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Abstract 

The purpose of this paper is to auto-

matically generate Chinese chunk 
bracketing by a bottom-to-top map-

ping (BTM) model with a BTM data-

set. The BTM model is designed as a 
supporting model with parsers. We de-

fine a word-layer matrix to generate 

the BTM dataset from Chinese Tree-
bank. Our model matches auto-learned 

patterns and templates against seg-

mented and POS-tagged Chinese sen-
tences. A sentence that can be matched 

with some patterns or templates is 

called a matching sentence. The ex-
perimental results have shown that the 

chunk bracketing of the BTM model 

on the matching sentences is high and 
stable. By applying the BTM model to 

the matching sentences and the N-

gram model to the non-matching sen-
tences, the experiment results show 

the F-measure of an N-gram model 

can be improved. 

1 Introduction 

The definition of chunk, which has been repre-
sented as groups of words between square 
brackets, was first raised by (Abney, 1991). A 
chunker is to divide sentences into non-
overlapping phrases by starting with finding cor-
related chunks of words. Text chunking has been 
shown a useful pre-processing step for language 
parsing (Sang and Buchholz, 2000). Among the 
chunk types, NP chunking is the first to receive 
the attention (Ramshaw and Marcus, 1995), than 
other chunk types, such as VP and PP chunking 
(Veenstra, 1999). For English (Sang and 

Buchholz, 2000) and Chinese (Li et al., 2004) 
languages, the top 3 most frequent chunk types 
are NP, VP and PP chunks. Meanwhile, the three 
chunk types cover about 80% of chunking prob-
lems. In many natural language processing (NLP) 
applications, such as information retrieval, 
knowledge discovery, example-based machine 
translation (EBMT) and text summarization, can 
benefit with chunks (Le et al., 2003; Munoz et 
al., 1999; Oliver, 2001; Zhou and Su, 2003). 

As per the reports (Menzel, 1995; Sang and 
Buchholz, 2000; Basili and Zanzotto, 2002;

Knutsson et al., 2003; Li et al., 2004; Xu et al., 

2004; Johnny et al., 2005), there are three im-
portant trends in the study of Chinese text 

chunking and parsing. These important trends 

are: (1) Treebank-Derived Approaches for auto-
constructing useful patterns and templates from 

Treebank (TB) as rules combined with statistical 

language models (SLM), such as N-gram mod-
els and support vector machines (SVMs), etc.; (2) 

Robust Chunkers against Treebank sparseness 

and perfect/actual input. Here the perfect input
means the word-segmentation and Part-of-

Speech (POS) tags all are correct. The actual 
input means the word-segmentation and POS 

tags all are generated by a selected segmenter 

and a POS tagger; and (3) High Performance 

Chunk Bracketing has been reported that the 

key issue of Chinese parsing (Li et al., 2004). To 

sum up these trends, one of critical issues for 
developing a high performance Chinese chunker 

is to find methods to achieve high performance 

of chunk bracketing against training size, perfect 
and actual input. 

Following these trends of Chinese chunking 

and parsing, the goals of this paper are: 
(1) Define a Word-Layer Matrix and generate 

the Bottom-to-Top Mapping (BTM) dataset 
to auto-derive useful patterns and templates 
with probabilities from Chinese Treebank 
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(CTB) as rules for chunking; 
(2) Develop a BTM model with the BTM data-

set to identify the chunks (i.e. phrase bounda-
ries) for a given segmented and POS-tagged 
Chinese sentence; 

(3) Show the chunk bracketing performance of 
the BTM model is high and stable against 
training corpus size, perfect and actual input; 

(4) Show the BTM model can improve the per-
formance (F-measure) of N-gram models on 
chunk bracketing. 
The remainder of this paper is arranged as 

follows. In Section 2, we present the BTM 
model for identifying chunks for each seg-

mented and POS-tagged Chinese sentence. Ex-

perimental results and analyses of the BTM 
model are presented in Section 3. Finally, in 

Section 4, we present our conclusions and dis-

cuss the direction of future research. 

