
Vaakkriti: Sanskrit Tokenizer

Aasish Pappu and Ratna Sanyal
Indian Institute of Information Technology, Allahabad (U.P.), India

{ akpappu b03, rsanyal}@iiita.ac.in

Abstract

Machine Translation has evolved tremen-
dously in the recent time and stood as center
of research interest for many computer
scientists. Developing a Machine Transla-
tion system for ancient languages is much
more fascinating and challenging task. A
detailed study of Sanskrit language reveals
that its well-structured and finely orga-
nized grammar has affinity for automated
translation systems. This paper provides
necessary analysis of Sanskrit Grammar in
the perspective of Machine Translation and
also provides one of the possible solution for
Samaas Vigraha(Compound Dissolution).

Keywords: Machine Translation, Sanskrit,
Natural Language Parser, Samaas Vigraha,
Tokenization

1 Introduction

Sanskrit language and its grammar had exterted an
emphatic impact on Computer Science and related
research areas. It has resulted to put in extensive ef-
forts in the field of Machine Translation(hereafter re-
ferred as MT). MT of Sanskrit is never an easy task,
because of structural vastness of its Grammar. Be-
sides, its strutural vastness Sanskrit Grammar is well
organized and least ambigious compared to other
natural languages, illustrated by the fact of increas-
ing fascination for this ancient Aryan language. Its
grammar possesses well organized rules and meta
rules to infer those rules, thus proving to be a pow-

erful analogy to context free grammar of a computer
language.

Subsequently, it supports the idea of developing a
parser for Sanskrit language, that would be helpful
in developing a full-fledged MT system. As a part of
development of parser, there are other important as-
pects to be taken care off. A morphological analyser
and a tokenizer are two of the important components
that play a vital role in the parser. A morpholog-
ical analyser is used for identification of the base
words from their morphonemes, further to under-
stand the semantics of the original text. A tokenizer
also plays its significant part in a parser, by identi-
fying the group or collection of words, existing as a
single and complex word in a sentence. Later on, it
breaks up the complex word into its constituents in
their appropriate forms. In Sanskrit, mainly we have
two categories of complex words. They are

• Sandhi

• Samaas

1.1 Sandhi and Samaas
Sandhi: When two words combine to produce a new
word whose point of combination is result of anni-
hilation of case-end of former word and case-begin
of latter. In short, the resulted new character that
has been created at the point of combination is ex-
actly equivalent to the sound produced when those
two words are uttered without a pause. The inverse
procedure to Sandhi-formation is known as Sandhi
Wicched.

On the other hand, when two or more words are
combined, based on their semantics then the result-
ing word is known as Samaas or Compound. Unlike

577



Sandhi, the point of combination in Samaas may or
may not be a deformed in the resulting word. The in-
verse procedure of break-up of a Samaas is known as
Samaas Vigraha. Considering the complexity of this
problem, we restricted our focus to Samaas Vigraha
or Compound Dissolution(hereafter Compound Dis-
solution is referred as CD for convenience).

1.2 Organization of the Paper

Initially, we would discuss about the problem of fo-
cus and the main objective of this paper in detail.
Further, a little overview about the Sanskrit grammar
and Knowledge Representation, that are required to
understand the underlying concepts of the system.
Then, we would brief about the existing systems in
this areas and the related areas of interest. Later on,
we would give a detailed description of the architec-
ture of Vaakkriti. We would give a detailed analysis
of the results of our system and finally, throw some
light over our contribution to this research area.We
shall conclude with some of drawbacks of our sys-
tem and the challenges we have faced.

2 The Problem

Semantics being the prime focus, we need to learn
the factors that effect the formation of a compound
from the set of atomic words. The basic problem
is identification of factors, by thorough analysis of
language structure or with the help of a linguist. Es-
pecially various examples of Samaas must be exten-
sively observed. After identification of factors, we
need to find out the appropriate form of Knowledge
Representation for the rule-base. Here, knowledge
being the rules, based on which a particular com-
pound is formed. The importance of CD can be
clearly understood, during the process of tokeniza-
tion. A well-defined set of rules in Sanskrit can
be found in “Ashtadyayi”, authored by 3rd century
grammarian and linguist Panini. Ashtadyayi con-
tains rules of Grammar in a concise form, distributed
over eight chapters. Our rule-base system would be
based on the work of Kale et. al, that has detailed
description of Paninian Grammar.

3 Sanskrit Grammar

As we have already mentioned that, it is necessary
to know some of the basic concepts of the Sanskrit

grammar. First, we would give some important def-
initions of terms that are frequently used in this pa-
per.

3.1 Important Definitions
3.1.1 Vibhakti(Declension)

Sanskrit is a highly inflected language with three
grammatical genders (masculine, feminine, neuter)
and three numbers (singular, plural, dual). It has
eight cases: nominative, vocative, accusative, instru-
mental, dative, ablative, genitive, and locative.

