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Abstract 

This paper proposes a context-sensitive convo-
lution tree kernel for pronoun resolution. It re-
solves two critical problems in previous 
researches in two ways. First, given a parse 
tree and a pair of an anaphor and an antecedent 
candidate, it implements a dynamic-expansion 
scheme to automatically determine a proper 
tree span for pronoun resolution by taking 
predicate- and antecedent competitor-related 
information into consideration. Second, it ap-
plies a context-sensitive convolution tree ker-
nel, which enumerates both context-free and 
context-sensitive sub-trees by considering their 
ancestor node paths as their contexts. Evalua-
tion on the ACE 2003 corpus shows that our 
dynamic-expansion tree span scheme can well 
cover necessary structured information in the 
parse tree for pronoun resolution and the con-
text-sensitive tree kernel much outperforms 
previous tree kernels.  

1 Introduction 

It is well known that syntactic structured informa-
tion plays a critical role in many critical NLP ap-
plications, such as parsing, semantic role labeling, 
semantic relation extraction and co-reference reso-
lution. However, it is still an open question on 
what kinds of syntactic structured information are 
effective and how to well incorporate such struc-
tured information in these applications. 

Much research work has been done in this direc-
tion. Prior researches apply feature-based methods 
to select and define a set of flat features, which can 
be mined from the parse trees, to represent particu-
lar structured information in the parse tree, such as 
the grammatical role (e.g. subject or object), ac-
cording to the particular application. Indeed, such 
feature-based methods have been widely applied in 

parsing (Collins 1999; Charniak 2001), semantic 
role labeling (Pradhan et al 2005), semantic rela-
tion extraction (Zhou et al 2005) and co-reference 
resolution  (Lapin and Leass 1994; Aone and Ben-
nett 1995; Mitkov 1998; Yang et al 2004; Luo and 
Zitouni 2005; Bergsma and Lin 2006). The major 
problem with feature-based methods on exploring 
structured information is that they may fail to well 
capture complex structured information, which is 
critical for further performance improvement.  

The current trend is to explore kernel-based 
methods (Haussler, 1999) which can implicitly 
explore features in a high dimensional space by 
employing a kernel to calculate the similarity be-
tween two objects directly. In particular, the ker-
nel-based methods could be very effective at 
reducing the burden of feature engineering for 
structured objects in NLP, e.g. the parse tree struc-
ture in coreference resolution. During recent years, 
various tree kernels, such as the convolution tree 
kernel (Collins and Duffy 2001), the shallow parse 
tree kernel (Zelenko et al 2003) and the depend-
ency tree kernel (Culota and Sorensen 2004), have 
been proposed in the literature. Among previous 
tree kernels, the convolution tree kernel represents 
the state-of-the-art and have been successfully ap-
plied by Collins and Duffy (2002) on parsing, Mo-
schitti (2004) on semantic role labeling, Zhang et 
al (2006) on semantic relation extraction  and Yang 
et al (2006) on pronoun resolution.  

However, there exist two problems in Collins 
and Duffy’s kernel. The first is that the sub-trees 
enumerated in the tree kernel are context-free. That 
is, each sub-tree enumerated in the tree kernel does 
not consider the context information outside the 
sub-tree. The second is how to decide a proper tree 
span in the tree kernel computation according to 
the particular application. To resolve above two 
problems, this paper proposes a new tree span 
scheme and applies a new tree kernel and to better 
capture syntactic structured information in pronoun 
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resolution, whose task is to find the corresponding 
antecedent for a given pronominal anaphor in text. 

The rest of this paper is organized as follows. In 
Section 2, we review related work on exploring 
syntactic structured information in pronoun resolu-
tion and their comparison with our method. Section 
3 first presents a dynamic-expansion tree span 
scheme by automatically expanding the shortest 
path to include necessary structured information, 
such as predicate- and antecedent competitor-
related information. Then it presents a context-
sensitive convolution tree kernel, which not only 
enumerates context-free sub-trees but also context-
sensitive sub-trees by considering their ancestor 
node paths as their contexts. Section 4 shows the 
experimental results. Finally, we conclude our 
work in Section 5.  