2 Development of the BTM model 

2.1 Introduction of Chinese Treebank 

A Chinese Treebank (CTB) is a segmented, 
POS-tagged and fully bracketed Chinese corpus 

with morphological, syntactic, semantic and dis-

course structures. The CKIP (Chinese Knowl-
edge Information Processing) Chinese-Treebank 

(CCTB) and the Penn Chinese Treebank (PCTB) 

are two of most important Chinese Treebank 
resources for Treebank-derived NLP tasks in 

Chinese (CKIP, 1995; Xia et al., 2000; Xu et al., 

2000; Li et al., 2004). The brief introductions of 
the CCTB and the PCTB are given as below 

(Table 1 is a brief comparison between the 

CCTB and the PCTB): 
(1) CCTB: the CCTB is developed in traditional 

Chinese texts (BIG5 encoded) taken from the 

Academia Sinica Balanced Corpus 3.0 (ASBC3) 
at the Academia Sinica, Taiwan (Chen et al., 

1996; Chen et al., 1999; Huang et al., 2000, 

Chen et al., 2003; Chen et al., 2004). The CCTB 
uses Information-based Case Grammar (ICG) as 

the language framework to express both syntac-

tic and semantic descriptions (Chen and Huang, 
1996). The structural frame of CCTB is based 

on the Head-Driven Principle: it means a sen-

tence or phrase is composed of a core Head and 
its arguments, or adjuncts (Chen and Hsieh,

2004). The Head defines its phrasal category 

and relations with other constituents.  The pre-
sent version CCTB2.1 (CCTB Version 2.1) in-

cludes 54,902 sentences (i.e. trees) and 290,144 

words that are bracketed and post-edited by hu-
mans, based on the computer parsed results 

(CKIP, 1995). There are 1,000 CCTB trees open 

to the public for researchers to download on the 
CCTB portal. The details of supplementary 

principles, symbol illustrations, semantic roles, 

phrasal structures and applications of the CCTB 
can be found in (CCTB portal; Chen et al., 2003; 

Chen and Hsieh, 2004; You and Chen, 2004). 

Table 1. A brief comparison between CCTB2.1 and 

PCTB4 (The number in () is the word frequency and 

the English word in [] is the English Translation for 

the corresponding Chinese word) 

   CCTB2.1          PCTB4 

Developer  CKIP          UPenn 

Content type  Balanced          Newswire 
   corpus          sources 

Language framework ICG          HPSG 

Word standard  Taiwan          China 
   (CKIP, 1996)        (Liu et al.,1993)

POS-tagging system type hierarchical    non- 
   (5 layer)          hierarchical

Structure frame  Head-driven     Head-driven 

Code   BIG5          GB 

No. of sentences  54,902          15,162 

No. of distinct POS tags 302          47 

No. of words in CTB 290,144          404,156 

Top 3 one-char words (19,212)       (15,080) 
    [of]          [of]  

   (4,608)          (4,055) 
   [is/are]          [at] 

   (4,235)          (2,965) 
   [at]          [is/are] 

Top 3 two-char words (1,057)     (2,097) 
   [we]          [China] 

   (675)        (1,015) 
                                     [a/an/one]         [Economy] 

   (564)        (989) 
   [they]          [business] 

(2) PCTB: the PCTB is developed in simplified 

Chinese texts (GB encoded) taken from the 
newswire sources (consists of Xinhua newswire, 

Hong Kong news and Sinorama news magazine, 

Taiwan) at the Department of Computer and 
Information Science, University of Pennsylvania 

(UPenn). The PCTB uses Head-driven Phrase 

Structure Grammar (HPSG) to create Chinese 
texts with syntactic bracketing (Xia et al, 2000; 

Xue et al, 2002). Meanwhile, the semantic anno-

tation of PCTB mainly deals with the predicate-
argument structure of Chinese verbs in Penn 

Chinese Proposition Bank (Xue and Palmer, 2003; 
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Xue and Palmer, 2005). The present version 

PCTB5 (PCTB Version 5), contains 18,782 sen-
tences, 507,222 words, 824,983 Hanzi and 890 

data files. The PCTB was created by two pass 

approach. The first pass was done by one anno-
tator, and the resulting files were checked by a 

second annotator (the second pass). The details 

and applications of PCTB can be found in 
(PCTB portal; Xia et al, 2000; Chiou et al, 2001; 

Xue et al, 2002; Xue et al, 2005). 

Overall, from Table 1, the four major differ-
ences between the CCTB and the PCTB are con-

tent type, language framework, word standard 

and POS-tagging system type. The CCTB is 
natural to be a balanced CTB because its content 

is taken from the Academia Sinica Balanced 

Corpus (CKIP, 1995). On the other hand, since 
the content type of PCTB is newswire sources, it 

is natural to be a newswire-based CTB and not a 

balanced CTB. 

