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Abstract 
We propose a new formally syntax-based 
method for statistical machine translation. 
Transductions between parsing trees are 
transformed into a problem of sequence 
tagging, which is then tackled by a search-
based structured prediction method. This 
allows us to automatically acquire transla-
tion knowledge from a parallel corpus 
without the need of complex linguistic 
parsing. This method can achieve compa-
rable results with phrase-based method 
(like Pharaoh), however, only about ten 
percent number of translation table is used. 
Experiments show that the structured pre-
diction approach for SMT is promising for 
its strong ability at combining words. 

1 Introduction 
Statistical Machine Translation (SMT) is attract-
ing more attentions than rule-based and example-
based methods because of the availability of large 
training corpora and automatic techniques. How-
ever, rich language structure is difficult to be inte-
grated in the current SMT framework. Most of the 
SMT approaches integrating syntactic structures 
are based on probabilistic tree transducers (tree-
to-tree model). This leads to a large increase in the 
model complexity (Yamada and Knight 2001; 
Yamada and Knight 2002; Gildea 2003; Galley et 
al. 2004; Knight and Graehl 2005; Liu et al. 2006). 
However, formally syntax-based methods propose 
simple but efficient ways to parse and translate 
sentences (Wu 1997; Chiang 2005). 

In this paper, we propose a new model of SMT 
by using structured prediction to perform tree-to-
tree transductions. This model is inspired by Sa-
gae and Lavie (2005), in which a stack-based rep-

resentation of monolingual parsing trees is used. 
Our contributions lie in the extension of this rep-
resentation to bilingual parsing trees based on 
ITGs and in the use of a structured prediction 
method, called SEARN (Daumé III et al. 2007), to 
predict parsing structures. 

Furthermore, in order to facilitate the use of 
structured prediction method, we perform another 
transformation from ITG-like trees to label se-
quence with the grouping of stack operations. 
Then the structure preserving problem in transla-
tion is transferred to a structured prediction one 
tackled by sequence labeling method such as in 
Part-of-Speech (POS) tagging. This transforma-
tion can be performed automatically without com-
plex linguistic information. At last, a modified 
search process integrating structure information is 
performed to produce sentence translation. Figure 
1 illustrates the process flow of our model. Be-
sides, the phrase extraction is constrained by ITGs. 
Therefore, in this model, most units are word 
based except that we regard those complex word 
alignments as a whole (i.e. phrase) for the simplic-
ity of ITG-like tree representations. 
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Figure 1: Chart of model framework 

The paper is organized as follows: related work 
is show in section 2. The details of the transforma-
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tion from word alignments to structured parsing 
trees and then to label sequence are given in sec-
tion 3. The structured prediction method is de-
scribed in section 4. In section 5, a beam search 
decoder with structured information is described. 
Experiments are given for three European lan-
guage pairs in section 6 and we conclude our pa-
per with some discussions. 

2 Related Work 
This method is similar to block-orientation model-
ing (Tillmann and Zhang 2005) and maximum 
entropy based phrase reordering model (Xiong et 
al. 2006), in which local orientations (left/right) of 
phrase pairs (blocks) are learned via MaxEnt clas-
sifiers. However, we assign shift/reduce labeling 
of ITGs taken from the shift-reduce parsing, and 
classifier is learned via SEARN. This paper is 
more elaborated by assigning detailed stack-
operations. 

The use of structured prediction to SMT is also 
investigated by (Liang et al. 2006; Tillmann and 
Zhang 2006; Watanabe et al. 2007). In contrast, 
we use SEARN to estimate one bilingual parsing 
tree for each sentence pair from its word corre-
spondences. As a consequence, the generation of 
target language sentences is assisted by this struc-
tured information. 

Turian et al. (2006) propose a purely discrimi-
native learning method for parsing and translation 
with tree structured models. The word alignments 
and English parse tree were fed into the GenPar 
system (Burbank et al. 2005) to produce binarized 
tree alignments. In our method, we predict tree 
structures from word alignments through several 
transformations without involving parser and/or 
tree alignments. 

3 Transformation 

3.1 Word Alignments and ITG-like Tree 

First, following Koehn et al. (2003), bilingual sen-
tences are trained by GIZA++ (Och and Ney 2003) 
in two directions (from source to target and target 
to source). Then, two resulting alignments are re-
combined to form a whole according to heuristic 
rules, e.g. grow-diag-final. Second, based on the 
word alignment matrix, one unique parsing tree 
can be generated according to ITG constraints 
where the “left-first” constraint is posed. That is to 
say, we always make the leaf nodes as the right 

sons as possible as they can. Here we present two 
basic operations for mapping tree items, one is in 
order and the other is in reverse order (see Figure 
2). Basic word alignments are in (a), while (b) is 
their corresponding alignment matrix. They can be 
described using ITG-like trees (c). 

f1 f1       f2

e1        *

e2                  * f1/e1 f2/e2

(1a) (1b) (1c)

f1       f2

e1                  *

e2        * f1/e2 f2/e1

(2a) (2b) (2c)

f1/e1 S

f2/e2 S,R+

(1d)

f1/e2 S

f2/e1 S,R-

(2d)

f2

f1 f2

e1 e2

e1 e2

 
Figure 2: Two basic representations for tree items 

 
Figure 3: “inside-out” transpositions (a) and (b) with two 
typical complex sequences (c) and (d). In (c) and (d), word 
correspondence f2-e2 is also extracted as sub-alignments. 