2 Related Work 

Related work on exploring syntactic structured 
information in pronoun resolution can be typically 
classified into three categories: parse tree-based 
search algorithms (Hobbs 1978), feature-based  
(Lappin and Leass 1994; Bergsma and Lin 2006) 
and tree kernel-based methods (Yang et al 2006).  

As a representative for parse tree-based search 
algorithms, Hobbs (1978) found the antecedent for 
a given pronoun by searching the parse trees of 
current text. It processes one sentence at a time 
from current sentence to the first sentence in text 
until an antecedent is found. For each sentence, it 
searches the corresponding parse tree in a left-to-
right breadth-first way. The first antecedent candi-
date, which satisfies hard constraints (such as gen-
der and number agreement), would be returned as 
the antecedent. Since the search is completely done 
on the parse trees, one problem with the parse tree-
based search algorithms is that the performance 
would heavily rely on the accuracy of the parse 
trees. Another problem is that such algorithms are 
not good enough to capture necessary structured 
information for pronoun resolution. There is still a 
big performance gap even on correct parse trees. 

Similar to other NLP applications, feature-
based methods have been widely applied in pro-
noun resolution to explore syntactic structured in-
formation from the parse trees. Lappin and Leass 
(1994) derived a set of salience measures (e.g. sub-
ject, object or accusative emphasis) with manually 

assigned weights from the syntactic structure out-
put by McCord’s Slot Grammar parser. The candi-
date with the highest salience score would be 
selected as the antecedent. Bergsma and Lin (2006) 
presented an approach to pronoun resolution based 
on syntactic paths. Through a simple bootstrapping 
procedure, highly co-reference paths can be 
learned reliably to handle previously challenging 
instances and robustly address traditional syntactic 
co-reference constraints. Although feature-based 
methods dominate on exploring syntactic struc-
tured information in the literature of pronoun reso-
lution, there still exist two problems with them. 
One problem is that the structured features have to 
be selected and defined manually, usually by lin-
guistic intuition. Another problem is that they may 
fail to effectively capture complex structured parse 
tree information. 

As for tree kernel-based methods, Yang et al 
(2006) captured syntactic structured information 
for pronoun resolution by using the convolution 
tree kernel (Collins and Duffy 2001) to measure 
the common sub-trees enumerated from the parse 
trees and achieved quite success on the ACE 2003 
corpus. They also explored different tree span 
schemes and found that the simple-expansion 
scheme performed best. One problem with their 
method is that the sub-trees enumerated in Collins 
and Duffy’s kernel computation are context-free, 
that is, they do not consider the information out-
side the sub-trees. As a result, their ability of ex-
ploring syntactic structured information is much 
limited. Another problem is that, among the three 
explored schemes, there exists no obvious over-
whelming one, which can well cover syntactic 
structured information.  

The above discussion suggests that structured 
information in the parse trees may not be well util-
ized in the previous researches, regardless of fea-
ture-based or tree kernel-based methods. This 
paper follows tree kernel-based methods. Com-
pared with Collins and Duffy’s kernel and its ap-
plication in pronoun resolution (Yang et al 2006), 
the context-sensitive convolution tree kernel enu-
merates not only context-free sub-trees but also 
context-sensitive sub-trees by taking their ancestor 
node paths into consideration. Moreover, this paper 
also implements a dynamic-expansion tree span 
scheme by taking predicate- and antecedent com-
petitor-related information into consideration. 
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3 Context Sensitive Convolution Tree 
Kernel for Pronoun Resolution 

In this section, we first propose an algorithm to 
dynamically determine a proper tree span for pro-
noun resolution and then present a context-
sensitive convolution tree kernel to compute simi-
larity between two tree spans. In this paper, all the 
texts are parsed using the Charniak parser 
(Charniak 2001) based on which the tree span is 
determined. 

3.1 Dynamic-Expansion Tree Span Scheme 

Normally, parsing is done on the sentence level. To 
deal with the cases that an anaphor and an antece-
dent candidate do not occur in the same sentence, 
we construct a pseudo parse tree for an entire text 
by attaching the parse trees of all its sentences to 
an upper “S” node, similar to Yang et al (2006). 