2.2 Generating the BTM Dataset 

Firstly, we use CCTB2.1 as an example to de-

scribe how to generate a BTM dataset from the 

CCTB with the word-layer matrix. Then, we 
define two types of conditional probabilities 

used in this study for constructing the BTM 

model. Finally, the algorithm of our BTM model 
is given in Section 2.3. 

Figure 1. The tree structure of CCTB2.1 for the Chinese 

sentence “ (movie) (of) (picture)

(colorful) (interesting)” (Note that the content of 

the nodes between the root and the words is [The-

matic role : Syntactic category]) 

(1) Generation of BTM dataset from CCTB2.1:
Figure 1 shows the tree structure of CCTB2.1 

for the Chinese sentence “ (movie) (of)

(picture) (colorful) (interesting).” 

The content of the nodes between the root layer 
and the words layer (leaves) is comprised of the-

matic roles and syntactic categories. The the-

matic roles can be annotated as a Theme,
Property, etc., while the syntactic categories 

can be annotated as a POS-tag (such as Nac) or 

a phrasal category (such as NP). The details of 
CCTB syntactic and thematic annotations can be 

found in (Chen et al., 2003). 

Table 2. The word-layer matrix extracted from 

CCTB2.1 for the Chinese sentence “ (movie)

(of) (picture) (colorful) (interesting)” 

Word
1st layer 

(Top) 
2nd layer 

3rd layer 

(Bottom) 

Head:Nac 
Property:NP.

Head:DE Theme:NP 

Head:Nac Head:Nac 

Head:H11 
Head:VH11 Head:VH11 

Head:H11 

Table 3. The BTM dataset for the CCTB2.1 tree of 

the Chinese sentence “ (movie) (of)

(picture) (colorful) (interesting)” 

Type  Content 

BL Word pattern < \ \ \ \ >                           

TL Word pattern   < : : + : >

BL POS pattern <Nac\DE\Nac\VH11\VH11> 

TL POS pattern <Nac:DE:Nac+VH11:VH11> 

TL POS template  <Na%Na+VH11:VH11> 

PC pattern <NP+VH11> 

For each tree structure of CCTB2.1 (as 

shown in Fig.1), we first translate it into a word-
layer matrix as shown in Table 2. In a word-

layer matrix, the left, first row is the word layer 

(with words) and the other rows are the first 
layer to the last layer (with thematic roles and 

syntactic categories). For each word-layer ma-

trix, the first layer and last layer are called the 
Top Layer (TL) and the Bottom Layer (BL), 

respectively. According to the TL and the BL of 

a word-layer matrix (see Table 2), we can trans-
late a CCTB tree into a BTM dataset as shown 

in Table 3. Each BTM dataset includes two 

types of BTM content. One is the BL and TL 
word patterns expressed by Chinese words. The 

other one is the BL and TL POS patterns ex-

pressed by POS tags. Furthermore, for each TL 

23



POS pattern, we also generate its corresponding 

TL POS template (with POS tags) and phrasal 
category (PC) pattern (with POS tags and 

phrasal categories). 

In the Table 3: 

BL stands for the bottom layer (the last layer of 

a word-layer matrix); 

TL stands for the top layer (the first layer of a 
word-layer matrix); 

PC stands for the phrasal category in a TL;  

“\” indicates the word boundary in a BL; 
“+” indicates word/phrase boundaries in a TL; 

“:” indicates next to; for example, 

 “Nac:DE” means “Nac” next to “DE”; 
“%” indicates near by; for example,  

 “Nac%Nac” means “Nac”near by “Nac”; 

“<” indicates the begin of a sentence; and 
“>” indicates the end of a sentence. 

The CKIP POS tagging is a hierarchical system. 
The first layer of CKIP POS tagging include 

eight main syntactic categories, i.e. N (noun), V 

(verb), D (adverb), A (adjective), C (conjunc-
tion), I (interjection), T (particles) and P (prepo-

sition). As per the CKIP technical reports (CKIP, 

1995; CKIP, 1996), the maximum layer number 
of CKIP POS tagging is 5. Take the CKIP POS 

tag “Ndabe” as an example, we define its POS 

tags with POS layer numbers 1, 2, 3, 4 and 5 as 
“N”, “Nd”, “Nda”, “Ndab” and “Ndabe”, re-

spectively. Thus, if the POS layer of BTM 

model is set to 2 (called 2 POS-layer mode), the 
BL POS pattern “<Nac\DE\Nac\VH11\VH11>” 

in Table 3 will become “<Na\DE\Na\VH\VH>”, 

and so forth. 

