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Abstract 

This paper presents a Prefix Tree (Trie) 
based model for Generation of Referring 
Expression (GRE). The existing algorithms 
in GRE lie in two extremities. Incremental 
algorithm is simple and speedy but less ex-
pressive in nature whereas others are com-
plex and exhaustive but more expressive in 
nature. Our prefix tree based model not 
only incorporates all relevant features of 
GRE (like describing set, generating Boo-
lean and context sensitive description etc.) 
but also try to attain simplicity and speed 
properties of Incremental algorithm. Thus 
this model provides a simple and linguisti-
cally rich approach to GRE. 

1 Introduction 

Generation of referring expression (GRE) is an 
important task in the field of Natural Language 
Generation (NLG) systems (Reiter and Dale, 
1995). The task of any GRE algorithm is to find a 
combination of properties that allow the audience 
to identify an object (target object) from a set of 
objects (domain or environment). The properties 
should satisfy the target object and dissatisfy all 
other objects in the domain. We sometimes call it 
distinguishing description because it helps us to 
distinguish the target from potential distractors, 
called contrast set. When we generate any natural 
language text in a particular domain, it has been 
observed that the text is centered on certain objects 
for that domain. When we give introductory de-
scription of any object, we generally give full 
length description (e.g. “The large black hairy 
dog”). But the later references to that object tend to 
be shorter and only support referential communica-
tion goal of distinguishing the target from other 
objects. For example the expression “The black 
dog” suffices if the other dogs in the environment 

are all non black. Grice, an eminent philosopher of 
language, has stressed on brevity of referential 
communication to avoid conversational implica-
ture. Dale (1992) developed Full Brevity algorithm 
based on this observation. It always generates 
shortest possible referring description to identify 
an object. But Reiter and Dale (1995) later proved 
that Full Brevity requirement is an NP-Hard task, 
thus computationally intractable and offered an 
alternative polynomial time Incremental Algo-
rithm. This algorithm adds properties in a prede-
termined order, based on the observation that hu-
man speakers and audiences prefer certain kinds of 
properties when describing an object in a domain 
(Krahmer et al. 2003). The Incremental Algorithm 
is accepted as state of the art algorithm in NLG 
domain. Later many refinements (like Boolean de-
scription and set representation (Deemter 2002), 
context sensitivity (Krahmer et al 2002) etc) have 
been incorporated into this algorithm. Several ap-
proaches have also been made to propose an alter-
native algorithmic framework to this problem like 
graph-based (Krahmer et al. 2003), conceptual 
graph based (Croitoru and Deemter 2007) etc that 
also handle the above refinements. In this paper we 
propose a new Prefix Tree (Trie) based framework 
for modeling GRE problems. Trie is an ordered 
tree data structure which allows the organization of 
prefixes in such a way that the branching at each 
level is guided by the parts of prefixes. There are 
several advantages of this approach: 1) Trie data 
structure has already been extensively used in 
many domains where search is the key operation. 
2) The structure is scalable and various optimized 
algorithms are there for time, space optimizations.  

  In this paper it is shown how scenes can be 
represented using a Trie (section 2) and how de-
scription generation can be formalized as a search 
problem (section 3). In section 4 the algorithm is 
explained using an example scene. In section 5, the 
basic algorithm is extended to take care of different 
scenarios. The algorithm is analyzed for time com-
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plexity in section 6 and conclusion is drawn in sec-
tion 7. 

