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Abstract

We present experiments that analyze the
necessity of using a highly interconnected
word/sense graph for unsupervised all-
words word sense disambiguation. We show
that allowing only grammatically related
words to influence each other’s senses leads
to disambiguation results on a par with the
best graph-based systems, while greatly re-
ducing the computation load. We also com-
pare two methods for computing selectional
preferences between the senses of every two
grammatically related words: one using a
Lesk-based measure on WordNet, the other
using dependency relations from the British
National Corpus. The best configuration
uses the syntactically-constrained graph, se-
lectional preferences computed from the
corpus and a PageRank tie-breaking algo-
rithm. We especially note good performance
when disambiguating verbs with grammati-
cally constrained links.

1 Introduction
It has long been believed that being able to detect
the correct sense of a word in a given context – per-
forming word sense disambiguation (WSD) – will
lead to improved performance of systems tackling
high end applications such as machine translation
(Chan et al., 2007) and summarization(Elhadad et
al., 1997). In order for WSD methods to be useful,
they must be robust, portable, scalable, and there-
fore preferably not reliant on manually tagged data.
These desiderata have lead to an increased interest
in developing unsupervised WSD methods, flexible
relative to the word sense inventory, and which dis-
ambiguate all open-class words in a given context as
opposed to a selected few.

Particularly appropriate from this point of view
are graph-based methods (Navigli and Lapata,
2007), which map the open-class words in a given
context onto a highly interconnected graph. Each
node in this graph represents a word sense, and
weighted edges will connect every pair of senses
(corresponding to different words). The topology
of the graph and the weights of the edges can con-
tribute in a variety of ways to determine the best
sense combination for the words in the considered

context. This approach leads to large and highly
interconnected graphs, in which distant, unrelated
(in the context) words, are nonetheless connected,
and allowed to influence each other’s sense prefer-
ences. We study the impact on disambiguation per-
formance when connections are restricted to pairs of
word senses corresponding to words that are gram-
matically linked in the considered context.

The benefits of using grammatical information for
automatic WSD were first explored by Yarowsky
(1995) and Resnik (1996), in unsupervised ap-
proaches to disambiguating single words in context.

Sussna (1993) presents a first approach to disam-
biguating together words within a context. The fo-
cus is on nouns, and the sense combination that min-
imizes the overall distance in the WordNet nouns
network is chosen.

Stetina et al. (1998) present the first approach, su-
pervised, to disambiguating all words in a sentence
with sense association (or selectional) preferences
computed from a sense-tagged corpus. An untagged
grammatically linked word pair will have associated
a matrix of sense combination scores, based on the
analyzed sense-tagged corpus, and similarities be-
tween the current words and those in tagged pairs
with the same grammatical relation. Once such ma-
trices are computed for all grammatically related
word pairs, the sense preferences are propagated
from the bottom of the parse tree towards the top,
and the sense selection starts from the top and prop-
agates downward.

McCarthy and Carroll (2003) also use an unsuper-
vised approach and grammatical relations to learn
selectional preferences for word classes. In an ap-
proach inspired by the works of Li and Abe (1998)
and Clark and Weir (2002), McCarthy and Carroll
use grammatically connected words from a corpus
to induce a distribution of senses over subtrees in
the WordNet hierarchy. McCarthy et al. (2004) use
a corpus and word similarities to induce a ranking of
word senses from an untagged corpus to be used in
WSD.

We build upon this previous research, and pro-
pose an unsupervised WSD method in which senses
for two grammatically related words in the sentence
will be connected through directed edges. We ex-
periment with graph edge weights computed using
WordNet, and weights computed using grammati-
cal collocation information from a corpus. These
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weights are used to induce an initial scoring of the
graph vertices, starting from the leaves and propa-
gating upwards. The disambiguation process starts
with choosing a sense for the head of the sentence,
and moves towards the leaves, propagating down-
ward the chosen senses at each step, and using the
edge weights and vertex scores to guide the sense
selection process.

We investigate two issues: (i) whether using in
disambiguation only syntactically connected words
leads to results on a par with, or better than, using all
word-sense combinations, (ii) whether sense associ-
ation strength induced from a sense-unlabeled cor-
pus can rival relatedness measures induced from a
lexical resource - in our case, WordNet.