Table 4. The BTM dataset for the PCTB4 tree of the 

Chinese sentence “ (both) (major)

(agent) (appear)” 

Type   Content           

BL Word pattern  < \ \ \ >                           

TL Word pattern     < : : + >

BL POS pattern       <PN\JJ\NN\VV>                       

TL POS pattern  <PN:JJ:NN+VV> 

TL POS template    <PN%NN+VV> 

PC pattern  <NP-SBJ+VP> 

By the word-layer matrix, the BTM dataset of   

PCTB can also be generated. Table 4 shows an 

example BTM dataset for the PCTB4 tree of the 

Chinese sentence “ (both) (major)

(agent) (appear).” Since the POS tagging of 

PCTB is not a hierarchical system, there is no 

POS layer mode can be set to the BTM dataset 
of PCTB. 

 (2) Definitions of Two Types of Probabilities:
In this study, two conditional probabilities were 

used in the BTM model. The Type I conditional 

probability is used to perform full TL POS pat-
tern matching. The Type II conditional prob-

ability is used to perform full TL POS template 

matching. Details of these probabilities are 
given below. 

Type I. Pr(a given TL POS pattern | the BL POS 

pattern of the given TL POS pattern) = 
(# of the given TL POS pattern found in the 

training BTM dataset) /  

(# of the BL POS patterns of the given TL POS 
pattern found in the training BTM dataset). 

Take the BL POS pattern “Cb\Nc\DE\Na” as an 

example. There are: 

one TL POS pattern “Cb+Nc:DE:Na” 
four TL POS pattern “Cb+Nc:DE+Na” and 

five BL POS pattern “Cb\Nc\DE\Na” in the 

CCTB2.1 BTM dataset. Thus, 
the Pr(Cb+Nc:DE:Na|Cb+Nc+DE+Na) =  1/5 = 

0.2; and 

the Pr(Cb+Nc:DE+Na|Cb+Nc+DE+Na) =  4/5 = 
0.8. 

Table 5a. Top 5 most frequent TL POS patterns 

whose number of POS tags is 5 for 2 POS-layer mo-
de (training size is 45,000 CCTB2.1 trees) 

TL POS pattern (Type I  pro.) 

V_+DM:VH:DE:Na (19/19 = 100%) 

 (Eg. [is]+ [a]: [small]: [of]:

[village]) 

Nb:A:Na:Nb+VE (11/11 = 100%) 

(Eg. [taiyuan]: [inference reader]:

[manager]: [gao-zi-neng]+ [point out]) 

Nc:Nb+VH+Nc:Nb  (10/10 = 100%) 

(Eg. [Philadelphia]: [76-people team]+

[win]+ [Washington]: [bullet team])) 

VC+Di+Na:DE:Na (9/9 = 100%) 

(Eg. [attach]+ [to]+ : : [bridge of 

friendship]) 

Nh+VA+P2:Na:Nc (8/8 = 100%) 

(Eg. [they]+ [sit]+ : : [at the aero-

space plane]) 
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Table 5a gives the Top 5 most frequent TL 

POS patterns whose number of POS tags is 5 
while the POS layer number is 2. 

Type II. Pr(matching patterns | a given TL POS 

template) = 
 (# of matching TL POS patterns of the given 

TL POS template found in the training BTM 

dataset) / (# of matching BL POS pattern of the 
given TL POS template found in the training 

BTM dataset).  

Take the TL POS template “P3%Na+VA” as an 
example. In the CCTB2.1 BTM dataset, there 

are four matching BL POS patterns and two 

matching TL POS pattern for the template 
“P3%Na+VA”, namely: (Note that “%” means 

“near by”) 

“P3\Dd\VA\DE\Na\VA” 
“P3:Dd:VA:DE:Na+VA”(matching) 

“P3\Na\P2\VC\Nb\Nc\DE\Na\VA” 

“P3:Na+P2:VC:Nb:Nc:DE:Na+VA”(no matching) 

“P3\Na\VA” 

“P3:Na+VA”(matching) 

“P3\Na\VC\Na\VA” 

“P3:Na+VC+Na+VA”(no matching) 

Thus, the Pr(matching pattern|P3%Na+VA) = 

2/4 = 0.5. 

