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Abstract

Many acoustic approaches to prosodic la-
beling in English have employed only lo-
cal classifiers, although text-based classifi-
cation has employed some sequential mod-
els. In this paper we employ linear chain and
factorial conditional random fields (CRFs)
in conjunction with rich, contextually-based
prosodic features, to exploit sequential de-
pendencies and to facilitate integration with
lexical features. Integration of lexical and
prosodic features improves pitch accent pre-
diction over either feature set alone, and for
lower accuracy feature sets, factorial CRF
models can improve over linear chain based
prediction of pitch accent.

1 Introduction

Prosody plays a crucial role in language understand-
ing. In addition to the well-known effects in tone
languages such as Chinese, prosody in English also
plays a significant role, where pitch accents can
indicate given/new information status, and bound-
ary tones can distinguish statements from yes-no
questions. However, recognition of such prosodic
features poses significant challenges due to differ-
ences in surface realization from the underlying
form. In particular, context plays a significant role
in prosodic realization. Contextual effects due ar-
ticulatory constraints such maximum speed of pitch
change (Xu and Sun, 2002) from neighboring sylla-
bles and accents can yield co-articulatory effects at
the intonational level, analogous to those at the seg-
mental level. Recent phonetic research (Xu, 1999;

Sun, 2002; Shen, 1990) has demonstrated the im-
portance of coarticulation for tone and pitch accent
recognition. In addition context affects interpreta-
tion of prosodic events; an accent is viewed as high
or low relative to the speaker’s pitch range and also
relative to adjacent speech.

Some recent acoustically focused approaches
(Sun, 2002; Levow, 2005) to tone and pitch accent
recognition have begun to model and exploit these
contextual effects on production. Following the Par-
allel Encoding and Target Approximation (PENTA)
(Xu, 2004), this work assumes that the prosodic tar-
get is exponentially approached during the course of
syllable production, and thus the target is best ap-
proximated in the later portion of the syllable. Other
contextual evidence such as relative pitch height or
band energy between syllables has also been em-
ployed (Levow, 2005; Rosenberg and Hirschberg,
2006). Interestingly, although earlier techniques
(Ross and Ostendorf, 1994; Dusterhoff et al., 1999)
employed Hidden Markov Models, they did not ex-
plicitly model these coarticulatory effects, and re-
cent approaches have primarily employed local clas-
sifiers, such as decision trees (Sun, 2002; Rosenberg
and Hirschberg, 2006) or Support Vector Machines
(Levow, 2005).

Another body of work on pitch accent recog-
nition has focused on exploitation of lexical and
syntactic information to predict ToBI labels, for
example for speech synthesis. These approaches
explored a range of machine learning techniques
from local classifiers such as decision trees (Sun,
2002) and RIPPER (Pan and McKeown, 1998) to se-
quence models such as Conditional Random Fields
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(CRFs)(Gregory and Altun, 2004) more recently.
The systems often included features that captured lo-
cal or longer range context, such as n-gram probabil-
ities, neighboring words, or even indicators of prior
mention. (Chen et al., 2004; Rangarajan Sridhar et
al., 2007) explored the integration of based prosodic
and lexico-syntactic evidence in GMM-based and
maximum entropy models respectively.

Here we explore the use of contextual acous-
tic and lexical models within a sequence learning
framework. We analyze the interaction of differ-
ent feature types on prediction of prosodic labels us-
ing linear-chain CRFs. We demonstrate improved
recognition by integration of textual and acoustic
cues, well-supported by the sequence model. Finally
we consider the joint prediction of multiple prosodic
label types, finding improvement for joint modeling
in the case of feature sets with lower initial perfor-
mance.

We begin by describing the ToBI annotation task
and our experimental data. We then discuss the
choice of conditional random fields and the use of
linear chain and factorial models. Section 4 de-
scribes the contextual acoustic model and text-based
features. Section 5 presents the experimental struc-
ture and results. We conclude with a brief discussion
of future work.

