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Abstract

This paper presents an effective dependency

parsing approach of incorporating short de-

pendency information from unlabeled data.

The unlabeled data is automatically parsed

by a deterministic dependency parser, which

can provide relatively high performance for

short dependencies between words. We then

train another parser which uses the informa-

tion on short dependency relations extracted

from the output of the first parser. Our pro-

posed approach achieves an unlabeled at-

tachment score of 86.52, an absolute 1.24%

improvement over the baseline system on

the data set of Chinese Treebank.

1 Introduction

In dependency parsing, we attempt to build the

dependency links between words from a sen-

tence. Given sufficient labeled data, there are sev-

eral supervised learning methods for training high-

performance dependency parsers(Nivre et al., 2007).

However, current statistical dependency parsers pro-

vide worse results if the dependency length be-

comes longer (McDonald and Nivre, 2007). Here

the length of a dependency from word wi and word

wj is simply equal to |i − j|. Figure 1 shows the

F1 score1 provided by a deterministic parser rela-

tive to dependency length on our testing data. From

1precision represents the percentage of predicted arcs of
length d that are correct and recall measures the percentage of
gold standard arcs of length d that are correctly predicted.
F1 = 2 × precision × recall/(precision + recall)

the figure, we find that F1 score decreases when de-

pendency length increases as (McDonald and Nivre,

2007) found. We also notice that the parser pro-

vides good results for short dependencies (94.57%

for dependency length = 1 and 89.40% for depen-

dency length = 2). In this paper, short dependency

refers to the dependencies whose length is 1 or 2.
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Figure 1: F-score relative to dependency length

Labeled data is expensive, while unlabeled data

can be obtained easily. In this paper, we present an

approach of incorporating unlabeled data for depen-

dency parsing. First, all the sentences in unlabeled

data are parsed by a dependency parser, which can

provide state-of-the-art performance. We then ex-

tract information on short dependency relations from

the parsed data, because the performance for short

dependencies is relatively higher than others. Fi-

nally, we train another parser by using the informa-

tion as features.

The proposed method can be regarded as a semi-

supervised learning method. Currently, most semi-
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supervised methods seem to do well with artificially

restricted labeled data, but they are unable to outper-

form the best supervised baseline when more labeled

data is added. In our experiments, we show that our

approach significantly outperforms a state-of-the-art

parser, which is trained on full labeled data.

2 Motivation and previous work

The goal in dependency parsing is to tag dependency

links that show the head-modifier relations between

words. A simple example is in Figure 2, where the

link between a and bird denotes that a is the depen-

dent of the head bird.

I    see    a    beautiful    bird    .

Figure 2: Example dependency graph.

We define that word distance of word wi and word

wj is equal to |i − j|. Usually, the two words in a

head-dependent relation in one sentence can be adja-

cent words (word distance = 1) or neighboring words

(word distance = 2) in other sentences. For exam-

ple, “a” and “bird” has head-dependent relation in

the sentence at Figure 2. They can also be adjacent

words in the sentence “I see a bird.”.

Suppose that our task is Chinese dependency

parsing. Here, the string “ JJ(Specialist-

level)/ NN(working)/ NN(discussion)”

should be tagged as the solution (a) in Figure

3. However, our current parser may choose the

solution (b) in Figure 3 without any additional

information. The point is how to assign the head for

“ (Specialist-level)”. Is it “ (working)”

or “ (discussion)”?

��� �� ��

��� �� ��

��� �� ��

(b)

(a)

Figure 3: Two solutions for “ (Specialist-

level)/ (working)/ (discussion)”

As Figure 1 suggests, the current dependency

parser is good at tagging the relation between ad-

jacent words. Thus, we expect that dependencies

of adjacent words can provide useful information

for parsing words, whose word distances are longer.

When we search the string “ (Specialist-

level)/ (discussion)” at google.com, many rele-

vant documents can be retrieved. If we have a good

parser, we may assign the relations between the two

words in the retrieved documents as Figure 4 shows.