Table 5b gives 5 randomly selected TL POS 

templates where their POS number is 5 while 

the POS layer number is 2. 

Table 5b. Five randomly selected TL POS templates 

where their POS number is 5 for 2 POS-layer mode 

(training size = 45,000) 

TL POS template  | Type II  pro. 

Na+VF+Nh+VA%Na  | 100% (1/1) 

P1%Nc+VC+Nc%Na  |   50% (1/2) 

Ne+Dd+V_+VH%Na  | 100% (3/3) 

DM%Na+VE+Nc%Na    | 100% (1/1) 

DM%Na+VK+VC%Na     | 100% (1/1) 

2.3 Algorithm of the BTM Model 

Following is the algorithm of our BTM model 

uses Types I (full TL POS pattern matching) and 

Type II (full TL POS template matching) condi-
tional probabilities to determine the chunks for a 

given segmented and POS-tagged Chinese sen-

tence. We use BTM (value1, value2, value3) to 

express the function of our BTM model, where 

value1 is the BTM threshold value, value2 is the 
POS layer number and value3 is the BTM train-

ing size. Table 6 is a step by step example to 

demonstrate the detailed processes and outputs 
of our BTM model. 

Table 6. A step by step example of the application of 

BTM (0.5; 2; 45,000) for the given BL POS pattern 

“Na\Na\DE\Nb( [boy]\ [age]\ [of]\

[schweitzer])” 

Step    Output 

1 Na\Na\DE\Nb                                                      

 ( [boy]\ [age]\ [of]\ [schweitzer]) 

2       NULL; Goto Step 4 

3       - 

4       Pr(Na%DE+Nb) = 66.7% (Type II);  and use 

the selected TL POS template “Na%De+Nb” to 

translate “Na\Na\DE\Nb” into “Na:Na:DE+Nb” 

5 TL POS pattern = Na:Na:DE+Nb, and                                                   

 Matching sentence = : : +

 Chunks =  “ ” and “ ”

Step 1. Give the value1 (BTM threshold value), 
value2 (POS layer number) and value3

(training size), as well as the segmented 

and POS-tagged sentence. In the follow-
ing steps, the POS tagging sequence of 

the given sentence is called the BL POS 

pattern, such as the “Na\Na\DE\Nb” in 
Table 6. 

Step 2. According to the BL POS pattern in Step 

1, find all matched TL POS patterns 
whose corresponding Type I probabili-

ties are greater than or equal to the BTM 

threshold value. If the number of 
matched TL POS patterns is zero, then 

go to Step 4. 

Step 3. Using the matched TL POS patterns 
from Step 2, select the TL POS pattern 

that has the maximum Type I probabil-

ity as the output. If there are two or 
more TL POS patterns with the same 

maximum Type I probability, randomly 

select one as the output. Go to Step 5. 
Step 4. According to the BL POS pattern, find 

all matched TL POS templates whose 

corresponding Type II probabilities are 
greater than or equal to the BTM thresh-

old value. Select the TL POS template 

that has the maximum Type II probabil-
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ity to generate the output (see Table 6, 

Step 4). If there are two or more TL 
POS templates with the same maximum 

Type II probability, randomly select 

one to generate the output. If the number 
of matched TL POS patterns is zero, 

then a NULL output will be given. 

Step 5. Stop. If a NULL TL POS pattern output 
is given, this input sentence is a non-

matching sentence. Otherwise, it is a 

matching sentence.

3 Experiment Results 

To conduct the following experiments in ten-

folds, we randomly select 50,000 trees of 

CCTB2.1 and separate them into the following 
two sets: 

(1) Training Set consists of 45,000 CCTB2.1 

trees; and 
(2) Open Testing Set consists of the other 5,000 

CCTB2.1 trees. 

In our computation, 66% of CCTB2.1 BL POS 
patterns in the open testing set are not found in 

the training set. This means the ratio of unseen 

CCTB2.1 BL POS patterns in the open testing 
set is 66%. The PCTB4 BTM dataset was not 

used in this study by two reasons: the first one is 

that the PCTB is not a balanced CTB; the sec-
ond one is that the POS tagging system of PCTB 

is not a hierarchical system. 
We conducted four experiments in this study. 

