Interaction of Context Descriptor and Ontology for Semantic Service
Discovery in Ubiquitous environment'

JunWon Kwak
Department of Computer Engineering,
Sungkyunkwan University,

300 Chunchun-dong,
Jangan-gu, Suwon,
Gryeonggi-do 440-746,
Republic of Korea
gsimle777@ece.skku.ac.kr

Abstract

The ubiquitous computing vision is to
make knowledge and service easily
available in our everyday environment.
A wide range of devices, applications
and services can be interconnected to
provide intelligent and automatic sys-
tems that make our lives and more en-
joyable and our workplaces more
efficient. Before services can be used,
they first have to be found. Service dis-
covery is a mechanism for finding ser-
vices. Current mechanisms are
syntactic methods (i.e. they match ser-
vice requests and descriptions of ser-
vice offerings based on keywords)
which often lead to a poor quality result.
This our work focuses on how the qual-
ity of the service discovery result can
be improved. Service discovery quality
denotes the extent to which a returned
match is relevant for the user. Interac-
tion of Ontology and context descriptor
is to improve quality of result for ser-
vice discovery interoperability of a be-
tween user and service provider.

UngMo kim
Department of Computer Engineering,
Sungkyunkwan University,

300 Chunchun-dong,
Jangan-gu, Suwon,
Gryeonggi-do 440-746,
Republic of Korea
umkimeece.skku.ac.kr

1 Introduction

In the Ubiquitous Computing [8] (ubicomp)
vision of the future, workplaces, homes and pub-
lic environments will contain a wide range of
networked devices intended to make workplaces
more efficient, to increase quality of life, and
empower users by providing information and
services in an effortless way. Current networked
environments are populated with a diverse set of
devices, services and computational entities.
Enabling these components to work together
harmoniously and allowing users and applica-
tions to interact with them without considerable
administrative and configuration overhead poses
a number of logistical and technical challenges.
As a result, there has recently been considerable
research into service location and device interac-
tion technologies, including Jini technology
[5,10], SLP [4, 14], UPnP [1].

The key function of such service location and
device interaction technologies is to allow users
and applications to deploy, discover and interact
with the services provided by devices and soft-
ware components on the network. This interac-
tion is required to occur without the users, the
applications, or the service providers needing
detailed knowledge of the local network con-
figuration. While these technologies were origi-
nally developed for zero configuration networks
(e.g. those aimed at installation in the home en-

! This work was supported in part by Ubiquitous computing Technology Research Institute(UTRI) funded

by the Korean Ministry of Information

34

vironment) researchers have recently begun to
investigate how they can be used to support as-
pects of mobile and ubiquitous computing (e.g.
enabling a user in an unfamiliar network to dis-
cover nearby printers from their laptop).

We believe that these future service envi-
ronments will be characterised by a heterogene-
ous mix of services and technologies. Moreover,
contextual information plays a crucial role in the
service discovery process. In particular, devices,
applications and users will need to interact with
multiple, potentially specialised, service location
and device interaction technologies. Based on an
analysis of existing approaches to service dis-
covery and interaction, we have identified a
number of shortcomings that we believe will
seriously impact on the scalability, efficiency,
utility and usability of current techniques in
emerging service environments.

In this paper we present a design for a new
semantic service discovery that combines the
strengths of service discovery and interaction of
context descriptor and ontology. Semantic ser-
vice discovery is new mechanism to reduce se-
mantic gap of a between user and provider.

After a short introduction to service discov-
ery technique (Section 2), Section 3 describe

semantic service discovery propose in this paper.

Section 4 describe difference for performance of
a between proposed system and current existing
service discovery. Finally, we present our sum-
mary and conclusions, in Section 5.

2 Service Discovery Technique

2.1

Jini technology [5, 10] is designed to help peo-
ple build systems that deal gracefully with a
fundamental characteristic of any distributed
system: change. This appendix presents a quick
introduction to Jini technology, and shows how
Jini technology helps manage change within an
operational distributed system.

Jini technology is used to build systems that
exhibit a service-oriented architecture. Func-
tionality on the network is divided into, and pro-
vided by, discrete services. In Jini technology,
each service is represented by an object called a
Jini service proxy. If a client wants to use a ser-
vice, the client obtains a proxy for the service.
The client then invokes methods (or functions)

Jini Technology

35

on the service proxy, and the proxy takes care of
fulfilling the promised service, including possi-
bly talking across the network to a server or
other entity.