We evaluate this approach on the Senseval-
2(Palmer et al., 2001) and Senseval-3(Snyder and
Palmer, 2004) English all-words test data. On the
Senseval-2 data we obtain results on a par with the
best unsupervised WSD systems, on the Senseval-
3 data, the results are lower overall, but for verbs
higher than those obtained with other graph-based
methods. In both situations, using only grammat-
ically motivated edges leads to improved disam-
biguation of verbs compared to disambiguating in
a graph with unrestricted connections.

2 Disambiguation Algorithm
The disambiguation method described here uses
grammatical information from the sentential context
to constrain word pairs that are allowed to influence
each other’s sense choice. Edge weights in the graph
are relatedness scores computed based on WordNet
and, in a second set-up, selectional preferences esti-
mated from an (sense-)untagged corpus, for disam-
biguating together all words in the sentence. Gram-
matical information for the sentential context is ob-
tained using the dependency relation output of the
Stanford Parser (de Marneffe et al., 2006). Selec-
tional preferences are estimated using grammatical
collocation information from the British National
Corpus (BNC), obtained with the Word Sketch En-
gine (WSE) (Kilgarriff et al., 2004).

2.1 Extracting grammatical relation
information

We parse the Senseval test data using the Stanford
Parser(Klein and Manning, 2003) generating the
output in dependency relation format (de Marneffe
et al., 2006). Edges that do not connect open-class
words are filtered out, words are lemmatized, and we
reintroduce the copula (it is bypassed as a predicate)
because the verb be must be disambiguated as well.

To estimate selectional preferences from a sense-
untagged corpus, for each grammatically related pair
of words in a sentence we extract evidence consist-

Dependency relation WSE relation
nsubj(verb,noun) subject(verb,noun)

subject of(noun,verb)
dobj(verb,noun) object(verb,noun)

object of(noun,verb)
amod(noun,adj) a modifier(noun,adj)

modifies(adj,noun)
nn(noun1,noun2) n modifier(noun1,noun2)

modifies(noun2,noun1)
prep of(verb,noun) pp of(verb,noun)

pp-obj of(noun,verb)

Table 1: Mapping of grammatical relations from the Stanford
Parser onto the WSE relation set – a sample.

ing of pairs with the same grammatical relation and
either the same head or dependent, using the Word
Sketch Engine. To obtain such pairs we map the
grammatical relations used by the Stanford Parser
onto the set of grammatical relations used by the
WSE. Table 1 shows a sample of this mapping. We
denote by GR¡1 the inverse of grammatical relation
GR – for example subject of is the inverse of sub-
ject.

The result of this processing is illustrated in
Figure 1, for the following sentence from the
Senseval2 test data:

The art of change-ringing is peculiar to the English,
and, like most English peculiarities, unintelligible to the rest of
the world.

pp_like

pp−obj_likeadj_comp_of peculiarity

most

a_modifier

English

modifies
a_modifier

modifies
unintelligible

world

pp_of

pp_to pp−obj_to

pp−obj_of

rest

subject
subject_of

adj_comp

be

English

pp−obj_to
pp_to

adj_comp_of
adj_comp

peculiar

art

change−ringing

pp_of
pp−obj_of

Figure 1: Dependency graph with grammatical relations
mapped onto the WSE set

The dependency between two connected words
is represented by two asymmetric grammatical re-
lations.

2.2 Computing sense selectional preference
scores

The selectional preference scores can be computed
using the lexical resource that provides the inventory
of senses, or using a corpus.

Sense-selectional preferences based on depen-
dency relations in a corpus For each pair of
words in a grammatical relation (w1, w2, GR) from
a sentence, we compute a score for each sense si

w2
of w2, that shows the strength of the association
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between si
w2 and w1. The strength of the associ-

ation will come from collocation information from
the BNC, combined with sense similarity or related-
ness between si

w2
and collocates of w1 in grammat-

ical relation GR.
Let us take an example – (rest,world,pp of) from

the example sentence presented before. We want to
estimate the preferences of rest for senses of world.
world has the following senses in WordNet 1.71:
world%1:17:02::2, world%1:17:00::, world%1:17:01::,
world%1:14:02::, world%1:14:01::, world%1:14:00::,
world%1:09:01::, world%1:09:00:: .