The first three experiments are designed to show 

the relationships between the chunk bracketing 
performance of the BTM model on the matching 

sentences and the three BTM parameters: POS 

layer number; BTM threshold value; and BTM 
training size. To avoid the error propagation of 

word segmentation and POS tagging, the first 

three experiments only consider open testing 
sentences with correct word segmentations and 

POS tags provided in CCTB2.1 as perfect input.

The fourth experiment is to show the BTM 
model is able to improve the performance (F-

measure) of N-gram models on Chinese chunk 

bracketing for both perfect input and actual in-
put. Here, the actual input means the word 

segmentations and POS tags of the testing sen-

tences were all generated by a forward maxi-
mum matching (FMM) segmenter and a bigram-

based POS tagger, respectively. 

To evaluate the performance of our BTM 

model, we use recall (R), precision (P), and F-
measure (F) (Manning and Schuetze, 1999), 

which are defined as follows: 

Recall (R) = (# of correctly identified chunk 
brackets) / ( # of chunk brackets)        (1) 

Precision (P) = (# of correctly identified chunk 
brackets) / ( # of identified chunk brackets)   (2) 

F-measure (F) = (2 × recall × precision) / (re-
call + precision)           (3) 

In addition, we use coverage ratio (CR) to repre-

sent the size of matching sentences (or say, 

matching set) of our BTM model. The CR is 
defined as: 

Coverage Ratio (CR) = (# of not NULL output 
sentences) / (# of total testing sentences)        (4) 

3.1 Relationship between POS layer number 

and BTM performance 

In the 1st experiment, the BTM threshold value 
is set to 1 and the BTM training size is set to 

45,000. Table 7 is the first experimental results 

of BTM performance (P, R, F) and CR for the 
POS layer numbers are 1, 2, 3, 4 or 5. From Ta-

ble 7, it shows the POS layer number is posi-

tively related to the F-measure. Since the BTM 
model with POS layer number 2 is able to 

achieve more than 96% F-measure, we use POS 

layer number 2 to conduct the following ex-
periments. This experimental result seems to 

indicate that the CCTB2.1 dataset with POS 
layer number 2 (including 57 distinct POS tags) 

can provide sufficient information for the BTM 

model to achieve an F-measure of more than 
96% and a maximum CR of 46.88%. 

Table 7. The first experimental results of BTM (1; 

1/2/3/4/5; 45,000) 

POS Layer #    P(%) R(%) F(%) | CR(%) 

1  86.32 85.57 85.94 | 33.43 
2     97.03 95.82 96.42 | 46.88 
3     99.04 98.86 98.95 | 34.07 
4     99.07 98.88 98.97 | 31.92 
5     99.07 98.87 98.97 | 31.84 

3.2 Relationship between BTM threshold 

value and BTM performance 

In the 2nd experiment, the POS layer number is 
set to 2 and the BTM training size is set to 
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45,000. Table 8 is the second experimental re-

sults of BTM performance and CR when the 
BTM threshold value is 1.0, 0.9, 0.8, 0.7, 0.6 or 

0.5. From Table 8, it shows the BTM threshold 

value is positively related to the F-measure. Be-
sides, the F-measure difference between thresh-

old values 1.0 and 0.5 is only 1.37%. This result 

indicates that the BTM model can robustly 
maintain an F-measure of more than 95% and a 

CR of more than 46% while the POS layer num-

ber is set to 2, BTM training size is set to 45,000 

and the BTM threshold value is  0.5. 

Table 8. The second experimental results of BTM 

(1/0.9/0.8/0.7/0.6/0.5; 2; 45,000) 

Threshold 
Value  P(%) R(%) F(%) | CR(%) 

1.0  97.03 95.82 96.42 | 46.88 
0.9  96.99 95.71 96.35 | 47.84 
0.8  96.95 95.54 96.24 | 49.42 
0.7  96.94 95.49 96.21 | 50.66 
0.6  96.86 95.26 96.05 | 51.92 
0.5  96.34 93.80 95.05 | 53.72 

3.3 Relationship between BTM training size 

and BTM performance 

In the 3rd experiment, the BTM threshold value 

is set to 0.5 and POS layer number is set to 2. 