We can find that “ (discussion)” is the head of

“ (Specialist-level)” in many cases.

1)…�����5�25�	26�
�/�
�/��/,/��/������…

2)…�������� ,/�
�/��/!"#$2004%2�18��…

3)…&'()*�+,-.(")*/01234�/�
�/��/5…

n)…�678�9:/�
�/��/;�<�=>?@A…

.)…�
�/��…

Figure 4: Parsing “ (Specialist-level)/

(discussion)” in unlabeled data

Now, consider what a learning model could do

to assign the appropriate relation between “

(Specialist-level)” and “ (discussion)” in the

string “ (Specialist-level)/ (working)/

(discussion)”. In this case, we provide additional

information to “ (discussion)” as the possible

head of “ (Specialist-level)” in the unlabeled

data. In this way, the learning model may use this

information to make correct decision.

Till now, we demonstrate how to use the depen-

dency relation between adjacent words in unlabeled

data to help tag the relation between two words

whose word distance is 2. In the similar way, we can

also assign the relation between two words whose

word distance is longer by using the information.

Based on the above observations, we propose an

approach of exploiting the information from a large-

scale unlabeled data for dependency parsing. We

use a parser to parse the sentences in unlabeled data.

Then another parser makes use of the information on

short dependency relations in the newly parsed data

to improve performance.

Our study is relative to incorporating unlabeled

89



data into a model for parsing. There are several other

studies relevant to ours as described below.

A simple method is self-training in which the ex-

isting model first labels unlabeled data and then the

newly labeled data is then treated as hand annotated

data for training a new model. But it seems that self-

training is not so effective. (Steedman et al., 2003)

reports minor improvement by using self-training

for syntactic parsing on small labeled data. The rea-

son may be that errors in the original model would

be amplified in the new model. (McClosky et al.,

2006) presents a successful instance of parsing with

self-training by using a re-ranker. As Figure 1 sug-

gests, the dependency parser performs bad for pars-

ing the words with long distances. In our approach,

we choose partial reliable information which comes

from short dependency relations for the dependency

parser.

(Smith and Eisner, 2006) presents an approach to

improve the accuracy of a dependency grammar in-

duction models by EM from unlabeled data. They

obtain consistent improvements by penalizing de-

pendencies between two words that are farther apart

in the string.

The study most relevant to ours is done by (Kawa-

hara and Kurohashi, 2006). They present an in-

tegrated probabilistic model for Japanese parsing.

They also use partial information after current parser

parses the sentences. Our work differs in that we

consider general dependency relations while they

only consider case frames. And we represent addi-

tional information as the features for learning mod-

els while they use the case frames as one component

for a probabilistic model.

3 Our Approach

In this section, we describe our approach of exploit-

ing reliable features from unlabeled data, which is

parsed by a basic parser. We then train another

parser based on new feature space.

3.1 Training a basic parser

In this paper, we implement a deterministic parser

based on the model described by (Nivre, 2003).

This model is simple and works very well in the

shared-tasks of CoNLL2006(Nivre et al., 2006) and

CoNLL2007(Hall et al., 2007). In fact, our approach

can also be applied to other parsers, such as (Ya-

mada and Matsumoto, 2003)’s parser, (McDonald et

al., 2006)’s parser, and so on.

3.1.1 The parser
The parser predicts unlabeled directed dependen-

cies between words in sentences. The algorithm

(Nivre, 2003) makes a dependency parsing tree in

one left-to-right pass over the input, and uses a stack

to store the processed tokens. The behaviors of the

parser are defined by four elementary actions (where

TOP is the token on top of the stack and NEXT is the

next token in the original input string):

• Left-Arc(LA): Add an arc from NEXT to TOP;

pop the stack.

• Right-Arc(RA): Add an arc from TOP to

NEXT; push NEXT onto the stack.

• Reduce(RE): Pop the stack.

• Shift(SH): Push NEXT onto the stack.

The first two actions mean that there is a dependency

relation between TOP and NEXT.