2 Modeling GRE Using Trie Structure 

In this section, it is shown how a scene can be rep-
resented using a trie data structure. The scheme is 
based on Incremental algorithm (Reiter and Dale 
1995) and incorporates the attractive properties 
(e.g. speed, simplicity etc) of that algorithm. Later 
it is extended to take care of different refinements 
(like relational, boolean description etc) that could 
not be handled by Incremental algorithm. Reiter 
and Dale (1995) pointed out the notion of 
‘PreferredAttributes ’ (e.g. Type, Size, Color etc) 
which is a sequence of attributes of an object that 
human speakers generally use to identify that ob-
ject from the contrast set. We assume that the ini-
tial description of an entity is following this se-
quence (e.g. “The large black dog”) then the later 
references will be some subset of initial description 
(like “The dog” or “The large dog”) which is de-
fined as the prefix of the initial description. So, we 
have to search for a prefix of the initial full length 
description so that it is adequate to distinguish the 
target object. Following the Incremental version 
we will add properties one by one from the 
‘PreferredAttributes’  list. In our model, the root 
consists of all entities in the domain and has empty 
description. Then at each level, branching is made 
based on different values of corresponding pre-
ferred attribute. The outgoing edge is labeled with 
that value. For example, at the first level, branch-
ing is made based on different values of ‘Type’ 
attribute like ‘Dog’, ‘Cat’, ‘Poodle’ etc. A node in 
Trie will contain only those objects which have the 
property(s) expressed by the edges, constituting the 
path from root to that node. After construction of 
the Trie structure for a given domain in this way, 
referring expression generation problem for an ob-
ject r  is reduced to search the tree for a node which 
consists of r  and no other object. Description for r  
can be found from the search path itself as we have 
said earlier. Now we will introduce some notations 
that we will use to describe the actual algorithm. 
Let D be the Domain, r  be the target object and P 
be the ‘PreferredAttributes’  List. � Ni �  = {d | 
d∈D and d is stored at node Ni} where Ni is an i-th 
level node. Obviously � No�  = D since No is root 
node. E(Ni, N

k
i+1) is an edge between parent node 

Ni and Nk
i+1, k-th child of that node (considering an 

enumeration among children nodes). Since every 
edges in Trie are labeled, thus {E}⊆ {N} x L x 
{N}, where {E} and {N} are set of all edges and 
nodes respectively in the tree and L is the set of 
attribute values. Let Val(E(Ni, Nk

i+1)) denotes the 
label or value of the edge and � Val(E(Ni, N

k
i+1)) �   

= {d | d∈D and d is satisfied by the edge value} 
i.e. the set contains those objects who have this 
property. We define � Nk

i+1 � = � Ni �  
∩ � Val(E(Ni, N

k
i+1)) �where Ni and Nk

i+1 are par-
ent and child node respectively. Similarly � Nk

i �  = 
� Ni-1 �  ∩ �  Val(E(Ni-1, Nk

i)) � . Ultimately, we 
can say that ∀ i � Ni �  = � No�∩ � Val(E(No,N1)) 
� ∩ …… ∩ � Val(E(Ni-1,Ni)) � . Since our con-
struction is basically a tree, each node is reachable 
from root and there exists a unique path from root 
to that node. So, for each node in the tree we will 
get some description. We will formulate referring 
expression construction as search in the con-
structed tree for the node min(k){Nk} such that � Nk �  
= {r }. If N k is leaf node then description of r will 
be same with the full description but if it is an in-
termediate node then description is some proper 
prefix of initial description. But the point is that, in 
both cases the later reference is prefix of initial one 
(as both “ab” and “abc” are prefixes of “abc”).  