3.1.2 Dhatupata(Verbal Conjugation)
The verbs tenses (a very inexact application of the

word, since more distinctions than simply tense are
expressed) are organized into four ’systems’ (as well
as gerunds and infinitives, and such creatures as in-
tensives or frequentatives, desideratives, causatives,
and benedictives derived from more basic forms)
based on the different stem forms (derived from ver-
bal roots) used in conjugation. There are four tense
systems:

• Present (Present, Imperfect, Imperative, Opta-
tive)

• Perfect

• Aorist

• Future (Future, Conditional)

3.2 Factors that effect
The list of factors that are involved in a rule are

• Part of Speech(hereafter referred as POS)

• List of Words(a token must be among a set of
words to satisfy a rule)

• Case-End

• Case-Begin

• Declension

• Sense(a token with a particular sense is only
qualified)

• Meaning

• Affix

578



• Affix Type(Taddita and Kriti)

• Number(sng, two, mny)(hereafter we refer
number as num)

• Gender(mas, fem, neu)

The list of actions that act as functions in the con-
sequent of a rule are:-

• setDecl(set the declension case for a specified
token)

• addBefore(add a string before a specified to-
ken)

• addAfter(add a string after a specified token)

• setNumber(set the number of a to-
ken(sng,two,mny))

• replace(replace a token with a string related to
it)

3.3 Compounds
Nominal compounds occur with various structures,
however morphologically speaking they are essen-
tially the same. Each noun (or adjective) is in its
(weak) stem form, with only the final element re-
ceiving case inflection. Some examples of nominal
compounds include:

Itaretara
Example: rAml#mZBrtf/̀ÍA,(RAmaLakshmaNaBaratAH)

to rAm, c l#mZ, c Brt, c f/̀Í,(RAma ca, LakshmaNa

ca, Barata ca)

Rule: ∀token POS(token,noun) ⇒ setDecl(token,nom)∧
addAfter(token,c)

Samahaara
Example: pAZFpAdO(pANIpAdau)to

pAZF c pAddm̂ c(pANI ca pADam)

Rule: ∀token,∃sense POS(token,noun) ∧
SenseOf(token, sense) ⇒ setDecl(token,nom)∧
addAfter(token,c)

Dvitiya(Accusative) Tatpurusha
Example: d̀,˛AtFt,(dukhatItaH)to

d̀,˛m̂ atFt,(dukham atItaH)

Rule: POS(token1,noun) ∧ WordList(token2,Eút ,

atFt , pEtt , gt , a(y-t , þAØ , aApà , gmF , b̀B̀"̀)

⇒setDecl(token1,acc)

Trutiya(Instrumental) Tatpurusha
Example: d̀,˛AtFt,to

d̀,˛m̂ atFt,

Rule: POS(token1,noun) ∧ (POS(token2,verb) ∨
WordList(token2,ṕv‚ ,sdý `f ,Un))⇒ setDecl(token1,ins)

Chaturthi(Dative) Tatpurusha
Example: ýpdAz(yupadaru)to ýpy dAz(yupaya daru)

Rule: POS(token1,noun) ∧ (Sense(token2,“material”)

∨ WordList(token2,aT‚ ,bEl , Eht , s̀˛ ,rE"t))⇒
setDecl(token1,dat)

Panchami(Ablative) Tatpurusha
Example: cOrBym̂(cOrabayam)to cOrAd̂ Bym̂(cOraad

bayam)
Rule: POS(token1,noun) ∧ (WordList(token2,

By ,BFt ,BFEt ,BF, ,ap̃t ,apoY , m̀Ä ,pEtt ,apv-t))⇒
setDecl(token1,abl)

Shashti(Genitive) Tatpurusha
Example: rAjp̀zq,(rAjapurushaH)to rAj

p̀zq,(rAjangya PurushaH)

Rule: POS(token1,noun) ∧ (POS(token2,noun)∧¬
POS(token2,verb)∧¬ NumeralType(token2,ordinal)∧¬
SenseOf(token2,“quality”))⇒ setDecl(token1,gen)

Saptami(Locative) Tatpurusha
Example: ngrkAk,(nagarAkAkaH)to ngr̃ kAk,

iv(nagare kAkaH iva)

Rule: POS(token1,noun)

∧ (MeaningOf(token2,“crow”)∧
SenseOf(token2,“contempt”))⇒ setDecl(token1,loc)∧
addAfter(token2, iv)

4 Knowledge Representation
We have already learnt that the process of CD is sup-
ported by a rule-base system. A production system
is a good illustration to understand a rule-base sys-
tem. To represent a complex rule, it would be bet-
ter to use First Order Predicate Logic(FOPL). Un-
der FOPL a rule can be written as of the form P (a)∧
Q(a)∧Q(b)∧R(c) ⇒ Action1(a)∧Action2(b)∧Action1(c)

where P,Q and R are predicates

a, b and c are constant symbols

Action is a function symbol
The rule-base system of Vaakkriti is de-

veloped considering the factors as pred-
icates and the tokens as constant sym-
bols. A sample rule would look like this

579



POS(tok1, noun) ∧ (POS(tok2, verb) decl(tok2, acc)) ⇒
setDecl(token1, acc).