From the BNC we obtain the following colloca-
tion information (the formatting of the list is
w1-POS GR wx-POS:co-occurrence frequency):

rest-n pp of life-n:639, world-n:518, Europe-n:211,
cast-n:44, season-n:90, day-n:253,
country-n:158, family-n:134, evening-
n:60, Kingdom-n:42, chapter-n:55,
team-n:96, week-n:93, society-n:89,
afternoon-n:34, population-n:56, ...

The list of grammatical collocates with rest in re-
lation pp of are: GC

pp¡of
rest = { life, world, Europe,

case, season, day, country, family, evening, King-
dom, chapter, team, week, society, afternoon, popu-
lation,... }

Based on relatedness scores between senses of
these collocates and senses of world we compute
selectional preference scores for each of world’s
senses:

world%1:17:02::→1 world%1:17:00::→2
world%1:17:01::→3 world%1:14:02::→2
world%1:14:01::→3 world%1:14:00::→4
world%1:09:01::→1 world%1:09:00::→1

The same procedure is applied to compute the
sense selectional preference scores of world for
each of rest’s senses, in the grammatical relation
pp-obj of (the inverse of pp of in WSE).

Formally, for the tuple (w1, w2, GR), we extract
from the BNC all pairs (w1, wx, GR)3. The set

GCGR
w1

= {wx|(w1, wx, GR) ∈ corpus}

gives w1’s grammatical collocations. To estimate
the sense association strength between w1 and
senses of w2, for each wx ∈ GCGR

w1
we compute

relatedness between the senses of wx and the senses

of w2. A
si
w2

w1|GR
, the association strength between w1

and sense si
w2

of word w2 under relation GR, is the

1WordNet 1.7 is the sense inventory for Senseval2, WordNet
1.7.1 is the sense inventory for Senseval 3.

2Unique sense identifier from the WN lexicographer files.
3Only wx collocates that have the same part of speech as w2

are considered.

sum of these relatedness scores:

A
si
w2

w1|GR
=

∑

wx∈GCGR
w1

∑

s
j
wx∈Swx

rel(si
w2

, sj
wx

)

where Swx is the set of senses for word wx.

If this value is 0, then A
si
w2

w1|GR
= 1

nw2
, where nw2

is the number of senses of w2.
rel(si

w2
, sj

wx
) can be computed as a similarity or

relatedness measure (Budanitsky and Hirst, 2006).
Because the sense inventory for the Senseval data
comes from WordNet and we work at the sense level,
we use relatedness measures based on WordNet, as
opposed to corpus-based ones. In the experiments
presented further in the paper, we have used a relat-
edness measure based on hypernym and hyponym
information, in the following manner:

rel(si
w2

, s
j
wx

) =















1 : si
w2

is a hypernym of sj
wx

1 : si
w2

is a hyponym of sj
wx

and path length(si
w2

, sj
wx

) ≤ 2
1 : si

w2
similar to/antonym of sj

wx

0 : otherwise

In other words, if the sense si
w2

of w2 is a hy-
pernym of the sense sj

wx
or a close hyponym (dis-

tance at most 2) or connected through a similar
to/antonym of relation, we consider the two senses
related and relatedness gets a score of 1. Otherwise,
we consider the two senses unrelated.

The motivation for using this relatedness mea-
sure is that it allows fast computations – essen-
tial when dealing with a large amount of informa-
tion from a corpus – and it clusters closely related
senses based on WordNet’s hypernym/hyponym re-
lations. By clustering together related senses, we
gather more evidence for the selectional preferences
of w2’s senses, which also helps partly with the data
sparseness problem.

Because at this point it is not determined to which
of wx’s senses the selectional preference is due, all
of wx’s senses will have the same selectional prefer-

ence to a sense j of wy: A
s
j
wy

si
wx

|GR
= A

s
j
wy

wx|GR
, for all

senses si
wx

of wx.