A fundamental kind of change in a distributed
system happens whenever new participants join
the system or others move around the network.
If a client wants to use a service that just arrived
or was recently relocated on the network, how
does that client find the service? Jini technology
addresses these issues by providing a lookup
service where clients can find services they want
to use. In addition, Jini technology provides a
set of discovery protocols that enable Jini clients
to find lookup services with no prior knowledge
of their location. If a client desires to use a ser-
vice for the first time, the client can find that
service’s proxy in the Jini lookup service. If that
service later moves, the client can still find the
service via the Jini lookup service. If the lookup
service moves, the client can locate that lookup
service via the discovery protocols. Once a cli-
ent has obtained a proxy to a desired service via
a Jini lookup service, the client uses the proxy to
interact with the service directly, without further
involvement from the lookup service.

2.2 Service Location Protocol (SLP)

The Service Location Protocol (SLP) is a prod-
uct of the Service Location Protocol Working
Group (SVRLOC) of the Internet Engineering
Task Force (IETF) [4, 14]. It is a protocol for
automatic resource discovery on Internet Proto-
col based networks. SLP is a language inde-
pendent protocol. Thus the protocol
specification can be implemented in any lan-
guage. It bases its discovery mechanism on ser-
vice attributes, which are essentially different
ways of describing a service. It can cater to both
hardware and software forms of services.

The SLP infrastructure consists of three
types of agents:

1. User Agents

2. Service Agents

3. Directory Agents

UAs discover locations and settings needed
by the potential user of the service; SAs adver-
tise the availability of services; and DAs act as
brokers, caching information about services. The
system can operate in two modes—with or
without DAs. When operating without DAs, the
UA will send a multicast request for services,

and will receive unicast replies. When there are
DAs present, SAs will attempt to register with a
DA, and UAs will send all discovery requests to
these brokers. Service descriptions in SLP are
very basic *Service URLs’ that categorize ser-
vice types.

SLP offers the following services:

1. Obtaining service handles for User Agents.

2. Maintaining the directory of advertised

services.

3. Discovering available service attributes.

4. Discovering available Directory Agents.

5. Discovering the available types of Service
Subnet 11.0.0 x

Agents.
1 T

User Agent Service Agent .
(UA) (SA) Service Agent

Application

Directory Agent
(DA)

Service Agent Service Agent

Figure 1: The basic transactions of the Service
Location protocol

A service is described by configuration val-
ues of the attributes possible for that service. For
instance, a service that allows users to download
audio or video content can be described as a ser-
vice that is a pay-per-use real-time service or a
free-of-charge service. The SLP also supports a
simple service registration leasing mechanism
that handles the cases where service hardware is

broken but the services continue to be advertised.

2.3 Universal Plug and Play (UPnP)

Universal Plug and Play (UPnP), pushed
primarily by Microsoft, is an evolving architec-
ture designed to extend the original Microsoft
Plug and Play peripheral model to a highly dy-
namic world of many network devices supplied
by many vendors [1]. UPnP works primarily at
lower layer network protocols suites (ie.

36

TCP/IP), implementing standards at this level.
UPnP attempts to ensure that all device manu-
facturers can quickly adhere to the proposed
standard without major hassles. By providing a
set of defined network protocols UPnP allows
devices to build their own Application Pro-
gramming Interfaces that implement these pro-
tocols - in whatever language or platform they
choose.

UPnP uses the Simple Service Discovery
Protocol (SSDP) to discover services on Internet
Protocol based networks. SSDP can be operated
with or without a lookup or directory service in
the network. SSDP operates on the top of the
existing open standard protocols, using the Hy-
pertext Transfer Protocol over both unicast User
Datagram Protocol and multicast User Datagram
Protocol. The registration process sends and re-
ceives data in hypertext format, but has some
special semantics.

2.4 OSGi platform service discovery

The Open Service Gateway Initiative (OSGi)
[7, 12] Alliance is an open forum in which ma-
jor companies participate (e.g. Samsung, Sie-
mens). Their mission is to specify, create,
advance, and promote an open Service Platform
for the delivery and management of multiple
applications and services to all types of net-
worked devices in home, vehicle, mobile and
other environments. The alliance was founded in
1999 and at this moment version three of the
specification is released.

