems
and Applied Artificial Intelligence.

Ian H. Witten and Eibe Frank. 2005. Data Mining: Prac-
tical Machine Learning Tools and Techniques. Mor-
gan Kaufmann.

D. Zuckerman. 2006. Linear degree extractors and the
inapproximability of max-clique and chromatic num-
ber. In STOC.

840