Sense-selectional preferences based on a lexical
resource When using the lexical resource, be-
cause we have pairs that connect words under differ-
ent parts of speech, we opt for a Lesk-based measure
(Banerjee and Pedersen, 2003). Relatedness scores
are computed for each pair of senses of the gram-
matically linked pair of words (w1, w2, GR), using
the WordNet-Similarity-1.03 package and the lesk
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option (Pedersen et al., 2004). To maintain the nota-

tion from above, we denote by A
si
wx

s
j
wy

the lesk relat-

edness score between sense i of wx and sense j of

wy. These scores are symmetric: A
si
wx

s
j
wy

= A
s
j
wy

si
wx

, and

independent of grammatical relations GR.

2.3 The sense-enhanced dependency tree
After computing the sense association strength
scores for w1 and w2 in grammatical relation GR
in the sentence, we expand the edge (wx, wy, GR)
from the dependency tree to the two sets of directed
edges:

{(si
wx

→ sj
wy

, GR)|i = 1, n; j = 1, m},
{(sj

wy
→ si

wx
, GR¡1)|i = 1, n; j = 1, m}.

The weight of an edge (si
wx

→ sj
wy

, GR) is

A
s
j
wy

si
wx

|GR
. Figure 2 shows one sense-enhanced edge.

%1:17:00::%1:17:02:: %1:14:02::

%1:10:00:: %1:06:00:: %1:24:00

world%...
rest | pp_ofA

A
rest%...
world | pp−obj_of

rest

world

pp_of

pp−obj_of

world

rest
...

2
2

1

2
1

1
1

4 1 4

1 2

1
1 4

1

2 2

...

Figure 2: A sense enhanced edge, with weights induced from
corpus collocations.

2.4 Word sense disambiguation
We first compute a score for each vertex (word
sense) using the estimated sense preferences,
traversing the dependency graph from the bottom
up4. Each leaf is given a score of 1

nw
, where nw

is the number of senses of the word w to which the
leaf pertains. The score of the other vertices are the
weighted sum of the scores of their grammatical de-
pendents in the sentence under analysis:

Score(si
wx

) =
∑

(wx,wy ,GR)

∑

s
j
wy

∈Swy

A
s

j
wy

si
wx

|GR
× Score(sj

wy
)

The word sense disambiguation process starts from
the root node of the dependency tree. The highest
ranked score for the root is chosen, and the nodes
corresponding to the other senses and their edges are
deleted from the graph. For each of its dependents

4The up-down orientation of the graph is given by the de-
pendency tree from which it was expanded.

we add the sense preferences imposed by the cho-
sen sense to the vertex’s score, and proceed with the
sense selection in the same way down through the
graph.

Score(sj
wy

) = Score(sj
wy

) + A
s

j
wy

si
wx

|GR−1

where (wx, wy, GR) ((wy, wx, GR¡1)) is in the
current sentence.

Because of data sparseness, there may be not
enough evidence in the corpus to produce a clear
winner, and several senses are tied. All senses are
then kept, and disambiguation proceeds further. If
more than one word has multiple senses left after
the top-down traversal of the tree, we use two meth-
ods: random choosing from the tied senses or the
sequence labeling method described in (Mihalcea,
2005). The graph’s vertices are the senses that re-
main to be disambiguated, and its edges connect ev-
ery pair of these senses (provided that they corre-
spond to different words). The score of each vertex
is initially set to 1, and the edge weights are Lesk
similarity scores. The vertices are scored using a
Page Rank algorithm, in which the rank at every it-
eration step is computed with the formula:

WP (a) = (1 − d) + d
∑

b∈In(a)

wba
∑

c∈Out(b)
wbc

WP (b)

where:
a, b, c are vertices in the graph;
WP (a) is the weighted PageRank score of node a;
d is the probability that there will be a jump from a given vertex
to another in the graph. We use d = 0.85, the value set by
(Brin and Page, 1998) for Google’s PageRank model.
In(a) is the set of a’s predecessors;
Out(a) is the set of a’s successors.

When the vertex scores converge5, the highest
ranking vertex for each word will give the sense pre-
diction for that word.

For multi-term expressions that are split during
parsing (such as come back), for which there is no
prediction since they do not appear as such in the
parse tree, the system randomly picks one of the
WordNet senses.