The two widely known situations that cannot be 
described by ITGs are called “inside-out” transpo-
sitions (Figure 3 a & b). Since they cannot be de-
composed in ITGs, we consider them as basic 
units. In this case, phrase alignment is used. In our 
model, more complex situations exist for the word 
correspondences are generated automatically from 
GIZA++. At the same time, we also keep the sub-
alignments in those complex situations in order to 
extend the coverage of translation options. The 
sub-alignments are restricted to those that can be 
described by the two basic operations. In other 
words, for our ITG-like tree, the nodes are mostly 
word pairs, except some indecomposable word 
sequences pairs. Figure 3 shows four typical com-
plex sequences viewed as phrases. 

Therefore, our ITG-like trees take some phrase 
alignments into consideration and we also keep 
the sub-alignments in these situations. Tree items 
in our model are restricted to minimum constitu-
ents for the simplicity of parsing tree generation. 
Then we extract those word pairs from tree items, 
instead of all the possible word sequences, as our 
translation table. In this way, we can greatly re-
duce the number of translation pairs to be consid-
eration. 
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3.2 SHIFT and REDUCE Operations 

Sagae and Lavie (2005) propose a constituency-
based parsing method to determine sentence de-
pendency structures. This method is simple and 
efficient, which makes use of SHIFT and RE-
DUCE operations within a stack framework. This 
kind of representations can be easily learned by a 
classifier with linear time complexity. 

In their method, they build a parse tree of a sen-
tence one word at a time just as in a stack parser. 
At any time step, they either shift a new word on 
to the stack, or reduce the top two elements on the 
stack into a new non-terminal. 

Sagae and Lavie’s algorithms are designed for 
monolingual parsing problem. We extend it to 
represent our ITG-like tree. In our problem, each 
word pairs can be viewed as tree items (nodes). 
To handle our tree alignment problem, we need to 
define two REDUCE operations: REDUCE in 
order and REDUCE in reverse order. We define 
these three basic operations as follows: 

• S: SHIFT - push the current item onto the 
stack. 

• R+: REDUCE in order - pop the first two 
items from the stack, and combine them in 
the original order on the target side, then 
push back. 

• R-: REDUCE in reverse order - pop the 
first two items from the stack, and combine 
them in the reverse order on the target side, 
then push back. 

Using these operators, our ITG-like tree is 
transformed to serial stack operations. In Figure 2, 
(d) is such a representation for the two basic 
alignments. Therefore, the structure of word 
aligned sentences can be transformed to an opera-
tion sequence, which represents the bilingual pars-
ing correspondences. 

After that, we attach these operations to each 
corresponding tree item like a sequence labeling 
problem. We need to perform another “grouping” 
step to make sure only one operation is assigned 
to each item, such as “S,R+”, “S,R-,R+”, etc. 
Then, those grouped operations are regarded as a 
whole and performed as one label. The number of 
this kind of labels is decided by the training cor-
pus1. Having defined such labels, the prediction of 

                                                 
1 This set of labels is quite small and only 16 for the French-
English training set with 688,031 sentences. 

tree structures is transformed to a label prediction 
one. That is, giving word pairs as input, we trans-
form them to their corresponding labels (stack 
operations) in the output. At the same time, tree 
transductions are encoded in those labels. Once all 
the “labels” are performed, there should be only 
one element in the stack, i.e. the generating sen-
tence translation pairs. See Appendix A for a more 
complete example in Chinese-English with our 
defined operations. 

Another constraint we impose is to keep the 
least number of elements in stack at any time. If 
two elements on the top of the stack can be com-
bined, we combine them to form a single item. 
This constraint can avoid having too many possi-
ble operations for the last word pair, which may 
make future predictions difficult. 

4 Structured Prediction 

SEARN is a machine learning method proposed 
recently by Daumé III et al. (2007) to solve struc-
tured prediction problems. It can produce a high 
prediction performance without compromising 
speed, simplicity and generality. By incorporating 
the search and learning process, SEARN can solve 
the complex problems without having to perform 
explicit decoding any more. 