The mission of the OSGi alliance is to create
an open specification for the network delivery of
managed services to local networks and devices.
The efforts of the alliance resulted in the OSGi
platform specification. This specification de-
scribes a framework for an open and common
architecture for service providers, developers,
software vendors, gateway operators and
equipment vendors to develop, deploy and man-
age services in a coordinated fashion The OSGi
specification describes much more than service
discovery alone. The complete platform specifi-
cation is too extensive to describe completely in
this section. Furthermore, parts of the frame-
work are out of the scope of this research.
Therefore, we will focus solely on the service
discovery mechanisms of the OSGi platform in
this section. The OSGi platform defines a java
platform for service provisioning. The function-

ality of services is implemented by bundles.
Bundles are a collection of java classes that can
provide functionality to end users or other ser-
vices. Services are described by their java ser-

vice interfaces. The interface and the
implementation classes together are used as a
service reference. Furthermore, pairs of

key/value can be used to specify some property
of the service. The service is registered by the
service provider in a central service registry,
meaning that a centralized service discovery
model is applied (see Figure.2). .

Service requestor

Service object

Discovery using

Service Name of interface / Filter properties

interface

Describes public methods Service

Service
implementation|
class

Figure 2: OSGi service discovery overview

registry

Bundle

Register.

¥

Service
properties

—

Service
Reference

Name
interface

—

After the services are registered in the service
registry a service requestor can discovery the
services by requesting service references (can be
used to invoke the service). The request can be
based on the name of the interface (syntactical
matchmaking) or based on the defined proper-
ties using filters. By using retrieval methods on
the service reference, properties of the service
can be read and the requestor can determine
which service it wants to use.

2.5 Ontology based Service Discovery

Historically, ontology is a part of metaphys-
ics. Metaphysics is the branch of philosophy
concerned with the nature of ultimate reality. It
is customarily divided into ontology, which
deals with the question of which fundamentally
distinct sorts of entities compose the universe,
and metaphysics proper, which is concerned
with describing the most general traits of reality.
The word ‘ontology’ originated in the Greek
language, meaning “the study of being”.

Currently, ontologies have also been used in
computer science. In the beginning, they where
developed in Artificial Intelligence to facilitate
knowledge sharing and reuse. More recently,
they have also been used in information retrieval,
electronic commerce and knowledge manage-

37

ment. They have been developed to provide ma-
chine-processable semantics of information
sources that can be communicated between enti-
ties.

Ontologies can be defined as: “a formal, ex-
plicit definition of a shared conceptualization”
[3]. A ‘conceptualization’ refers to an abstract
model of some phenomenon in the world that
identifies the relevant concepts of that phe-
nomenon. ‘Explicit’ means that the used con-
cepts and their constraints should be explicitly
described and ‘formal’ means that the ontology
should be machine-readable.

3 Semantic Service Discovery

Service discovery considers multiple parties in
its functionality. The service requestor needs a
particular service. The service provider offers a
certain service and the context provider delivers
contextual information about services and ser-
vice requestors. These parties are distributed and
have different knowledge on the service.

3.1 Ontology Technology

This section presents the major enabling
technologies (i.e. ontology languages) for ontol-
ogy-based applications. The discussed technolo-
gies are DAMLA+OIL.

DAML + OIL [2, 11] is a combination of the
DARPA Agent Markup Language (DAML) and
the Ontology Interface Layer (OIL). Both initia-
tives recognized their common goal and in 2000
they merged in the combined Iinitiative
DAMLAOIL. DAMLAOIL extends existing
standards (i.e. XML, RDF) to describe the struc-
ture of a particular domain in terms of classes
and properties. A DAMLAOIL description con-
sists of a set of axioms that asserts relationships
between classes or properties (i.e. intersectionOf,
unionOf, complementOf, etc). In this way the
semantics of the document is captured. (See
Figure.3)

OWL “The OWL Web Ontology Language
is designed for use with applications that need to
process the content of information instead of just
presenting information to humans. OWL facili-
tates greater machine interpretability of Web
content than that supported by XML, RDF, and
RDF Schema (RDF-S) by providing additional
vocabulary along with a formal semantics.”[6,
13]