More information about the parser can be avail-

able in the paper(Nivre, 2003). The parser uses a

classifier to produce a sequence of actions for a sen-

tence. In our experiments, we use the SVM model

as the classifier. More specifically, our parser uses

LIBSVM(Chang and Lin, 2001) with a polynomial

kernel (degree = 3) and the built-in one-versus-all

strategy for multi-class classification.

3.1.2 Basic features
We represent basic features extracted from the

fields of data representation, including word and

part-of-speech(POS) tags. The basic features used

in our parser are listed as follows:

• The features based on words: the words of TOP

and NEXT, the word of the head of TOP, the

words of leftmost and rightmost dependent of

TOP, and the word of the token immediately

after NEXT in original input string.

• The features based on POS: the POS of TOP

and NEXT, the POS of the token immediately

below TOP, the POS of leftmost and rightmost

dependent of TOP, the POS of next three tokens

after NEXT, and the POS of the token immedi-

ately before NEXT in original input string.
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With these basic features, we can train a state-of-

the-art supervised parser on labeled data. In the fol-

lowing content, we call this parser Basic Parser.

3.2 Unlabeled data preprocessing and parsing

The input of our approach is unlabeled data, which

can be obtained easily. For the Basic Parser, the cor-

pus should have part-of-speech (POS) tags. There-

fore, we should assign the POS tags using a POS

tagger. For Chinese sentences, we should segment

the sentences into words before POS tagging. Af-

ter data preprocessing, we have the word-segmented

sentences with POS tags. We then use the Basic

Parser to parse all sentences in unlabeled data.

3.3 Using short dependency relations as
features

The Basic Parser can provide complete dependency

parsing trees for all sentences in unlabeled data. As

Figure 1 shows, short dependencies are more reli-

able. To offer reliable information for the model, we

propose the features based on short dependency re-

lations from the newly parsed data.

3.3.1 Collecting reliable information
In a parsed sentence, if the dependency length

of two words is 1 or 2, we add this word pair

into a list named DepList and count its frequency.

We consider the direction and length of the de-

pendency. D1 refers to the pairs with dependency

length 1, D2 refers to the pairs with dependency

length 2, R refers to right arc, and L refers to left

arc. For example, “ (specialist-level)” and

“ (discussion)” are adjacent words in a sentence

“ (We)/ (held)/ (specialist-level)/

(discussion)/ ” and have a left dependency arc

assigned by the Basic Parser. We add a word pair

“ (specialist-level)- (discussion)” with

“D1-L” and its frequency into the DepList.

According to frequency, we then group word

pairs into different buckets, with a bucket ONE

for frequency 1, a single bucket LOW for 2-7, a

single bucket MID for 8-14, and a single bucket

HIGH for 15+. We choose these threshold val-

ues via testing on development data. For example,

the frequency of the pair “ (specialist-level)-

(discussion)” with “D1-L” is 20. Then it is

grouped into the bucket “D1-L-HIGH”.

Here, we do not use the frequencies as the weight

of the features. We derive the weights of the features

by the SVM model from training data rather than

approximating the weights from unlabeled data.

3.3.2 New features
Based on the DepList, we represent new features

for training or parsing current two words: TOP and

NEXT. We consider word pairs from the context

around TOP and NEXT, and get the buckets of the

pairs in the DepList.

First, we represent the features based on D1. We

name these features D1 features. The D1 features

are listed according to different word distances be-

tween TOP and NEXT as follows:

1. Word distance is 1: (TN0) the bucket of the

word pair of TOP and NEXT, and (TN1) the

bucket of the word pair of TOP and next token

after NEXT.

2. Word distance is 2 or 3+: (TN0) the bucket of

the word pair of TOP and NEXT, (TN1) the

bucket of the word pair of TOP and next token

after NEXT, and (TN 1) the bucket of the word

pair of TOP and the token immediately before

NEXT.