In most cases, a prediction of input x in domain 
X into output y in domain Y, like SVM and deci-
sion trees, cannot keep the structure information 
during prediction. SEARN considers this problem 
as a cost sensitive classification one. By defining 
features and a loss function, it performs a cost 
sensitive learning algorithm to learn predictions. 
During each iteration, the optimal policy (decided 
by previous classifiers) generates new training 
examples through the search space. These data are 
used to adjust performance for next classifier. 
Then, iterations can keep this algorithm to per-
form better for prediction tasks. Structures are 
preserved for it integrates searching and learning 
at the same time.  

4.1 Parsing Tree Prediction 

For our problem, using SEARN to predict the 
stack-based ITG-like trees, given word alignments 
as input, can benefit from the advantages of this 
algorithm. With the structured learning method, 
we can account for the sentence structures and 
their correspondence between two languages at 
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the same time. Moreover, it keeps the translating 
structures from source to target. 

As we have transformed the tree-to-tree transla-
tion problem into a sequence labeling one, all we 
need to solve is a tagging problem similar to a 
POS tagging (Daumé III et al. 2006). The input 
sequence x is word pairs and output y is the group 
of SHIFT and REDUCE operations. For sequence 
labeling problem, the standard loss function is 
Hamming distance, which measures the difference 
between the true output and the predicting one: 

∑=
t

tt yyyyHL )ˆ,()ˆ,( δ                 (1) 

where δ is 0 if two variables are equal, and 1 oth-
erwise. 

5 Decoder 
We use a left-to-right beam search decoder to find 
the best translation given a source sentence. Com-
pared with general phrase-based beam search de-
coder like Pharaoh (Koehn 2004), this decoder 
integrates structured information and does not 
need distortion cost and other costs (e.g. future 
costs) any more. Therefore, the best translation 
can be determined by: 

})()|({maxarg* )(elength
lm

e
epefpe ω=     (2) 

where ω is a factor of word length penalty. Simi-
larly, the translation probability  can be 
further decomposed into: 

)|( efp

∏=
i

ii efefp )|()|( φ                  (3) 

and )|( ii efφ  represents the probability distribu-
tion of word pairs. 

Instead of extracting all possible phrases from 
word alignments, we consider those translation 
pairs from the nodes of ITG-like trees only. Like 
Pharaoh, we calculate their probability as a com-
bination of 5 constituents: phrase translation prob-
ability (in both directions), lexical translation 
probability (in both directions) and phrase penalty 
(default is set at 2.718). The corresponding weight 
is trained through minimum error rate method 
(Och 2003). Parameters of this part can be calcu-
lated in advance once tree structures are generated 
and can be stored as phrase translation table. 

5.1 Core Algorithm 

Another important question is how to preserve 
sentence structures during decoding. A left-to-
right monotonous search procedure is needed. 

Giving the source sentence, word translation can-
didates can be determined according to the trans-
lation table. Then, several rich features like cur-
rent and previous source words are extracted 
based on these translation pairs and source sen-
tence. After that, our structured prediction learn-
ing method will be used to predict the output “la-
bels”, which produces a bilingual parsing tree. 
Then, a target output will be generated for the cur-
rent partial source sentence as soon as bilingual 
parsing trees are formed. The output of this part 
therefore contains syntactic information for struc-
ture. 

For instance, given the current source partial 
like “f1 f2”, we can generate their translation 
word pair sequences with the translation table, 
like “f1/e1 f2/e2”, “f1/e3 f2/e4” and so on. The 
corresponding features are then able to be decided 
for the next predicting process. Once the output 
predictions (i.e. stack operations) are decided, the 
bilingual tree structures are formed at the same 
time. As a consequence, results of these opera-
tions are the final translations which we really 
need. 

At each stage of translation, language model 
parameters can be added to adjust the total costs 
of translation candidates and make the pruning 
process reasonable. The whole sentence is then 
processed by incrementally constructing the trans-
lation hypotheses. Lastly, the element in the last 
beam with the minimum cost is the final transla-
tion. In general, the translation process can be de-
scribed in the following way: 

 
5.2 Recombining and Pruning 

Different translation options can combine to form 
the same fragment by beam search decoder. Re-
combining is therefore needed here to reduce the 
search space. So, only the one with the lowest cost 
is kept when several fragments are identical. This 
recombination is a risk-free operation to improve 
searching efficiency. 

Another pruning method used in our system is 
histogram pruning. Only n-best translations are 
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allowed for the same source part in each stack (e.g. 
n=100). In contrast with traditional beam search 
decoder, we generate our translation candidates 
from the same input, instead of all allowed word 
pairs elsewhere. Therefore the pruning is much 
more reasonable for each beam. There is no rela-
tive threshold cut off compared with Pharaoh. 