Figﬁre 3 DAMLA+OIL document

As an example, we have included a part of the
description of an MP3 Server. This entity main-
tains a set of songs in MP3 format in its data-
base. It allows other entities to search this set of
songs using various parameters like name of
artist, type of song, etc. It can also be sent com-
mands for playing songs — other entities can ei-
ther request a particular song to be played or a
random song to be played. In addition, there is a
human-understandable description about the
entity. This is specifically meant for the average
user who wants to know more about the entity in
a simple language.

3.2 Context Descriptor

A key feature of applications in pervasive com-
puting environments is that they are context-
aware, l.e. they are able to obtain the current
context and adapt their behavior to different
situations. For example, a music player applica-
tion in a smart room may automatically play a
different song depending on who is in the room,
in addition, it may decide on the song volume,
depending on the time of day.

Context descriptor [15] has rules that describe
what actions should be taken in different con-
texts. An example of arule is :

IF Location (Alice, Entering, Room 3231) AND
Time (morning) THEN play a classic song.

A rule consists of a condition, which if satisfied,
leads to a certain action being performed. The
condition is a Boolean expression consisting of
predicates based on context information.

3.3 System Architecture

The system architecture of a semantic service
discovery is equal to the Figure 4.
-

— ™
Interpreter

Reasoning
Engine

IAggregation| Reasoning
Rules
KOntoIogy Server I

Domain Ontology
ontolog Dot
kMudellng Modeling g Context

Descriptor

(Converting Module

Database OWL OWL Gonnection
Schema Parser Reasoner Manager
OWL Database
Graph Hander Gonnection
Manager
—

Figure 4: System Architecture

YIOM8WEI UOPEIUNWWOY) paseq-eAep

1. The interpreter module extracts and aggre-
gates data from sensors. The reasoning engine
produces new situation information based on the
aggregated data.

2. The ontology server includes an ontology da-
tabase, which stores the filtered context data
from a reasoning engine

3. The converting module consists of a database
schema, owl parser, and owl reasoner. The de-
sign of the ontology schema is shown in section
34

4. Ontology modeling is divided into two steps:
input/output parameters modeling and services
modeling. First, we collect services input/output
parameters, represent them with classes in on-
tology, and transform services to properties in
ontology, defining relations between classes and
properties.

5. The quality of the query result can be en-
hanced as uses of the context descriptor also
provide specifications. The rule is as mentioned
above.

3.4 The design of Ontology Schema

Ontology schema has basic two’s table such the
program code.

Schema
CREATE TABLE Onto_sys_stmt (
Subj VARCHAR(250) NOT NULL,
/* subject */
Prop VARCHAR(250) NOT NULL,

/* predicate */

ojb VARCHAR(250) NOT NULL,
/* Object */

INTEGER

/* ID of graph (an owl file) */

GraphID

);
CREATE
D

TABLE Onto_graph (
INTEGER NOT NULL
AUTO_INCREMENT
PROMARY KEY,

/* 1D of graph */
TINYBLOB

/* name of the ontology */

NAME
);

4 Implementation and evaluation

The main goal of this research was to improve
service discovery by creating a new service dis-
covery [13] approach. To be able to conclude
that our system is an improvement or deteriora-
tion, it has to be evaluated. This chapter presents
the result of this evaluation of the developed our
system service discovery approach. To be able
to evaluate our system, we developed a proto-
type. Our prototype should demonstrate the im-
provement of the quality of the discovery result
of our approach compared to discovery results
of current approaches (syntactic methods).

4.1

Description Logic [16] allows specifying a ter-
minological hierarchy using a restricted set of
first-order formulas. The equivalence of OWL
and description logic allows OWL to exploit the
considerable existing body of DL reasoning ful-
fill important logical requirements. These re-
quirements include concept satisfiability, class
subsumption, class consistency, and instance
checking.

Table 1 shows a sub-set of reasoning rules
that support OWL-Lite entailed semantics.