In item 2), all features are in turn combined with

two sets of distances: a set for distance 2 and

a single set for distances 3+. Thus, we have 8

types of D1 features, including 2 types in item

1) and 6 types in item 2). The feature is format-

ted as “Position:WordDistance:PairBucket”. For

example, we have the string “ (specialist-

level)/w1/w2/w3/ (discussion)”, and “

(specialist-level)” is TOP and “ (discussion)”

is NEXT. Thus we can have the feature

“TN0:3+:D1-L-HIGH” for TOP and NEXT,

because the word distance is 4(3+) and “

(specialist-level)- (discussion)” belongs to

the bucket “D1-L-HIGH”. Here, if a string belongs

to two buckets, we use the most frequent bucket.

Then, we represent the features based on D2. We

name these features D2 features. The D2 features

are listed as follows:

1. Word distance is 1: (TN1) the bucket of the

word pair of TOP and next token after NEXT.
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2. Word distance is 2: (TN0) the bucket of the

word pair of TOP and NEXT, and (TN1) the

bucket of the word pair of TOP and next token

after NEXT.

4 Experiments

For labeled data, we used the Chinese Treebank

(CTB) version 4.02 in our experiments. We used the

same rules for conversion and created the same data

split as (Wang et al., 2007): files 1-270 and 400-931

as training, 271-300 as testing and files 301-325 as

development. We used the gold standard segmenta-

tion and POS tags in the CTB.

For unlabeled data, we used the PFR corpus 3.

It includes the documents from People’s Daily at

1998 (12 months). There are about 290 thousand

sentences and 15 million words in the PFR corpus.

To simplify, we used its segmentation. And we dis-

carded the POS tags because PFR and CTB used dif-

ferent POS sets. We used the package TNT (Brants,

2000), a very efficient statistical part-of-speech tag-

ger, to train a POS tagger4 on training data of the

CTB.

We measured the quality of the parser by the un-

labeled attachment score (UAS), i.e., the percentage

of tokens with correct HEAD. We reported two types

of scores: “UAS without p” is the UAS score with-

out all punctuation tokens and “UAS with p” is the

one with all punctuation tokens.

4.1 Experimental results
In the experiments, we trained the parsers on train-

ing data and tuned the parameters on development

data. In the following sessions, “baseline” refers

to Basic Parser (the model with basic features), and

“OURS” refers to our proposed parser (the model

with all features).

4.1.1 Our approach
Table 1 shows the results of the parser with differ-

ent feature sets, where “+D1” refers to the parser

2More detailed information can be found at
http://www.cis.upenn.edu/˜chinese/.

3More detailed information can be found at
http://www.icl.pku.edu.

4To know whether our POS tagger is good, we also tested
the TNT package on the standard training and testing sets for
full parsing (Wang et al., 2006). The TNT-based tagger pro-
vided 91.52% accuracy, the comparative result with (Wang et
al., 2006).

with basic features and D1 features, and “+D2”

refers to the parser with all features(basic features,

D1 features, and D2 features). From the table, we

found a large improvement (1.12% for UAS with-

out p and 1.23% for UAS with p) from adding D1

features. And D2 features provided minor improve-

ment, 0.12% for UAS without p and 0.14% for UAS

with p. This may be due to the information from de-

pendency length 2 containing more noise. Totally,

we achieved 1.24% improvement for UAS with p

and 1.37% for UAS without p. The improvement

is significant in one-tail paired t-test (p < 10−5).

Table 1: The results with different feature sets
UAS without p UAS with p

baseline 85.28 83.79

+D1 86.40 85.02

+D2(OURS) 86.52 85.16

We also attempted to discover the effect of dif-

ferent numbers of unlabeled sentences to use. Ta-

ble 2 shows the results with different numbers of

sentences. Here, we randomly chose different per-

centages of sentences from unlabeled data. When

we used 1% sentences of unlabeled data, the parser

achieved a large improvement. As we added more

sentences, the parser obtained more benefit.