5 Related Work

In the recent times many efforts have been made to
develop various utilities for Sanskrit. The tools de-
veloped includes Sanskrit to other Indian Language
transliteration tools, simple and primitive transla-
tion tools, many grammar analysing tools and many
more learning tools. Some of the important works
includes Anusaraka, a primitive machine translation
tool developed by Akshar et. al. Anusaraka tries
to take advantage of the relative strengths of the
computer and the human reader, where the com-
puter takes the language load and leaves the world
knowledge load on the reader. Besides, these tools,
there are some beautiful theory-based research work
was also done. The concept of Indian Network Lan-
guage(INL) is one of such concepts that was pro-
posed by Anupam et. al. It gives a hypothesis to
consider Sanskrit as INL because of its important
properties like free word order and inherent seman-
tic net structure. There are few other interesting re-
search concepts that have been analysed in the con-
text of Sanskrit language. Rick Braggs et. al have
shown in his article how Knowledge Representation
in the language of Sanskrit is one of those wonderful
concept to show that Semantic Nets. Semantic Nets
are concept respresenting structures, that show how
a concept is related to other concepts semantically, a
semantic net would like in the figure below. Another
beautiful research work was comparison of Paninian
Grammar and Computer language Grammar. Bhate
et al. has analysed to show that how well organized
and structured is Sanskrit Grammar and its forgot-
ten valuable contributions to the field of Computer
Science.

6 Architecture

An Itrans standard formatted devanagiri text is given
as input to the system and the output of the system
is the set of tokens produced after CD. The list of
components in the system are listed below:

• Input Processor

• Symbol Table

• Knowledge Base

• Inference Engine

• Database

• Rule-Base Editor

The architecture of Vaakkriti can be seen in the fig-
ure

Figure 1: Architecture of Vaakriti

The algorithm of Vakkriti is given below:- A de-

Algorithm 1 Algorithm of Vaakkriti
1: input← Itrans-Devanagiri Text
2: input′← breakUp(input)
3: tokenList← tentativeTokenize(input′)
4: tokenInfoList← tokenList
5: for tokeni in tokenInfoList do
6: token(i)← extractInfo(tokeni

7: update token(i) in tokenInfoList
8: end for
9: for each rule(r) in Knowledge-Base(KB) do

10: result← infer(r,tokenInfoList)
11: if result is true then

return r
12: end if
13: end for

tailed description of each component is as follows.

580



6.1 Input Processor
The unstemmed compound taken as input to the sys-
tem is a string in itrans format. First, Input Processor
breaks the itrans string into chunks of characters on
the basis of Devanagiri Character set. The heuristic
for break up procedure is given below:-

The reason behind the breakup procedure is to
ease the process of breaking the string into words
in their tentative forms. If a string is considered as
it is without breakup into devanagiri characters, then
there is a high chance of ambiguity while lookup in
the dictionary. For example:-

Without breakup of input string
aja
ajagaraH-- Found this word

With breakup of string into character sequences
a,ja
a,ja,ga,raH

Later on the chunks of characters are processed as
in the procedure below:-

The words lying in input string are tentatively
guessed by maintaining a stack of character se-
quences, thus checking with the dictionary for the
right word. But, in most of the cases, the word in
the input string do not have an exact match in the
dictionary. This is because of the matra appended to
Case-End of a word. Therefore, we have generated
tokens for each matra and tried to find it in the dic-
tionary. If the word is found, then the word along
with its meaning is stored in the Symbol Table.

6.2 Symbol Table
Now, we shall discuss more about how a Symbol
Table fetches those subtle information of a token.
Symbol table extracts token information in the fol-
lowing manner:-

6.2.1 Part of Speech
Part of Speech is identified with the help of stan-

dard Monier Williams Dictionary, List of Adverbs,
List of Prepositions, List of Numerals.

6.2.2 Sense and Meaning
First, meaning of the token is known from the dic-

tionary and the sense of the token is fetched through
a special kind of procedure. The technique has fol-
lowing steps:-

1. Identify the nouns in the meaning phrase.

2. Find sense for each noun with the help of En-
glish Wordnet.

3. Find a list of “common” senses for all the
nouns.

4. That list of senses is assumed to the sense of a
token.

6.2.3 Gender and Number
These are fetched from the XML database.

6.3 Knowledge Base

The Knowledge Base(KB) contains facts and rules
that supports the system, for identifying a given in-
put. The KB has been classified well, according to
the Rule Sets. A Rule Set is a set of rules that are
meant for a particular type of compound. Infact, a
new rule set can be created whenever there is a new
part of speech to be dealt with. It has been assumed
that, a rule has clauses(both unit and definite) on an-
tescendent side, whose number is equal to tentative
number of tokens in the input parsed string. On the
other hand, the consequent or conclusion contains
the list of actions that has to be operated over the to-
kens(in the input string) by the system. More about
the rule structure in the next section.