3 Experiments and Results
The WSD algorithm proposed is evaluated on the
Senseval-2 and Senseval-3 English-all-words task
test data. Table 2 shows the results obtained for fine-
grained scoring. Because for each target there is a
prediction, precision and recall have the same value.

5An aperiodic, irreducible graph is guaranteed to converge
(Grimmett and Stirzaker, 1989). For every graph we built that
has more than 3 nodes, the aperiodicity condition is met – it has
cycles of length 2 and 3, therefore the greatest common divisor
of its cycle lengths is 1. The graph is also irreducible – it has no
leaves because it is highly interconnected.
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POS Rand. Seq. GRWN GRPR
WN GRBNC GRPR

BNC

Senseval 2
noun 41.1% 63.0% 58.9% 62.4% 54.2% 63.3%
verb 22.0% 31.6% 31.0% 33.0% 30.9% 32.7%
adjective 38.9% 56.8% 52.9% 56.8% 40.4% 56.8%
adverb 53.2% 57.5% 53.2% 58.8% 53.2% 59.1%
all 36.7% 52.1% 49.0% 52.4% 44.6% 52.7%
Senseval 3
noun 42.5% 58.2% 53.2% 55.4% 40.3% 58.6%
verb 19.4% 40.4% 40.3% 42.3% 19.9% 40.0%
adjective 45.0% 56.7% 53.4% 54.5% 46.0% 57.5%
adverb 92.9% 92.9% 92.9% 92.9% 92.9% 92.9%
all 34.4% 50.8% 48.2% 50.1% 33.8% 51.2%

Table 2: Precision ( = Recall) disambiguation results for Sen-
seval English-all-words test data

Column Random (Rand.) shows a simple ran-
dom baseline, and column Sequence (Seq.) shows
the sequence data labelling method (Mihalcea,
2005) – one of the best performing graph-methods
(Navigli and Lapata, 2007). The results presented
were obtained using word similarities computed
with the WordNet-Similarity-1.03 package, on a
sense graph built using the marked targets in the
test set. These results are not the same as those re-
ported in (Mihalcea, 2005) for the Senseval 2 data
(nouns 57.5%, verbs: 36.5%, adjective: 56.7%, ad-
verb: 70.9%, for an average precision of 54.2%), be-
cause of the difference in computing word similari-
ties. The other 4 columns show results obtained us-
ing grammatical relation information between words
as identified by the parser. GRWN includes the re-
sults obtained using the Lesk-based similarity with
the syntactically-based graph and breaking ties ran-
domly, GRPR

WN presents results obtained in a simi-
lar configuration – only the tie breaking is done us-
ing PageRank. GRBNC and GRPR

BNC are similar
with the previous two columns, only in this case the
edge weights are the selectional preference scores
induced from the BNC.

The performance of GRWN is close to that of
Seq. When ties are broken randomly, the compu-
tation is much faster, since we do two traversals of
a small graph, while PageRank iterates until conver-
gence (approx. 15 iterations) on graphs of average
size of 1500 edges and 52 vertices (on Senseval 2
data). When PageRank is used to solve ties the per-
formance on GRPR

WN surpasses that of Seq while
still being faster, having to iterate over graphs with
an average of 1074 edges and 40 vertices. The com-
putation load is not only lighter during disambigua-
tion, but also in the data preparation stage, when
similarities must be computed between every sense
pair corresponding to every pair of words within a
sentence (or a window of a given size).

There are other important differences. While the
syntactic structure of the sentence plays no role in

the Sequence method, it is crucial for the other
methods. In the Senseval data not all words in a
sentence were tagged as targets, and the Sequence
method works only on them. This is not the case for
the GR methods, which work with the full syntactic
tree – and will disambiguate more words at a time.
Also, the targets tagged in the data contain “satel-
lites” information (e.g. turn out, set up), which may
change the part of speech of the main target (e.g.
at the same time (adv) for target time (noun), out
of print (adj) for target print (noun)). Multi-word
expressions are themselves the subject of ample re-
search, and we could not incorporate them into our
corpus-based approach. Verb particles in particular
pose a problem, as most parsers will interpret the
particle as a preposition or adverb. This was the case
for the Senseval data, as well. On the other hand,
this is a more realistic set-up, with no reliance on
previously marked targets.