Reasoning Engine

Table 1. Parts of OWL ontology reasoning rules

Transitive-
Property

(7P rdftype
owl:TransitiveProperty)

N (?A 7P 7B)

A (BIMP?2C) = (PA M ?0)
(?a rdfs:subClassOf 7b) N
(7b rdfs:subClassOf ?¢)

= (?a rdfs:subClassOf ?¢)

subClassOf

39

subProperty-
of

(?a rdfs:subPropertyOf 7b) N
(?b rdfs:subPropertyOf ?7¢)

= (?a rdfs:subPropertyOf ?¢)
(?7C owl:disjointWith 7D) A
(?X rdfitype ?7C)

A (7Y rdf:type ?7D)

= (?X owl:differentFrom ?Y)
(7P owl:inverseOf 7Q) A

(72X 2P 7Y)

= (7Y 7Q 7X)

disjointWith

inverseOf

In addition, ontology reasoning is also useful in
other aspects of context aware computing. For
example, in the example context ontology de-
scribed in previous section, we define the rela-
tion ‘locatedIn’ between a ‘ContextEntity’ and a
‘Location’ as an ‘owl: 1ransitiveProperty’ rela-
tion, and the relation ‘contains’ as the ‘inverse
property’ of “locatedin’. Therefore, we can
make use of the rules entailed by OWL to reason
with physical location. An example result is
shown in Table 2. Explicit context is acquired
from context sources directly, while implicit
context is the additional information deduced
from explicit context. For example, knowing the
user ‘Jun’ is

currently ‘locatedIn’ the room ‘Bedroom’,
which in turn is a part of the ‘Home’ building,
description logic can be used to conclude that
*Jun’ is located in ‘Home’ building as the spatial
relation ‘locatedIn’ is transitive.

Table 2. Reasoning about location using

ontology
IN DL (7P rdfitype owl:
PUT Reasoning | TransitiveProperty) A
Rules (?A?P?B) A (7B 7P 7C)
= (?A 7P ?0)
(7P owl:iinverseOf 7Q) A
(X 7P ?7Y)
= (7Y 7Q 7X)
Explicit <owl:ObjectProperty
Context rdf:ID = “locateIn”>
<rdf:type =

“owlTransitiveProperty”/>
<owl:inverseOf

rdf:resource = “#con-
tains”/>
</owl:ObjectProperty>
<Person rdf:ID = “Jun”>

<locatedIn rdf:resource
= “#Bedroom”/>

</Person>
<Room rdf:ID = “Bed-
room’>

<locatedIn rdf:resource
“#fHome”/>
</Room>

ouT
PUT

<Person rdf:ID = “Jun”>
<locatedIn rdf:resource =
“#Home”/>
</Person>
<Building rdf:ID =
“Home™>
<contains rdf:resource =
“#Bedroom”/>
<contains rdf:resource =
“HIun”/>
</Building>
<Room rdf:ID = “Bed-
room’>
<contains rdf:resource =
“HIun”/>
</Room>

Implicit
Context

User-Defined Reasoning A more flexible rea-
soning mechanism is user-defined reasoning.
Through the creation of user-defined reasoning
rules within the entailment of first-order logic, a
wide range of higher-level, conceptual context
such as “what the user is doing” can be deduced
from relevant low-level context. Table 3 shows
the user-defined context reasoning rules that are
employed to derive user’s situation in the smart
phone scenario.

Table 3. User-defined context reasoning rules

Situation
Sleeping

Reasoning Rules

(?u locatedIn Bedroom) A
(Bedroom lightlevel LOW) A
(Bedroom drapestatus CLOSED)
= (?u situation SLEEPING)

(?u locatedIn Bathroom) A
(WaterHeater locatedIn Bathroom)
AN

(Bathroom doorStatus CLOSED)
AN

(WaterHeater status ON)

= (?u situation SHOWERING)
(?u locatedIn Kitchen) A
(ElectricOven locatedIn Kitchen)
AN

(ElectricOven status ON)

= (?u situation COOKING)

(?u locatedIn LivingRoom) A

Showering

Cooking

Watching-

40

18% (TVSet locatedIn LivingRoom) A
(TVSet status ON)
= (?u situation WATCHINGTV)
Having (?u locatedIn DiningRoom) A
Dinner

(?v locatedIn DiningRoom) A
(7u owl:difterentFrom ?v)

= (?u situation
HAVINGDINNER)

4.2 Converting Module

Converting module is achieved two steps. First
step is converting a ontology to statements.(see
Figure §5)

http:/iwww .skku.ac.krfut/person/jun

vecard:N

veard:family veard:given

| Kwak

Junwon |

Converting to first-order logic statements

Figure 5: Converting a ontology to statements
Next step is converting statements to an owl file.