2 Data

We employ a subset of the Boston Radio News Cor-
pus (Ostendorf et al., 1995), employing data from
speakers f1a, f2b, m1b, and m2b, for experimen-
tal consistency with (Chen et al., 2004; Rangara-
jan Sridhar et al., 2007). The corpus includes pitch
accent, phrase and boundary tone annotation in the
ToBI framework (Silverman et al., 1992) aligned
with manual transcription and manual and automatic
syllabification of the materials. Each word was
also manually part-of-speech tagged. The data com-
prises over forty thousand syllables, with speaker
f2b accounting for just over half the data. Fol-
lowing earlier research (Ostendorf and Ross, 1997;
Sun, 2002), we collapse the ToBI pitch accent labels
to four classes: unaccented, high, low, and down-
stepped high for experimentation, removing distinc-
tions related to bitonal accents. We also consider the
binary case of distinguishing accented from unac-

cented syllables, (Gregory and Altun, 2004; Rosen-
berg and Hirschberg, 2006; Ananthakrishnan and
Narayanan, 2006). For phrase accents and bound-
ary tones, we consider only the binary distinction
between phrase accent/no phrase accent and bound-
ary tone/no boundary tone.

All experiments evaluate automatic prosodic la-
beling at the syllable level.

3 Modeling with Linear-Chain and
Factorial CRFs

Most prior acoustically based approaches to
prosodic labeling have used local classifiers. How-
ever, on phonological grounds, we expect that cer-
tain label sequences will be much more probable
than others. For example, sequences of multiple
high accents are relatively uncommon in contrast to
the case of an unaccented syllable preceding an ac-
cented one. This characteristic argues for a model
which encodes and exploits inter-label dependen-
cies. Furthermore, under the ToBI labeling guide-
lines, the presence of a boundary tone dictates the
co-occurrence of a phrase accent label. To capture
these relations between labels of different types, we
also consider factorial models.

Conditional Random Fields (Lafferty et al., 2001)
are a class of graphical models which are undirected
and conditionally trained. While they can repre-
sent long term dependencies, most applications have
employed first-order linear chains for language and
speech processing tasks including POS tagging, sen-
tence boundary detection (Liu et al., 2005), and
even text-oriented pitch accent prediction(Gregory
and Altun, 2004). The models capture sequential
label-label relations, but unlike HMMs, the condi-
tionally trained model can more tractably support
larger text-based feature sets. Factorial CRFs (Sut-
ton, 2006; McCallum et al., 2003) augment the lin-
ear sequence model with additional cotemporal la-
bels, so that multiple (factors) labels are predicted
at each time step and dependencies between them
can be modeled. Examples of linear-chain and fac-
torial CRFs appear in Figure 1. In the linear chain
example, the fi items correspond to the features and
the yi to labels to be predicted, for example prosodic
and text features and pitch accent labels respectively.
The vertical lines correspond to the dependencies
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Figure 1: Linear-chain CRF (top) and Two-level
Factorial CRF (bottom).

between the features and labels; the horizontal lines
indicate the dependencies between the labels in se-
quence. In the factorial CRF example, the fi again
represent the features, while the xi, yi, and zi repre-
sent the boundary tone, phrase accent, and pitch ac-
cent labels that are being predicted. The horizontal
arcs again model the sequential bigram label-label
dependencies between labels of the same class; the
vertical arcs model the dependencies between both
the features and labels, and bigram dependencies be-
tween the labels of each of the different pairs of fac-
tors. Thus, we jointly predict pitch accent, phrase
accent, and boundary tone and, the prediction of
each label depends on the features, the other labels
predicted for the same syllable, and the sequential
label of the same class. So, pitch accent prediction
depends on the features, pitch accent predicted for
the neighboring syllable, and phrase and boundary
tone predictions for the current syllable.

We employ the Graphical Models for Mallet
(GRMM) implementation (Sutton, 2006), adapted
to also support the real-valued acoustic features re-
quired for these experiments; in some additional
contrastive experiments on zero order models, we

also employ the Mallet implementation (McCallum,
2002). We employ both linear chain and three-level
factorial CRFs, as above, to perform prosodic label-
ing.