3 Basic Algorithm  

Based on above discussions, algorithms are devel-
oped for construction of Trie from the domain and 
generation of reference description for any object 
in that domain. The Trie construction algorithm 
ConstructTrie(D,P,T) is shown in figure 1, Refer-
ring expression generation algorithm MakeRe-
fExpr(r,p,T,L) is shown in figure 2, where T is a 
node pointer and p is pointer to parent of that node. 
Our algorithm MakeRefExpr returns set of attrib-
ute-values L to identify r  in the domain. As dis-
cussed earlier, it is basically a node searching algo-
rithm. In course of searching, if it is found that an 
intermediate node N doesn’t have r  i.e. r ∉  � N �  
then our search will not move forward through the 
subtree rooted at N. Our search will proceed 
through next level iff r ∈ � N � . For a node Nk, if 
we get � Nk �  = {r}  then we have succeeded and 
our algorithm will return L , set of descriptions for 
that node. If there is no distinguishing description 
exists for r , then ∅ (null) will be returned.  We 
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would like to point out that our algorithm will find 
out only one description that exists at the minimum 
level of the tree. Moreover, a description is added 
to L  only if it is distinguishing i.e. the connecting 
edge must remove some contrasting object(s). 
Thus, the child node should contain less number of 
objects than that of parent node. In this case, cardi-
nality of parent Ni (Card(Ni)) will be greater than 
that of child (Card(Ni+1)). This condition is in-
cluded in our algorithm and if (Card (P→N)) > 
Card (T→N) holds then only the value is added 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
P->N and T->N respectively represents parent and 
child node. After finding a distinguishing descrip-
tion for r, search will neither move further down 

the tree nor explore the remaining branches of the 
current node. Search will explore the next branch 
only if the search in current branch returned NULL 
description i.e. when L′ =∅  in the algorithm. If 
we reach a leaf node and that contains r  along with 
other objects then it is not possible to distinguish 
r ’. In that case, the algorithm returns NULL indi-
cating that no description exists at all. It has been 
later shown that some distinguishing description 
may still exist and the algorithm will be modified 
to find that. It should be mentioned that once the 
prefix tree is constructed offline, it can be used 
repetitively to find description for any object in the 
domain throughout the text generation phase. Our 
MakeRefExpr() algorithm is very simple and it 
doesn’t employ any set theoretic operation, which 
is a non trivial task, to find current contrast set at 
every steps of algorithm. In existing algorithms, 
computing referential description for every object 
require computing similar things (like finding cur-
rent contrast set, ruled out objects) again and again. 
And it has to be repeated every time the object is 
referred. It is not possible to generate description 
once, store it and use it later because of the fact 
that domain may also change in course of time 
(Krahmer, 2002). That’s why every time we want 
to refer to ‘r’, such rigorous set operations need to 
be computed. But in our prefix tree structure, once 
the tree is constructed, it is very easy to find de-
scription for that object using simple tree search 
function. It is also very easy to add/delete objects 
to/from domain. We have to follow just the initial 
properties of that object to find the proper branch-
ing at each level, followed by addition /deletion of 
that object to /from relevant nodes, which is essen-
tially a search operation. The disadvantage of our 
algorithm is that space complexity is high but it 
can be tackled using bit Vector representation of 
individual nodes of the prefix tree. Besides, several 
methods are there for compressing Trie structure. 
But these optimization techniques are beyond the 
scope of our current discussion. 

4 Formalizing A Scene using Prefix Tree  

Consider an example scene in figure 3, from 
[Krahmer 2002]. In this scene, there is a finite do-
main of entities D. Let D = {d1, d2, d3, d4}, P = 
{Type, Size, Color} and values are Type = {dog, 
cat}; Size = {small, large}; Color = {black, white}. 
A scene is usually represented as a database (or 

ConstructTrie(D, P, T) { 
  If (D = ∅  ∨  P =∅ )  
  Then Stop 
  Else 
     Create a node N at T 
     Set � N �  = D 
     Extract front attribute A i from list P 
     P′′′′  =   P −−−− { A i } 
     For each value Vj  of  attribute  A i  do 
          Create Edge Ej with label Vj as T→→→→Nextj 

            Dj
′′′′  = D ∩∩∩∩   � Val(E j) �    

          ConstructTrie(Dj
′′′′  , P′′′′, T→→→→Nextj) 

        End For 
   End If 
} 
 

 
  
Figure 2. Expression Generation Algorithm 

Figure 1. Prefix Tree Generation Algorithm 

MakeRefExpr(r, P, T, L) { 
    If ( r ∉ � T→→→→N�  ) 