In the end, the complexities for decoding are 
the main concern of our method. In practice, how-
ever, it will not exceed the  (m for 
sentence length, N for stack size and Tn for al-
lowed translation candidates). This is based on the 
assumption that our prediction process (tackled by 
SEARN) is fed with three features (only one for-
mer item is associated), which makes it no need of 
full sentence predictions at each time. 

)**( TnNmO

6 Experiment 
We validate our method using the corpus from the 
shared task on NAACL 2006 workshop for statis-
tical machine translation2. The difference of our 
method lies in the framework and different phrase 
translation table. Experiments are carried on all 
the three language pairs (French-English, Ger-
man-English and Spanish-English) and perform-
ances are evaluated by the providing test sets. Sys-
tem parameters are adjusted with development 
data under minimum error rate training. 

For SEARN, three features are chosen to use: 
the current source word, the word before it and the 
current target word. As we do not know the real 
target word order before decoding, the corre-
sponding target word’s position cannot be used as 
features. Besides, we filter the features less than 5 
times to reduce the training complexities. 

The classifier we used in the training process is 
based on perceptron because of its simplicity and 
performance. We modified Daumé III’s script3 to 
fit our method and use the default 5 iterations for 
each perceptron-based training and 3 itertaions for 
SEARN. 

6.1 Results for different language pairs 

The  final  results  of  our  system,  named Amasis, 
and baseline system Pharaoh (Koehn and Monz 
2006) for three language pairs are listed in Table 1. 
The last three lines are the results of Pharaoh with 
phrase length from 1 to 3. However, the length of 
                                                 
2 http://www.statmt.org/wmt06/shared-task/ 
3 http://www.cs.utah.edu/~hal/searn/SimpleSearn.tgz 
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Figure 4: Numbers of translation table 
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Figure 5: Percent of single word translation pairs (only one 

word in the source side) 
F-E G-E S-E  In Out In Out In Out

Amasis 27.44 18.41 23.02 15.97 27.51 23.35
Pharaoh1 20.54 14.07 17.53 12.13 23.23 20.24
Pharaoh2 27.71 19.41 23.36 15.77 28.88 25.28
Pharaoh3 30.01 20.77 24.40 16.58 30.58 26.51
Table 1: BLEU scores for different language pairs. In - In-

domain test, Out - Out-of-domain test. 
 

phrases for Amasis is determined by ITG-like tree 
nodes and there is no restriction for it. 

Even without producing higher BLEU scores 
than Pharaoh, our approach is still interesting for 
the following reasons. First, the number of phrase 
translation pairs is greatly reduced in our system. 
The ratio of translation table number in our 
method (Amasis) to Pharaoh, for French-English 
is 9.68%, for German-English is 13.54%, for 
Spanish-English is 8.12% (Figure 4). This means 
that our method is more efficient at combining 
words and phrases during translation. The reasons 
for the different ratio for the three languages are 
not very clear, maybe are related to the flexibility 
of word order of source language. Second, we 
count the single word translation pairs (only one 
word in the source side) as shown in Figure 5. 
There are significantly more single word transla-
tions in our method. However, the translation 
quality can be kept at the same level under this 
circumstance. Third, our current experimental re-
sults are produced with only three common fea-
tures (the corresponding current source and target 
word and the last source one) without any linguis-
tics information. More useful features are ex-
pected to be helpful like POS tags. Finally, the 
performance can be further improved if we use a 
more powerful classifier (such as SVM or ME) 
with more iterations. 
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7 Conclusion 
Our method provides a simple and efficient way 
to solve the word ordering problem partially 
which is NP-hard (Knight 1999). It is word based 
except for those indecomposable word sequences 
under ITGs. However, it can achieve comparable 
results with phrase-based method (like Pharaoh), 
while much fewer translation options are used. 
For the structure prediction process, only 3 com-
mon features are preserved and perceptron-based 
classifiers are chosen for the use of simplicity. We 
argue that this approach is promising when more 
features and more powerful classifiers are used as 
Daumé III et al. (2007) stated. 

Our contributions lie in the integration of struc-
ture prediction for bilingual parsing trees through 
serial transformations. We reinforce the power of 
formally syntax-based method by using structured 
prediction method to obtain tree-to-tree transduc-
tions by the transforming from word alignments to 
ITG-like trees and then to label sequences. Thus, 
the sentence structures can be better accounted for 
during translating. 
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Appendix A. A Complete Example in Chinese-English 
with Our Defined Operations 

Word alignments 

 
ITG-like tree 

 
SHIFT-REDUCE label sequence 

一个/a   S 
了解/to learn about  S 
中国/Chinese  S,R+ 
音乐/music   S,R+ 
的/ε   S,R+ 
很 好/great   S 
的/ε   S,R+ 
方式/way   S,R+,R-,R+ 

Stack status when operations finish 
一个 了解 中国 音乐 的 很 好 的 方式  
/ a great way to learn about Chinese music 
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