4 Feature Representation

We exploit both lexical and prosodic features for
prosodic labeling of broadcast news speech. In par-
ticular, in contrast to (Gregory and Altun, 2004), we
employ a rich acoustic feature set, designed to cap-
ture and compensate for coarticulatory influences on
accent realization, in addition to word-based fea-
tures.

4.1 Prosodic Features

Using Praat’s (Boersma, 2001) ”To pitch” and ”To
intensity” functions and the phoneme, syllable, and
word alignments provided in the corpus, we extract
acoustic features for the region of interest. This re-
gion corresponds to the syllable nucleus in English.
For all pitch and intensity features, we compute per-
speaker z-score normalized log-scaled values.

Recent phonetic research (Xu, 1997; Shih and
Kochanski, 2000) has identified significant effects
of carryover coarticulation from preceding adjacent
syllable tones. To minimize these effects consistent
with the pitch target approximation model (Xu et al.,
1999), we compute slope features based on the sec-
ond half of this region, where this model predicts
that the underlying pitch height and slope targets of
the syllable will be most accurately approached.

For each syllable, we compute the following local
features:

• pitch values at five points evenly spaced across
the syllable nucleus,

• mean and maximum pitch values,

• slope based on a linear fit to the pitch contour
in the second half of the region, and

• mean and maximum intensity.

We consider two types of contextualized features
as well, to model and compensate for coarticula-
tory effects from neighboring syllables. The first set
of features, referred to as ”extended features”, in-
cludes the maximum and mean pitch from adjacent
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syllables as well as the nearest pitch points from the
adjacent syllables. These features extend the mod-
eled tone beyond the strict bounds of the syllable
segmentation. A second set of contextual features,
termed ”difference features”, captures the change in
feature values between the current and adjacent syl-
lables. The resulting feature set includes:

• mean, maximum, and last two pitch values
from preceding syllable,

• mean, maximum, and first value from follow-
ing syllable, and

• differences in pitch mean, pitch maximum,
pitch of midpoint, pitch slope, intensity mean,
and intensity maximum between the current
syllable and the preceding syllable, and be-
tween the current syllable and the following
syllable.

Finally, we also employ some positional and du-
rational features. Many prosodic phenomena are af-
fected by phrase or sentence position; for example,
both pitch and intensity tend to decrease across an
utterance, and pitch accent realization may also be
affected by cooccurring phrase accents or bound-
ary tones. As syllable duration typically increases
under both accenting and phrase-final lengthening,
this information can be useful in prosodic labeling.
Finally, pause information is also associated with
prosodic phrasing. Thus, we include following fea-
tures:

• two binary features indicating initial and fi-
nal in a pseudo-phrase, defined as a silence-
delimited interval,

• duration of syllable nucleus, and

• durations of pause preceding and following the
syllable.

In prior experiments using support vector ma-
chines (Levow, 2005), variants of this representa-
tion achieved competitive recognition levels for both
tone and pitch accent recognition.

4.2 Text-based Features
We employ text-based models similar to those em-
ployed by (Sun, 2002; Rangarajan Sridhar et al.,

2007). For each syllable, we capture the following
manually annotated features:

• The phonetic form of the current syllable, the
previous two syllables, and the following two
syllables,

• binary values indicating whether each of the
current, previous, and following syllables are
lexically stressed,

• integer values indicating position in a word of
the current, previous, and following syllables,

• the current word, the two previous words, and
the two following words, and

• the POS of the current word, of the two previ-
ous words, and of the two following words.

These features capture information about the current
syllable and its lexico-syntactic context, that have
been employed effectively in prosodic labeling of
pitch accent, phrase accent, and boundary tone.

5 Experiments

We explore a range of issues in the experiments
reported below. We hope to assess the impact
of feature set and acoustic and text-based fea-
ture integration in the Conditional Random Field
models. We compare their individual effective-
ness as well as the effect of combined feature
sets on labeling. In particular, we consider both
the binary accented/unaccented assignment task for
pitch accent and the four way - high/downstepped
high/low/unaccented - contrast to compare effective-
ness in problems of different difficulty. We further
consider the effect of sequence and factorial model-
ing on pitch accent recognition. All experiments are
conducted using a leave-one-out evaluation proce-
dure following (Chen et al., 2004), training on all
but one speaker and then testing on that held-out
speaker, reporting the average across the tests on
held-out data. Because speaker f2b contributes such
a large portion of the data, that speaker is never left
out.