Given the parse tree of a text, the problem is 
how to choose a proper tree span to well cover syn-
tactic structured information in the tree kernel 
computation. Generally, the more a tree span in-
cludes, the more syntactic structured information 
would be provided, at the expense of more noisy 
information. Figure 2 shows the three tree span 
schemes explored in Yang et al (2006): Min-
Expansion (only including the shortest path con-
necting the anaphor and the antecedent candidate), 
Simple-Expansion (containing not only all the 
nodes in Min-Expansion but also the first level 
children of these nodes) and Full-Expansion (cov-
ering the sub-tree between the anaphor and the 
candidate), such as the sub-trees inside the dash 
circles of Figures 2(a), 2(b) and 2(c) respectively. 
It is found (Yang et al 2006) that the simple-
expansion tree span scheme performed best on the 
ACE 2003 corpus in pronoun resolution. This sug-
gests that inclusion of more structured information 
in the tree span may not help in pronoun resolution. 

To better capture structured information in the 
parse tree, this paper presents a dynamic-expansion 
scheme by trying to include necessary structured 
information in a parse tree. The intuition behind 
our scheme is that predicate- and antecedent com-
petitor- (all the other compatible1 antecedent can-
didates between the anaphor and the considered 
antecedent candidate) related information plays a 
critical role in pronoun resolution. Given an ana-
                                                           
1 With matched number, person and gender agreements. 

phor and an antecedent candidate, e.g. “Mary” and 
“her” as shown in Figure 1, this is done by: 
1) Determining the min-expansion tree span via 

the shortest path, as shown in Figure 1(a). 
2) Attaching all the antecedent competitors along 

the corresponding paths to the shortest path. As 
shown in Figure 1(b), “the woman” is attached 
while “the room” is not attached since the for-
mer is compatible with the anaphor and the lat-
ter is not compatible with the anaphor. In this 
way, the competition between the considered 
candidate and other compatible candidates can 
be included in the tree span. In some sense, this 
is a natural extension of the twin-candidate 
learning approach proposed in Yang et al 
(2003), which explicitly models the competition 
between two antecedent candidates. 

3) For each node in the tree span, attaching the 
path from the node to the predicate terminal 
node if it is a predicate-headed node. As shown 
in Figure 1(c), “said” and “bit” are attached. 

4) Pruning those nodes (except POS nodes) with 
the single in-arc and the single out-arc and with 
its syntactic phrase type same as its child node. 
As shown in Figure 1(d), the left child of the 
“SBAR” node, the “NP” node, is removed and 
the sub-tree (NP the/DT woman/NN) is at-
tached to the “SBAR” node directly.  
To show the difference among min-, simple-, 

full- and dynamic-expansion schemes, Figure 2 
compares them for three different sentences, given 
the anaphor “her/herself” and the antecedent can-
didate “Mary”. It shows that:  
• Min-, simple- and full-expansion schemes have 

the same tree spans (except the word nodes) for 
the three sentences regardless of the difference 
among the sentences while the dynamic-
expansion scheme can adapt to difference ones. 

• Normally, the min-expansion scheme is too 
simple to cover necessary information (e.g. “the 
woman” in the 1st sentence is missing).  

• The full-expansion scheme can cover all the 
information at the expense of much noise (e.g. 
“the man in that room” in the 2nd sentence).  

• The simple-expansion scheme can cover some 
necessary predicate-related information (e.g. 
“said” and “bit” in the sentences). However, it 
may introduce some noise (e.g. the left child of 
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the “SBAR” node, the “NP” node, may not be 
necessary in the 2nd sentence) and ignore neces-
sary antecedent competitor-related information 
(e.g. “the woman” in the 1st sentence). 

• The dynamic-expansion scheme normally 
works well. It can not only cover predicate-

related information but also structured informa-
tion related with the competitors of the consid-
ered antecedent candidate. In this way, the 
competition between the considered antecedent 
candidate and other compatible candidates can 
be included in the dynamic-expansion scheme. 