Program Code

//some definitions
String personURI
“http://www.skku.ac.kr/person/

jun”;

String givenName = “Junwon”;
String familyName = “Kwak”;
String fullName = givenName +

“ 7 + familyName;
//create an empty model
Model model = ModelFac-
tory.createDefaultModel () ;

//create the resource
// and add the properties
cascading style
Resource johnsmith =
model .createResource (personURI
) .addProperty (VCARD.FN,
fullname)

.addProperty (VCARD.N,

model .createResource ()
.addProperty (VCARD.Given,
givenName)
.addProperty (VCARD.Famil
v, familyName));
//now write the model in xml
form to a file
model .write (Sytem.out);

Converting statements to an owl file
<rdf:RDF

xmlns:rdf = “http://www.w3.0rg/1999/02/22-
rdf-syntax-ns#”

xmlns:veard
"http://www.w3.0rg/2001/vcard-rdf/3.0#">

<rdf:Description rdf:about

“http//www.skku.ac.kr/person/jun’>

<vcard:N rdfinodelD = “AQ”/>
<vcard:FN>Junwon Kwak</vcard:FN>
</rdf:Description>

<rdf:Description rdfinodeID = “A0”>

<vcard:Family>Kwak</vcard:Family>
<vcard:Given>Junwon</vcard:Given>
</rdf:Description>
</rdf:RDF>

4.3 Evaluation

This section evaluates our system approach by
calculating precision and recall rates. Consider a
set of relevant services (R) within a big set of
advertised services (A) (R = 4). We define:

Recall: The number of relevant items re-
trieved, divided by the total number of relevant
items in the collection. The highest value of re-
call is achieved when all relevant items are re-
trieved.

Precision: The number of relevant items re-
trieved, divided by the total number of items
retrieved. The highest value of precision is
achieved when only relevant items are retrieved.
With the result, we calculated the recall and pre-
cision rates. We compared these calculations
with queries using current syntactic mechanisms
(i.e. keyword and table based approaches).

Query 1: “Discover all services that sell Mu-
sic”
This means that in our system all service types
are selected and that “Music” is selected as out-
put.

Table 4. Result of Query 1

Rele Key- Table- Our
vant word- based sys-
ser- based mecha- tem
vice mecha- nisms
S nisms
Discov- 19 6 6 rele- 19
ery relevant vant rele

41

result 2 irrele- vant
(services) vant
Precision - 75 % 100% 100
(%) %
Recall - 32 % 32 % 100
(%) %

In the set of advertised services, there are 19
relevant services that sell Music. The keyword-
based services retrieve only the services that
have the word “Music” in their advertisements
(8). Two of these services have “Music” as their
input and not as output so these matches are ir-
relevant. The table-based mechanisms do not
select the services with input “Music” and there-
fore does not have irrelevant matches. Our sys-
tem selects only the services with output
“Music” and the subclasses of “Music” like ser-
vices that sell CD, DVD and LP. Therefore, it
has full precision and full recall.

Query 2: “Discover all shops that sell Music
and that are nearby (250m)”

This means that in our system “Sellingshop” is
selected as service type and that “Music” is se-
lected as output. Furthermore, “nearby” is se-
lected as service property.

Table 5. Result of Query 2

Rele Key- Table- Our
vant word- based sys-
ser- based mecha- tem
vice mecha- nisms
S nisms
Discov- 5 1 rele- 1 rele- 5
ery vant vant rele
result 7 irrele- 7 irrele- vant
(services) vant vant
Precision - 15 % 15 % 100
(%) %
Recall - 20 % 20 % 100
(%) %

Both keyword-based and table-based mecha-
nism cannot handle context in their discovery
process. Therefore, nearby is ignored and many
irrelevant services are returned. Our system
evaluates all matches on the nearby rule and or-
ders them by this property.