            Then  L ←←←← ∅  
             Return L 
     Else If ({r} = � T→→→→N � ) 
            L = L ∪∪∪∪ Val(P→→→→Ej )     
            Return L 
    Else If (isLeaf (T) ∧ {r } ⊂ � N � ) 

             Then L ←←←← ∅  
             Return L 
    Else { 
         If (Card(P→→→→N) > Card (T→→→→N))  
             Then L = L ∪∪∪∪ Val(P→→→→Ej ) 
         P = T 
         For each outgoing edge T→→→→ Nextj (Ej)  do 
            L′′′′ = MakeRefExpr(r, P,T→→→→ Child j, L) 
                If (L′′′′ ≠≠≠≠ ∅ ) 
                Then Return L′′′′ 
        } } 
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knowledge base) listing the properties of each ele-
ment in D. Thus: 
d1 : 〈 Type : dog 〉 , 〈 Size : small 〉 , 〈 Color: white 〉 
d2 : 〈 Type : dog 〉 , 〈 Size : large 〉 , 〈 Color: white 〉 
d3 : 〈 Type : dog 〉 , 〈 Size : large 〉 , 〈 Color: black 〉 
d4:  〈 Type : cat 〉 ,  〈 Size: small 〉 ,  〈 Color: white 〉 
Now it will be shown how our MakeRefExpr() 
algorithm will find a description for a target object 
r . Let r  = {d1}. In the first phase, starting from 
root, edge labeled D is traversed. Since d1 exists in 
the node and D discards some objects (d4), D is 
distinguishing description and it is added to L. In 
the next phase the node connected by the edge la-
beled L does not contain d1 so search will not pro-
ceed further. Rather the node connected by the 
edge labeled S contains d1. Since, d1 is the only 
object, then we are done and the referring expres-
sion is “The small dog”. But for d2, we have to 
search upto the leaf node which generates the de-
scription “The large white dog”. 
 

 
  
            Figure 3.  Scene Representation  

5 Extension of Basic Algorithm  

5.1 Specifying Overlapping Values  

Deemter (2002) has shown incompleteness of In-
cremental algorithm in case of overlapping values. 
Due to vagueness of properties, sometimes it is 
hard to classify an object in a particular class. Con-
sider the example scene D = {a,b,c,d} Color: 
{Red(a,b); Orange(a,c,d)} Size: {Large(a,b); 
Small(c,d)}. In this case a can not be properly clas-
sified by Color type. Incremental algorithm always 
select Red(a,b) at first phase, since it rules out 
maximum distractors and returns failure because it 

can’t distinguish a from b at second phase. Deem-
ter(2002) suggested inclusion of all overlapping 
values that are true of target while also removing 
some distractors. So, referring expression for a is 
“The red orange desk”. But it fails to obey Gricean 
maxims of conversational implicature. We con-
sider the failure as ‘Early Decision’ problem and 
defer the decision making in our model. We keep 
in our mind the fact that human beings seldom take 
instantaneous decision. Rather they consider all 
opportunities in parallel and take decision in the 
favor of the best one at later point of time. Since, 
our algorithm searches in parallel through all 
promising branches until some description is 
found; it mimics the capabilities of human mind to 
consider in parallel. Our algorithm will generate 
“The large orange desk” which will help audiences 
to better identify the desk. The execution sequence 
is shown in figure 4.  
 

       
 
         Figure 4.  Dealing with overlapping values 

 

5.2 Describing Set of Objects 

Generation of referring description for a set of ob-
jects is very important in NLG. Deemter’s (2002) 
suggestion can be easily incorporated into our 
framework. We will represent target r  as set of ob-
jects. Now our algorithm will try to find a node in 
the tree which only consists of all objects in the set 
r . In this way, we can find a distinguishing de-
scription for any set, for which description exists. 
In figure 3, the description for the set {d2,d3} is 
“The large dogs”. Thus, our basic algorithm is able 
to describe set of objects. In case of set like {d2, d3, 
d4} where there is no separate node consisting all 
the object, we need to partition the set and find 
description for individual set. In our case the pos-
sible partitions are {d2, d3} and {d4} for which 
separate nodes exist.  
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5.3 Boolean Descriptions     