 

 

 
Figure 1: Dynamic-Expansion Tree Span Scheme 

 

  

 
Figure 2: Comparison of Min-, Simple-, Full-and Dynamic-Expansions: More Examples 

28



3.2 Context-Sensitive Convolution Tree Kernel 

Given any tree span scheme, e.g. the dynamic-
expansion scheme in the last subsection, we now 
study how to measure the similarity between two 
tree spans using a convolution tree kernel. 

A convolution kernel (Haussler D., 1999) aims 
to capture structured information in terms of sub-
structures. As a specialized convolution kernel, the 
convolution tree kernel, proposed in Collins and 
Duffy (2001), counts the number of common sub-
trees (sub-structures) as the syntactic structure 
similarity between two parse trees. This convolu-
tion tree kernel has been successfully applied by 
Yang et al (2006) in pronoun resolution. However, 
there is one problem with this tree kernel: the sub-
trees involved in the tree kernel computation are 
context-free (That is, they do not consider the in-
formation outside the sub-trees.). This is contrast 
to the tree kernel proposed in Culota and Sorensen 
(2004) which is context-sensitive, that is, it consid-
ers the path from the tree root node to the sub-tree 
root node. In order to integrate the advantages of 
both tree kernels and resolve the problem in 
Collins and Duffy’s kernel, this paper applies the 
same context-sensitive convolution tree kernel, 
proposed by Zhou et al (2007) on relation extrac-
tion. It works by taking ancestral information (i.e. 
the root node path) of sub-trees into consideration: 
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where ][1 jN i is the set of root node paths with 
length i in tree T[j] while the maximal length of a 
root node path is defined by m; and 

])2[],1[( 11
ii nn∆  counts the common context-

sensitive sub-trees rooted at root node paths ]1[1
in  

and ]2[1
in . In the tree kernel, a sub-tree becomes 

context-sensitive via the “root node path” moving 
along the sub-tree root. For more details, please 
refer to Zhou et al (2007). 

4 Experimentation 

This paper focuses on the third-person pronoun 
resolution and, in all our experiments, uses the 
ACE 2003 corpus for evaluation. This ACE corpus 

contains ~3.9k pronouns in the training data and 
~1.0k pronouns in the test data.  

Similar to Soon et al (2001), an input raw text is 
first preprocessed automatically by a pipeline of 
NLP components, including sentence boundary 
detection, POS tagging, named entity recognition 
and phrase chunking, and then a training or test 
instance is formed by a pronoun and one of its an-
tecedent candidates. During training, for each ana-
phor encountered, a positive instance is created by 
pairing the anaphor and its closest antecedent 
while a set of negative instances is formed by pair-
ing the anaphor with each of the non-coreferential 
candidates. Based on the training instances, a bi-
nary classifier is generated using a particular learn-
ing algorithm. In this paper, we use SVMLight 
deleveloped by Joachims (1998). During resolution, 
an anaphor is first paired in turn with each preced-
ing antecedent candidate to form a test instance, 
which is presented to a classifier. The classifier 
then returns a confidence value indicating the like-
lihood that the candidate is the antecedent. Finally, 
the candidate with the highest confidence value is 
selected as the antecedent. In this paper, the NPs 
occurring within the current and previous two sen-
tences are taken as the initial antecedent candidates, 
and those with mismatched number, person and 
gender agreements are filtered out. On average, an 
anaphor has ~7 antecedent candidates. The per-
formance is evaluated using F-measure instead of 
accuracy since evaluation is done on all the pro-
nouns occurring in the data.  