Table 9 is the third experimental results of BTM 
performance and CR when the BTM training 

size is 5000, 10000, 15000, 20000, 25000, 

30000, 35000, 40000 or 45000. From Table 9, it 
seems to indicate that the F-measure of the BTM 

model is independent of the training size be-

cause the maximum difference between these 
respective F-measures is only 0.88%. 

Table 9. The third experimental results of BTM (0.5, 

2, 5,000/ 10,000/ 15,000/ 20,000/ 25,000 /30,000 

/35,000 / 40,000/ 45,000) 

Training size P(%) R(%) F(%) | CR(%) 

5,000  95.82 91.33 94.61 | 30.23 

10,000  96.28 92.16 94.64 | 35.13 

15,000  96.29 92.48 94.54 | 40.32 

20,000  96.07 92.59 94.44 | 43.73 

25,000  96.19 92.74 94.43 | 46.70 

30,000  96.17 92.78 94.30 | 48.46 

35,000  96.22 92.92 94.35 | 50.51 

40,000  96.28  93.06 94.17 | 52.29 

45,000  96.34 93.80 95.05 | 53.72 

To sum up the above three experimental results 

(Tables 7-9), it shows that the F-measure (over-

all performance) of our BTM model with POS 

layer number (  2) is apparently not sensitive to 

BTM threshold value (  0.5) and BTM training 

size (  5,000) on the matching set with perfect 
input. Since the CR of our BTM model is posi-

tively related to BTM training size, it indicates 
our BTM model should be able to maintain the 

high performance chunk bracketing (more than 

95% F-measure on the matching set with perfect 
input) and increase the CR only by enlarging the 

BTM training size. 

3.4 Comparative study of the N-gram model 

and the BTM model on perfect/actual input 

To conduct the 4th experiment, we develop N-

gram models (NGM) by the SRILM (Stanford 

Research Institute Language Modeling) toolkit 
(Stolcke, 2002) as the baseline model. SRILM is 

a freely available collection of C++ libraries, 

executable programs, and helper scripts de-
signed to allow both production of, and experi-

mentation with, statistical language models for 

speech recognition and other NLP applications 
(Stolcke, 2002). In this experiment, the TL POS 

patterns (such as “<Na:DE:Na+VH:VH>”) of  

training set were used as the data for SIRLM to 
build N-gram models. Then, use these N-gram 

models to determine the chunks for each BL 

POS pattern in the testing set. Note that these N-
gram models were trained by the TL POS pat-

terns only, not by each layer’s POS patterns. 

Figure 2 shows the distribution of n-gram pat-
terns of N-gram models (N is from 2 to 44) 

trained by the training set. 

Fig.2 The n-gram distribution of N-gram models (N 
is 2 to 44) trained by the 45,000 CCTB2.1 TL POS 

patterns of training set 
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Tables 10, 11, 12 13 and 14 are the results of the 

fourth experiment. The explanations of the five 
tables are given below. 

Table 10. The fourth experimental results of NGM 

(2/3/4/5/6/N; 45,000) for perfect input 

N-gram P(%) R(%) F(%) 

2  77.62 78.98 78.30 

3  80.16 81.83 80.99 

4  80.36 81.91 81.13 

5  79.58 81.38 80.47 

6  78.98 80.35 79.91 

N (=44) 78.51 80.44 79.46 

Table 11. The comparative experimental results of 

P/R/F and CR between BTM (0.5, 2, 45,000) and a 4-

gram model for perfect input 

Set     BTM(0.5, 2, 45k)    4-gram  | CR(%) 

matching     96.3/93.8/95.1         89.3/89.7/89.5    | 53.6 

no matching    -                   73.5/75.7/74.6    | 46.4 

Table 12. The comparative experimental results of 
P/R/F and CR between BTM (0.5, 2, 45,000) and a 4-

gram model for actual input 

Set     BTM(0.5, 2, 45k)     4-gram           | CR(%) 

matching    97.4/97.3/97.3          95.1/96.7/95.9    | 19.2 

no matching  -                   69.1/68.8/68.9    | 80.8 

Table 13. The comparative experimental results of 

P/R/F of a 4-gram model and a 4-gram with BTM 

(0.5, 2, 45,000) model for perfect input and actual 
input 

Model  Perfect(P/R/F) Actual(P/R/F) 

4-gram  80.4/81.9/81.1 72.63/72.23/72.43 

BTM+4-gram 83.8/83.4/83.6 74.70/73.03/73.42 

From Table 10, it shows the maximum preci-

sion, recall and F-measure of N-gram models all 
occur at the 4-gram model for perfect input. 