Deemter (2002) shown that Incremental algorithm 
is only intersectively complete. But he argues that 
other Boolean combination of properties can be 
used to generate description for an object. Consider 
the example from (Deemter, 2002).  Let D = {a, b, 
c, d, e} Type: {Dog(a,b,c,d,e); Poodle(a,b)} Color: 
{Black(a,b,c); White(d,e)} and r = {c}. In this sce-
nario Incremental algorithm is not able to indi-
viduate any of the animals. However a description 
for c exists, “The black dog that is not a poodle”. 
Since {c} = [[Black]] ∩ [[ ¬ Poodle]]. Deemter 
(2002) has modified the Incremental algorithm by 
adding negative values for each attribute. Now we 
will show that our basic algorithm can be modified 
to take care of this situation. In our basic algorithm 
ConstructTrie() , we add branches at each level for 
negative values also. In this case our simple rou-
tine MakeRefExpr() is able to find boolean de-
scription while remaining as close as to Incre-
mental algorithm. In figure 5, we show part of the 
trie structure, which is generated for the above 
scene. The dashed arrows show the alternative 
search paths for node containing {c}. 

   

 
Figure 5.  Trie structure (Partial) incorporating  
negation of  properties  

 
For referring objects using disjunction of proper-
ties we have do same thing as negations. We have 
to extend our prefix tree structure by adding extra 
edges at different levels for making implicit infor-
mation explicit as described in [Krahmer 2002]. 

5.4 Incorporating Context Sensitivity     

Krahmer and Theune [2002] have added the notion 
of context sensitivity into GRE. Earlier algorithms 
assumed that all objects in environment are equally 

salient. Krahmer and Theune refined the idea by 
assigning some degree of salience to each object. 
They proposed that during referring any object, the 
object needs to be distinguished only from those 
objects which are more salient (having higher sali-
ence weight). An object that has been mentioned 
recently, is linguistically more salient than other 
objects and can be described using fewer proper-
ties (“The dog” instead of “The large black hairy 
dog”). They introduced the concept of centering 
theory, hierarchical focus constraints in the field of 
NLG and devised a constant function mapping sw: 
D →→→→ℕ , where sw is salience weight function, D is 
domain and ℕ  is set of natural numbers. We can 
incorporate this idea into our model easily. In each 
node of the prefix tree we keep a field ‘salience 
weight’ (sw) for each of the object stored in that 
node in the form (di, swi). During describing an 
object if we find a node that is containing r where 
it is the most salient then we need not traverse 
higher depth of the tree. So, we have to modify 
MakeRefExpr() algorithm by adding more condi-
tions. If the current node is N and both 1) r∈ � N �  
and 2) ∀ d∈ � N �  (d ≠≠≠≠ r →→→→ sw(d) < sw(r)) hold 
then r is the most salient and the edges constituting 
the path from root to N represents distinguishing 
description for r . In figure 6, a is most salient dog 
and referred to as “The dog” whereas b is referred 
to as “The small dog”. 

 

 
 
Figure 6:  Trie structure (Partial) representing Con-
text Sensitivity 

5.5 Relational Descriptions 

Relational descriptions are used to single out an 
object with reference to other one. For example 
“The cup on the table” is used to distinguish a cup 
from other cups which are not on the table. Dale 
and Haddock (1991) first offer the idea of rela-
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tional description and extend Full Brevity algo-
rithm to incorporate this idea. Later Krahmer et al. 
(2003) Graph based framework for generating rela-
tional description. We follow Krahmer (2002) and 
denote relations as Spatial: {In(a,b); Left_of(c,d)} 
etc. Then we treat ‘Spatial’ as another attribute and 
consider ‘In’, ‘Left_of’ as different values for that 
attribute. In this way, our basic algorithm itself is 
capable of handling relational descriptions. The 
only modification that we add that when a relation 
R is included, the MakeRefExpr() should be 
called again for the relatum. Thus, if Val(E(Ni, 
Nk

i+1)) expresses a relation of r  with r ′′′′ then we 
have to call MakeRefExpr (r ′′′′,p,T,L) again to find 
description for  r′′′′. 