5 Conclusion

We have proposed a semantic service dis-
covery approach, improving the quality of the
service discovery result. Efforts towards this
approach included (i) the identification of limit-
ing factors for the quality of service discovery in
current approaches (ii) the identification of types
of service discovery matches and the definition
of the degree of matching these (ii1) the devel-
opment of a novel service discovery approach,
improving the service discovery result and fi-
nally (iv) the evaluation of the novel approach.

Some challenging future research areas must
be addressed. Scalability and performance must
be considered. Continuous researches regarding
ontology maintenance and ontology relations for
enhanced semantic reasoning are also required.

References

1. Brent A. Miller, Toby Nixon, Charlie Tai, Mark D.
Wood, “Home networking with Universal Plug
and Play”, Communications Magazine, [EEE
Volume 39, Issue 12, Dec. 2001 Page(s):104 —
109

2. Deborah L. McGuinness, James Hendler, Lynn
Andrea Stein, “DAML+OIL: an ontology lan-
guage for the Semantic Web”, Intelligent Systems,
IEEE Volume 17, Sep/Oct 2002 Page(s):72 — 80

3. D. Fensel, Ontologies: Silver Bullet for Knowledge
Management and Electronic Commerce, Springer-
Verlag, Berlin, 2001

. Frik Guttman, “Service location protocol: auto-
matic discovery of IP network services”, Internet
Computing, I[EEE Volume 3, Issue 4, July-Aug.
1999 Page(s):71-80

5. Kasper Hallenborg, Bent Bruun Kristensen, “Jini

Supporting Ubiquitous and Pervasive Computing”,

CoopIS/DOA/ODBASE 2003, LNCS 2888, pp.
1110-1132.

6. Mark H. Burstein, “Dynamic invocation of seman-
tic Web services that use unfamiliar ontologies”,
Intelligent Systems, IEEE Volume 19, Issue
4, Tul-Aug 2004 Page(s):67 — 73

7. Marples Dave, Kriens Peter, “The Open Service
Gateway Initiative: An Introductory Overview”,
Communication Magazine, IEEE Volume 39, Is-
sue 12, Dec. 2001 Page(s):110 - 114

8. M. Weiser, “The Computer for the Twenty-First
Century,” Scientific American, pp. 94-100, Sep-
tember 1991.

42

9. Phillip Lord, Pinar Alper, Chris Wroe, Carole
Goble, “Feta: A Light-Weight Architecture for
User Oriented Sema Discovery”, ESWC 2005,
LNCS 3532, pp. 17 - 31.

10. Rahul Gupta, Sumeet Talwar, Dharma P.
Agrawal, “Jini home networking: a step toward

pervasive computing”, Computer Volume 35, Is-
sue 8, Aug. 2002 Page(s):34 — 40

11. R. Scott Cost, Tim Finin, Anupam Joshi,Yun
Peng, Charles Nicholas, Ian Soboroff, Harry Chen,
Lalana Kagal, Filip Perich,Youyong Zou, and
Sovrin Tolia, “ITtalks: a case study in the Seman-
tic Web and DAML~+OIL”, Intelligent Systems,
IEEE Volume 17, Jan/Feb 2002 Page(s):40 — 47

12. Tao Gu, Hung Keng Pung, Da Qing Zhang, “7o-
ward an OSGi-Based Infrastructure for Context-
Aware Applications”, Pervasive Computing, I[EEE
Volume 3, Issue 4, Oct-Dec 2004 Page(s):66 —
74

13. Tao Gu, Hung Keng Pung, Da Qing Zhang, “7o-
ward an OSGi-based infrastructure for context-
aware applications”, Pervasive Computing, IEEE
Volume 3, Oct.-Dec. 2004 Page(s):66 — 74

14. The Salutation Consortium Inc. Salutation Archi-
tecture Specification (Part 1), version 2.1 edition,
1999

15. Vipul Kashyap, Amit Sheth, “Semantic and
schematic similarities between database objects: a
context-based approach”, The VLDB Journal —
The International Journal on Very Large Data
Bases, December 1996

16. Vitaliy L. Khizder, Grant E. Weddell, “Reason-
ing abour uniqueness constrainis in object rela-

tional databases”, Knowledge and Data
Engineering, IEEE Transactions on Volume
15, Issue 5, S