The KB is well integrated with the Rule Base Ed-
itor(RBE) and the Inference Engine. Currently, it
contains limited number of rules this makes the KB
non-monotonic, yet it can be made monotonic, by
addition of new rules.

6.4 Database

There is a large database that supports the whole sys-
tem of Vaakriti. The database is contained in the
form of XML files. There are following tables in the
database:-

• Nouns, Adjectives, Numerals Declensions.

• Adverbs, Conjunctions and Prepositions.

• Dictionary Database.

• Preverbs database.

• Other Morphonemes.

581



6.5 Inference Engine
Whenever premises of a particular are satisified by
the input parse string, then it is said that a rule is
fired. A fired rule applies its consequent part over
the parsed string to result in actual goal. This proce-
dure is known as Rule Inference.

6.6 Rule Base Editor
The sole motive of Rule-Base Editor is to free the
Knowledge Engineer free from rule entry. A Lin-
guist with little training to operate the GUI can be
provided, would suffice this task.

7 Results

The system has been tested with many examples that
have been taken from the book written by Kale et al.
The set of examples have been chosen from differ-
ent set of Compounds. In most of the cases system
has given correct results with a precision of 90%,
but in some of the cases that involve sense, it be-
came quite difficult to produce the result. Lack of
linguistic tools like Wordnet for Sanskrit language
imposes limitations on word sense disambiguation.
We have developed a sense list for a limited set of
words by observing some of the important sanskrit
texts, based on the knowledge we have acquired.

8 Our Contribution

We have proposed a utility called Rule-Base Editor,
besides our actual work on CD. The motive behind
Rule-Base Editor is to induce the property of flexi-
bility into the system. It always avails a linguist to
enter new rules with the help of Rule-Base Editor
without any support from knowledge engineer.

We have already learnt that Samaas Vigraha(CD)
is the most important aspect of the tokenization
phase in a parser. Implicitly, the acquisition of fac-
tors and rules also gather equal importance. Signify-
ing this fact, we have done rigorous survey over the
grammar to identify these factors. Hence, we assert
that our system will be a significant contribution in
this area of research.

9 Future Scope and Conclusion

We assert that Vaakkriti would be a preliminary con-
tribution to the realm of NLP. Adding to the major
works that have been done already, Vaakkriti is an

attempt to enhance the existing works. We would
extend the current system and develop a full-fledged
parser that will suffice most of the requirements of
MTsystem.

Although, it looks the way that the problem has
been solved, but the actual problems arouses when
a Sanskrit poem is given as input to a MT system.
Usually, a sanskrit poem conveys more than one
meaning and sometimes figure of speech is used,
that adds fuel to the fire. This becomes a herculean
task for a MT system and it will remain as a myth
forever.

Acknowledgements

The authors would like to specially thank Gerard
Huet for providing linguistic database of declensions
and verbal roots, that was quite helpful in making
our system fine and complete. The authors grate-
fully acknowledge financial support from the Uni-
versal Digital Library project, funded by the Min-
istry of Communication and Information Technol-
ogy (MCIT) India and also Indian Institute of Infor-
mation Technology, Allahabad.

References
Higher Sanskrit Grammar, M. R. Kale, Motilal Banarasi-

Dass Publishers.

“Paninis Grammar and Computer Science”, Saroja Bhate
and Subhash Kak, Annals of the Bhandarkar Oriental
Research Institute, vol. 72, 1993, pp. 79-94.

“Knowledge Representation in Sanskrit and Artificial In-
telligence”, Rick Briggs

“Artificial Intelligence”, Elain Rich and Kevin Knight,
2nd Edition, Tata McGrawHill, 1991.

“Artificial Intelligence, A Modern Approach” Stuart Rus-
sell and Peter Norvig, 2nd Edition, Pearson Education,
2003.

“Sanskrit as Indian Networking Language: A Sanskrit
Parser”, Anupam, 2004.

“Natural Language Processing, A Paninian Perspective”,
Akshar Bharti, Vineet Chaitanya and Rajeev Sangal,
Pearson Education.

“Natural Language Processing using PROLOG” by M.
Gerald, M Chris, Addison and Wisley, 1989.

“Cognitive Science Learning Resource”,
http://www.comp.leeds.ac.uk/ugadmit/cogsci/knowled

582