Thus, we use the 4-gram model as the baseline 

model in this experiment. Tables 11 and 12 are 
the comparative experimental results of the 

baseline model and the BTM model on the 

matching sets of perfect input and actual input, 
respectively. From Table 11, it shows the per-

formance (95.1% F-measure) of a BTM (0.5, 2, 

45,000) is 5.6% greater than that of a 4-gram 
model (89.5% F-measure) for the matching set 

with perfect input. From Table 12, it shows the 

performance (97.3% F-measure) of a BTM (0.5, 
2, 45,000) is 1.4% greater than that of a 4-gram 

model (95.9% F-measure) for the matching set 

with actual input. Table 13 is the experimental 

results of applying the BTM model to the 

matching set and the 4-gram model to the non-
matching set. From Table 13, it shows the F-

measure of a 4-gram model can be improved by 

the BTM model for both perfect input (2.5% 
increasing) and actual input (1% increasing). 

According to all the four experimental results, 

we have: (1) the BTM model can achieve better 
F-measure performance than N-gram models on 

the matching sets for both perfect input and ac-

tual input; and (2) the chunk bracketing per-
formance of the BTM model for the matching 

sets should be high and stable against training 

size, perfect and actual input while POS layer 

number  2 and BTM threshold value  0.5. 

4 Conclusion and Future Directions 

In this paper, we define a word-layer matrix that 

can be used to translate the CKIP Treebank and 

the Penn Chinese Treebank into corresponding 
BTM datasets. By the BTM dataset, we devel-

oped a BTM model, adopting two types of con-

ditional probabilities and using full TL POS 
pattern matching and full TL POS template 

matching to identify the chunks for each seg-

mented and POS-tagged Chinese sentence. 
Our experiment results show that the BTM 

model can effectively achieve precision and re-

call optimization on the matching sets for both 
perfect input and actual input. The experimental 

results also demonstrate that:  

(1) The BTM threshold value is positively re-
lated to the BTM F-measure; 

(2) The POS layer number is positively related 

to the BTM F-measure; 
(3) The F-measure of our BTM model for the 

matching set should be not sensitive to two 

BTM parameters: BTM threshold value and 
BTM training size; 

(4) The chunk bracketing of our BTM model on 

the matching set should be high and stable (or 
say, robust) against training size, perfect and 

actual input while POS layer number is  2 and 

BTM threshold value is  0.5; 
(5) The BTM model can provide a matching set 

with high and stable performance (more than 

95% F-measure) for improving N-gram-like 
models without trial-and-error, or say, a tuning 

process. For most statistical language models, 

such N-gram models, need tuning to improve 
their performance and large-scale corpus to 
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overcome corpus sparseness problem (Manning 

et al., 1999; Gao et al., 2002; Le et al., 2003). 
Furthermore, it is difficult for them to identify 

their “matching set” with high and stable per-

formance, whereas our BTM model has the abil-
ity to support chunkers and parsers for 

improving chunking performance. According to 

the fourth experiment results, when applying a 
BTM (0.5, 2, 45,000) model on the matching set 

and a 4-gram model on the non-matching set, 

the combined system can improve the F-
measure of 4-gram model 2.5% for perfect input 

and 1.0% for actual input. Among the chunking 

and parsing models, Cascaded Markov Models 
should be the first one to construct the parse tree 

layer by layer with each layer’s Markov Model. 

As per (Brants, 1999), each layer’s chunk brack-
eting of Cascaded Markov Models is dependent 

because the output of a lower layer is passed as 

input to the next higher layer. On the contrast, 
our BTM model can independently generate the 

chunks for top layer without the results of lower 

layer chunk bracketing; and 
(6) Since the F-measures of the BTM model for 

the matching sets of perfect and actual input 

both are greater than 95%, we believe our BTM 
model can be used not only to improve the F-

measure of existing shallow parsing or chunking 

systems, but also to help select valuable sen-
tences from the non-matching set for effectively 

extending the CR of our BTM model. 

In the future, we shall study how to combine 
our BTM model with more conventional statisti-

cal approaches, such as Bayesian Networks, 

Maximum Entropy and Cascaded Markov Mod-
els, etc. Meanwhile, we will also apply our BTM 

model to the Penn English Treebank as a com-
parative study. 
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