On this split, the best word-based accuracy incor-
porating both prosodic and lexico-syntactic infor-
mation in a maximum entropy framework is 86.0%
for binary pitch accent prediction and 93.1% for
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recognition of boundary status (Rangarajan Srid-
har et al., 2007). For syllable-level recognition on
this dataset, results for speaker-independent models
reach slightly over 80% for binary pitch accent de-
tection and 88% for boundary detection. Speaker de-
pendent models have achieved very high accuracy;
over 87% on speaker f2b was reported by (Sun,
2002) for the four-class task.

5.1 Explicit Prosodic Context Features and
Sequence Models

We first assess the role of contextual prosodic fea-
tures for pitch accent recognition and their inter-
action with sequence models. To minimize inter-
action effects, we concentrate on recognition with
prosodic features alone on the challenging four-way
pitch accent problem. As described above, we aug-
mented the local syllable-based prosodic features
with contextual features associated with the preced-
ing and following syllables. We ask whether the use
of contextual features improves recognition, and,
if so, which type of context, preceding or follow-
ing, has the greatest impact. We also ask whether
the CRF models provide further improvements or
can partially or fully compensate for the lack of
explicit context features. To evaluate this impact,
we compute four-way pitch accent recognition ac-
curacy with no context features, after adding preced-
ing context, after adding following context, and with
both. We also contrast zero order and first order lin-
ear chain CRFs for these conditions. We find that
modeling preceding context yields the greatest im-
provement. This finding is consistent with findings
in recent phonetic research that argue for a larger
role of carryover coarticulation from preceding syl-
lables than of anticipatory coarticulation with fol-
lowing syllables. Furthermore, sequence modeling
in the CRF also improves results, across the explicit
context feature conditions, with improvements being
most pronounced in cases with less effective explicit
prosodic contextual features. Results for prosodic
features alone appear in Table 1. In a side exper-
iment with these prosodic features, we also briefly
explored higher-order models, but no improvement
was observed.

We also assess the impact of this richer contex-
tualized prosodic feature set both alone and in con-
junction with the full text-based feature set, in the

No Context Full Context
Prosody Two-way 78.9% 80.8%
Only Four-way 74.2% 78.2%
All Two-way 86.2% 86.2%
Features Four-way 79% 79.7%

Table 2: Impact of context prosodic features with
prosody alone and all features

full factorial CRF framework. We compare results
for pitch accent identification in both the two-way
and four-way conditions with no context and with
the full ensemble of prosodic features. We find no
difference for the two-way, all features condition for
which text-based features perform well alone. How-
ever, for the prosody only cases and the more chal-
lenging four-way task with all features, contextual
information yields improvements, demonstrating the
utility of this richer, contextualized prosodic feature
representation. These contrasts appear in Table 2.

5.2 Prosodic and Text-based Features

We continue by contrasting effectiveness of differ-
ent feature sets in the basic linear-chain CRF case
for pitch accent recognition. Table 3 presents the
results for prosodic, word-based, and combined fea-
tures sets in both the two-way and four-way classifi-
cation conditions. Overall accuracy is quite good;
in all cases, results are well above the 65% most
common class assignment level, and the best re-
sults (86.2%) outperform any previously published
speaker independent syllable-based results on this
dataset. Overall results and contrasts are found in
Table 3.