5.6 Modeling Full Brevity 

In this section, we will show that our prefix tree 
structure can be so modified that it can generate 
shortest possible description which is requirement 
of Full Brevity (Dale, 1992). Consider a scene 
where a domain is identified by set of n attributes 
{A 1, A2…An}. We can generate n! number of dif-
ferent permutations of Ai’s ∀ i ∈ [1,n]. We con-
sider each permutation as different PreferredAt-
tributes list Pk and generate all possible prefix 
trees Tk for each Pk ∀ k∈ [1,n!] for same domain 
D. Now, we connect roots of all trees with a com-
mon dummy root node with edges having empty 
description (ε). Now, if we search the branches of 
new combined tree in parallel, it’s obvious that we 
can always find the target node at lowest possible 
level. Thus we can generate shortest length de-
scription using our algorithm. 

6 Complexity of The Algorithm  

Let the domain entities are identified by a number 
of attributes and each attribute has on the average 
k number of different values. So, our Con-
structTrie() algorithm takes Ο(ka) time. Now we 
will consider different cases for analyzing the time 
complexity of our MakeRefExpr() algorithm.          
 1) In case of non overlapping properties, our 
search tree will be pruned at each level by a factor 
of k. Thus the time complexity will be Ο(logk(k

a)) 
= Ο(a) which is linear. 
2) In case of overlapping properties, we have to 
search whole tree in worst case (although in aver-
age cases also there will be large pruning, as found 

from test cases) which will take Ο(ka) time.                    
3) In case of achieving full brevity requirement, 
both time and space complexity will be exponen-
tial as in the original algorithm by Dale (1992).  

7 Conclusions 

In this paper, we present a new Prefix tree (Trie) 
based approach for modeling GRE problems. We 
construct the trie in such a way that a node at a par-
ticular level consists of only those objects which 
are satisfied by values of the edges, constituting 
the path from root to that node. We formulate de-
scription generation as a search problem. So, when 
we reach the target node, the attribute values corre-
sponding to the edges in the path automatically 
form the distinguishing description. Different sce-
narios of GRE problems like representation of set, 
boolean descriptions etc. is taken care of in this 
paper. We have shown that in simple non overlap-
ping scenarios, our algorithm will find distinguish-
ing description in linear time. 

8 References 

E. Krahmer and M. Theune. 2002. Efficient Context 
Sensitive Generation of Referring Expressions. CSLI 
Publ, Stanford : 223 – 264 

E. Krahmer, S. van Erk and A. Verlag. 2003. Graph 
based Generation of Referring Expressions Computa-
tional Linguistics, 29(1): 53-72 

H. Horacek. 2004. On Referring to Set of Objects Natu-
rally.  Proceedings of Third INLG, Brokenhurst, U.K: 
70-79 

M. Croitoru  and van Deemter. 2007. A conceptual 
Graph Approach to the Generation of Referring Ex-
pressions. Proceedings of IJCAI 2007 : 2456-2461  

R. Dale and N. Haddock. 1991.  Generating Referring 
Expressions containing Relations. Proceedings of 
Fifth ACL- EACL conference, 161-166 

R. Dale. 1992. Generating Referring Expressions: 
Building Descriptions in a Domain of Objects and 
Processes. MIT Press 

R. Dale  and E. Reiter. 1995. Computational Interpreta-
tions of the Gricean Maxims in the generation of Re-
ferring Expressions. Cognitive Science (18): 233 – 
263 

van Deemter. 2002. Generating Referring Expressions: 
Boolean Extensions of Incremental Algorithm. Com-
putational Linguistics 28(1): 37-52 

702