Scheme/m 1 2 3 4 
Min 78.5 79.8 80.8 80.8 

Simple 79.8 81.0 81.7 81.6 
Full 78.3 80.1 81.0 81.1 

Dynamic 80.8 82.3 83.0 82.9 
Table 1: Comparison of different context-sensitive  
convolution tree kernels and tree span schemes 
(with entity type info attached at both the anaphor 
and the antecedent candidate nodes by default) 

In this paper, the m parameter in our context-
sensitive convolution tree kernel as shown in 
Equation (1) indicates the maximal length of root 
node paths and is optimized to 3 using 5-fold cross 
validation on the training data. Table 1 systemati-
cally evaluates the impact of different m in our 
context-sensitive convolution tree kernel and com-
pares our dynamic-expansion tree span scheme 
with the existing three tree span schemes, min-, 
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simple- and full-expansions as described in Yang 
et al (2006). It also shows that that our tree kernel 
achieves best performance with m = 3 on the test 
data, which outperforms the one with m = 1 by 
~2.2 in F-measure. This suggests that the parent 
and grandparent nodes of a sub-tree  contain much 
information for pronoun resolution while 
considering more ancestral nodes doesnot further 
improve the performance. This may be due to that, 
although our experimentation on the training data 
indicates that  more than 90% (on average) of 
subtrees has a root node path longer than 3 (since 
most of the subtrees are deep from the root node 
and more than 90% of the parsed trees are deeper 
than 6 levels in the ACE 2003 corpus), including a 
root node path longer than 3 may be vulnerable to 
the full parsing errors and have negative impact. It 
also shows that our dynamic-expansion tree span 
scheme outperforms min-expansion, simple-
expansion and full-expansion schemes by ~2.4, 
~1.2 and ~2.1 in F-measure respectively. This 
suggests the usefulness of dynamically expanding 
tree spans to cover necessary structured 
information in pronoun resolution. In all the 
following experiments, we will apply our tree 
kernel with m=3 and the dynamic-expansion tree 
span scheme by default, unless specified. 

We also evaluate the contributions of antecedent 
competitor-related information, predicate-related 
information and pruning in our dynamic-expansion 
tree span scheme by excluding one of them from 
the dynamic-expansion scheme. Table 2 shows that 
1) antecedent competitor-related information con-
tributes much to our scheme; 2) predicate-related 
information contributes moderately; 3) pruning 
only has slight contribution. This suggests the im-
portance of including the competition in the tree 
span and the effect of predicate-argument struc-
tures in pronoun resolution. This also suggests that 
our scheme can well make use of such predicate- 
and antecedent competitor-related information.  

Dynamic Expansion Effect 
- Competitors-related Info 81.1(-1.9) 
- Predicates-related Info 82.2 (-0.8) 

- Pruning 82.8(-0.2)  
All 83.0 

Table 2: Contributions of different factors in our 
dynamic-expansion tree span scheme 

Table 3 compares the performance of different 
tree span schemes for pronouns with antecedents in 

different sentences apart. It shows that our dy-
namic-expansion scheme is much more robust than 
other schemes with the increase of sentences apart. 

Scheme /  
#Sentences Apart 0 1 2 

Min 86.3 76.7 39.6 
Simple 86.8 77.9 43.8 

Full 86.6 77.4 35.4 
Dynamic 87.6 78.8 54.2 

Table 3: Comparison of tree span schemes with 
antecedents in different sentences apart 

5 Conclusion 

Syntactic structured information holds great poten-
tial in many NLP applications. The purpose of this 
paper is to well capture syntactic structured infor-
mation in pronoun resolution. In this paper, we 
proposes a context-sensitive convolution tree ker-
nel to resolve two critical problems in previous 
researches in pronoun resolution by first automati-
cally determining a dynamic-expansion tree span, 
which effectively covers structured information in 
the parse trees by taking predicate- and antecedent 
competitor-related information into consideration, 
and then applying a context-sensitive convolution 
tree kernel, which enumerates both context-free 
sub-trees and context-sensitive sub-trees. Evalua-
tion on the ACE 2003 corpus shows that our dy-
namic-expansion tree span scheme can better 
capture necessary structured information than the 
existing tree span schemes and our tree kernel can 
better model structured information than the state-
of-the-art Collins and Duffy’s kernel.  

For the future work, we will focus on improving 
the context-sensitive convolution tree kernel by 
better modeling context-sensitive information and 
exploring new tree span schemes by better incor-
porating useful structured information. In the 
meanwhile, a more detailed quantitative evaluation 
and thorough qualitative error analysis will be per-
formed to gain more insights. 
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