It is clear that the two feature sets combine very
effectively. In the 4-way pitch accent task, the com-
bined model yields a significant 1.5% to 2.5% in-
crease over the strong acoustic-only model. In con-
trast, in the binary task, both the overall effective-
ness of the text-based model and its utility in com-
bination with the acoustic features are enhanced,
yielding a much higher individual and combined ac-
curacy rate. This contrast can be explained by the
fact that the word features, such as part of speech,
identify items that, as a class, are likely to be ac-
cented rather then being strongly associated with a
particular tone category. The type of accent is likely
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No Context Preceding Following Both
Zero order 70.5% 75.2% 71.8% 76.4%
First order 74.2% 75.5% 73.7% 77.1%

Table 1: Prosodic Context Features and CRFs

Acoustic Text Text&Acoustic
Linear-Chain Two-way 79.48% 84.88% 86.1%

Four-way 77.06% 76.21% 79.65%
Factorial CRF Two-way 80.76% 84.74% 86.2%

Four-way 78.22% 77.46% 79.71%

Table 3: Pitch Accent Classification with Linear-Chain (top) and factorial CRFs (bottom) , using Acoustic-
only, Text-based-only, and Combined Features. Results for two- and four-way pitch accent prediction are
shown.

best determined by acoustic contrast, since accent
type is closely linked to pitch height, and the local
context and acoustic features serve to identify which
accentable words are truly accented. Thus, in the
binary task, the text-based features combine most
effectively with the evidence from the acoustic fea-
tures.

To contrast local classifiers with the linear chain
model with text-based features, we trained a zero or-
der classifier for the pitch accent prediction case and
contrasted it with a comparable first-order linear-
chain CRFs. Here for the binary accent recognition
case, using only text-based information, we reach an
accuracy of 84.3% for the history-free model, con-
trasted with an 85.4% level obtained with a compa-
rable first-order model.1

5.3 Factorial CRF Framework

Finally we consider the effect of joint classification
using the factorial CRF framework. Here, beyond
just pitch accent assignment, we perform simultane-
ous assignment of pitch accent, phrase accent and
boundary tone, where each label type corresponds
to a factor, implementing the desired dependencies.2

1This comparison was computed using the original Mallet
CRF package rather than GRMM, due to simpler zero order
model support. This results in a small difference in the resulting
scores.

2The features have not been tuned specifically for phrase ac-
count and boundary prediction, as explicit punctuation or sen-
tence boundary features would have been useful but obvious
giveaways. However, our goal is to assess the potential impact
of combined classification, without excessive tuning.

The contrasts with the linear-chain model in terms
of pitch accent prediction accuracy appear in Table
3. For the binary pitch accent condition, results are
somewhat mixed. While there is a small but not sig-
nificant decrease in accuracy for the text-only binary
classification condition, the combined case shows
little change and the prosodic case increases mod-
estly. We note in one case that joint accuracy has
risen when the pitch accent accuracy has dropped;
we speculate that some additional compensation is
needed to manage the effects of the severe class
imbalance between the dominant ”no-label” classes
for phrase accent and boundary tone and other la-
bels. For the four-way contrast between pitch accent
types, we see small to modest gains across all feature
sets, with the prosodic case improving significantly
(p < 0.025). The best results for all but the two-
way text-based classification task are found with the
factorial CRF model.

For phrase accent and boundary tone prediction,
phrase accent accuracy reaches 91.14%, and bound-
ary tone accuracy 93.72% for all features. Text-
based evidence is more effective than prosodic evi-
dence in these cases, with text-based features reach-
ing 91.06% for phrase accent and 92.51% and
acoustic features only 86.73% and 92.37% respec-
tively. However, little change is observed with the
factorial CRF relative to a linear chain model trained
on the same instances. The results for phrase accent
and boundary tone recognition appear in Table 4.
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Phrase Accent Boundary Tone
Prosodic 86.73% 92.37%
Text 91.06% 92.51%
Text+Prosodic 91.14% 93.72%

Table 4: Accuracy for phrase accent and boundary
tone with prosodic, text-based, and combined fea-
tures

6 Conclusion and Future Work

The application of linear-chain and factorial Con-
ditional Random Fields for automatic pitch accent
recognition and other prosodic labeling facilitates
modeling of sequential dependencies as well as inte-
gration of rich acoustic features with text-based ev-
idence. We plan to further investigate the model-
ing of dependencies between prosodic labels and the
sequential modeling for acoustic features. Finally,
we will also integrate prior work on subsyllable seg-
mentation to identify the best approximation of the
prosodic target with the CRF framework to produce
a fine-grained sequence model of prosodic realiza-
tion in context.
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