Selectional preferences induced from a corpus
without sense annotations perform well for verbs,
but overall do not perform very well by themselves.
The reasons for this are multiple. The most impor-
tant is data sparseness. Many sense selection prefer-
ences are 0. In order to improve this approach, we
will look into more flexible methods for computing
dependency pair similarities (without fixing one of
the vertices as we did in this paper). Previous re-
search in inducing sense rankings from an untagged
corpus (McCarthy et al., 2004), and inducing selec-
tional preferences at the word level (for other appli-
cations) (Erk, 2007) will provide the starting point
for research in this direction.

4 Comparison with Related Work

The most similar approach to the one we describe,
that has been tested on Senseval-2, is the one de-
scribed in (McCarthy and Carroll, 2003). The best
results reported are 51.1% precision and 23.2% re-
call. This implementation also used grammatical in-
formation and selectional preferences induced from
a corpus to determine a disjoint partition – deter-
mined by a cut in the WordNet is-a tree – over which
it computes a probability distribution conditioned
by the grammatical context and a verb or adjective
class.

McCarthy et al. (2004) report a disambiguation
precision of 53.0% and recall of 49.0% on the
Senseval-2 test data, using an approach that derives
sense ranking based on word similarity and distribu-
tional analysis in a corpus.

Mihalcea (2005) reports the highest results on the
Senseval-2 data obtained with a graph-based algo-
rithm – 54.2% precision and recall. The results ob-
tained with a PageRank algorithm applied to a sense
graph built from a words within a context of a given
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size are also the highest for a completely unsuper-
vised WSD6 system in Senseval-2.

The best result obtained by an unsupervised sys-
tem on the Senseval-3 data is reported by Strappa-
rava et al. (2004) – 58.3%. This implementation
uses WordNet-Domains, a version of WordNet en-
hanced with domain information (e.g. economy, ge-
ography). The domain of a given text is automat-
ically detected, and this information will constrain
the possible senses of words in the given text.

For Senseval 3 data, using a graph method with
the Key Player Problem to measure vertex relevance,
Navigli and Lapata (2007) report very close results
to (Strapparava et al., 2004) on nouns and adjectives,
and lower scores for verbs (F1-scores: 61.9% for
nouns, 62.8% for adjectives, 36.1% for verbs com-
pared with 62.2% for nouns, 66.9% for adjectives,
50.4% for verbs). Mihalcea (2005) reports an over-
all score of 52.2% for this data.

It is interesting to look at the dependency tree
we used for WSD from the point of view of graph
connectivity measures (Navigli and Lapata, 2007).
To determine the importance of a node in a graph,
whether it represents the words and their senses in a
given context, or people in a social network, one can
use different measures. According to grammatical
theories, the importance of a node in the sentence
parse tree is given by the phrase type it heads, and
the number of words it thus dominates. From this
point of view, the top-down propagation of senses
traverses and disambiguates the tree in order of the
decreasing importance of nodes. Other methods
could be used as well, such as disambiguating first
the most highly connected nodes – the ones with the
most sense constraints.

5 Conclusions

We have studied the impact of grammatical in-
formation for constraining and guiding the word
sense disambiguation process in an unsupervised
all-words setup. Compared with graph methods, the
approach we described is computationally lighter,
while performing at the same level on Senseval-2
and Senseval-3 all-words tasks test data. Grammat-
ical constraints serve both to limit the number of
word-senses pair similarities necessary, and also to
estimate selectional preferences from an untagged
corpus.

Using only grammatically motivated connections
leads to better disambiguation of verbs for both
Senseval-2 and Senseval-3 test data, but while the
difference is consistent (1.4%, 1.9%) it is not statis-
tically significant.

6As opposed to other unsupervised approaches, the sense
frequency information from WordNet was not used.

We explored a new method for estimating sense
association strength from a sense-untagged corpus.
Disambiguation when using sense relatedness com-
puted from WordNet is very close in performance
with disambiguation based on sense association
strength computed from the British National Corpus,
and on a par with state-of-the-art unsupervised sys-
tems on Senseval-2. This indicates that grammati-
cal relations and automatically derived sense associ-
ation preference scores from a corpus have high po-
tential for unsupervised all-word sense disambigua-
tion.
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