Table 2: The results with different numbers of unla-

beled sentences
Sentences UAS without p UAS with p

0%(baseline) 85.28 83.79

1% 85.68 84.40

2% 85.69 84.51

5% 85.78 84.59

10% 85.97 84.62

20% 86.25 84.86

50% 86.34 84.92

100%(OURS) 86.52 85.16

4.1.2 Comparison of other systems
Finally, we compare our parser to the state of

the art. We used the same testing data as (Wang

et al., 2005) did, selecting the sentences length up

to 40. Table 3 shows the results achieved by our

method and other researchers (UAS with p), where

Wang05 refers to (Wang et al., 2005), Wang07 refers
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to (Wang et al., 2007), and McDonald&Pereira065

refers to (McDonald and Pereira, 2006). From the

table, we found that our parser performed best.

Table 3: The results on the sentences length up to 40

UAS with p

Wang05 79.9

McDonald&Pereira06 82.5

Wang07 86.6

baseline 87.1

OURS 88.4

5 Analysis

5.1 Improvement relative to dependency length

We now look at the improvement relative to depen-

dency length as Figure 5 shows. From the figure, we

found that our method provided better performance

when dependency lengths are less than 13. Espe-

cially, we had improvements 2.35% for dependency

length 4, 3.13% for length 5, 2.56% for length 6, and

4.90% for length 7. For longer ones, the parser can

not provide stable improvement. The reason may

be that shorter dependencies are often modifier of

nouns such as determiners or adjectives or pronouns

modifying their direct neighbors, while longer de-

pendencies typically represent modifiers of the root

or the main verb in a sentence(McDonald and Nivre,

2007). We did not provide new features for modi-

fiers of the root.
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Figure 5: Improvement relative to dependency

length

5(Wang, 2007) reported this result.

JJ  NN  NN
JJ     NN    NN

JJ      NN   NN

NN  NN  NN
NN    NN   NN

NN     NN   NN

AD  VV VV
AD    VV    VV

AD    VV     VV

JJ  NN  CC NN
JJ  NN  CC NN

JJ  NN  CC NN

Figure 6: Ambiguities

5.2 Cases study in neighborhood
In Chinese dependency parsing, there are many am-

biguities in neighborhood, such as “JJ NN NN”,

“AD VV VV”, “NN NN NN”, “JJ NN CC NN”.

They have possible parsing trees as Figure 6 shows.

For these ambiguities, our approach can provide

additional information for the parser. For ex-

ample, we have the following case in the data

set: “ JJ(friendly)/ NN(corporation)/

NN(relationship)/”. We can provide additional in-

formation about the relations of “ JJ(friendly)/

NN(corporation)” and “ JJ(friendly)/

NN(relationship)/” in unlabeled data to help the

parser make the correct decision.

Our approach can also work for the longer con-

structions, such as “JJ NN NN NN” and “NN NN

NN NN” in the similar way.

For the construction “JJ NN1 CC NN2”, we

now do not define special features to solve

the ambiguity. However, based on the cur-

rent DepList, we can also provide additional

information about the relations of JJ/NN1 and

JJ/NN2. For example, for the string “

JJ(further)/ NN(improvement)/ CC(and)/

NN(development)/”, the parser often assigns

“ (improvement)” as the head of “

(further)” instead of “ (development)”. There

is an entry “ (further)- (development)” in

the DepList. Here, we need a coordination identifier

to identify these constructions. After that, we can

provide the information for the model.

6 Conclusion

This paper presents an effective approach to improve

dependency parsing by using unlabeled data. We ex-

tract the information on short dependency relations
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in an automatically generated corpus parsed by a ba-

sic parser. We then train a new parser with the infor-

mation. The new parser achieves an absolute im-

provement of 1.24% over the state-of-the-art parser

on Chinese Treebank (from 85.28% to 86.52%).

There are many ways in which this research

should be continued. First, feature representation

needs to be improved. Here, we use a simple fea-

ture representation on short dependency relations.

We may use a combined representation to use the in-

formation from long dependency relations even they

are not so reliable. Second, we can try to select more

accurately parsed sentences. Then we may collect

more reliable information than the current one.
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