
Towards Statistical Paraphrase Generation: Preliminary Evaluations of
Grammaticality

Stephen Wan
���
Mark Dras

�
Robert Dale

��
Center for Language Technology

Div of Information Communication Sciences

Macquarie University

Sydney, NSW 2113

swan,madras,rdale@ics.mq.edu.au

Cécile Paris
��

Information and Communication

Technologies

CSIRO

Sydney, Australia

Cecile.Paris@csiro.au

Abstract

Summary sentences are often para-

phrases of existing sentences. They

may be made up of recycled fragments

of text taken from important sentences

in an input document. We investigate

the use of a statistical sentence gener-

ation technique that recombines words

probabilistically in order to create new

sentences. Given a set of event-related

sentences, we use an extended version

of the Viterbi algorithm which employs

dependency relation and bigram proba-

bilities to find the most probable sum-

mary sentence. Using precision and

recall metrics for verb arguments as a

measure of grammaticality, we find that

our system performs better than a bi-

gram baseline, producing fewer spuri-

ous verb arguments.

1 Introduction

Human authored summaries are more than just

a list of extracted sentences. Often the sum-

mary sentence is a paraphrase of a sentence in the

source text, or else a combination of phrases and

words from important sentences that have been

pieced together to form a new sentence. These

sentences, referred to as Non-Verbatim Sentences,

can replace extracted text to improve readability

and coherence in the summary.

Consider the example in Figure 1 which

presents an alignment between a human authored

summary sentence and a source sentence. The

Summary Sentence:

Every province in the country, except one, endured sporadic fighting, looting

or armed banditry in 2003.

Source Sentence:

However, as the year unfolded, every province has been subjected to fighting,

looting or armed banditry, with the exception of just one province (Kirundo,

in northern Burundi).

Figure 1: An aligned summary and source sen-

tence.

text is taken from a corpus of Humanitarian Aid

Proposals1 produced by the United Nations for

the purpose of convincing donors to support a re-

lief effort.

The example illustrates that sentence extraction

alone cannot account for the breadth of human au-

thored summary sentences. This is supported by

evidence presented in (Jing and McKeown, 1999)

and (Daumé III and Marcu, 2004).

Moving towards the goal of abstract-like auto-

matic summary generation challenges us to con-

sider mechanisms for generating non-verbatim

sentences. Such a mechanism can usefully be

considered as automatically generating a para-

phrase.2 We treat the problem as one in which a

new and previously unseen summary sentence is

to be automatically produced given some closely

related sentences extracted from a source text.

Following on from (Witbrock and Mittal,

1999), we use and extend the Viterbi algorithm

(Forney, 1973) for the purposes of generating

non-verbatim sentences. This approach treats

1These are available publically at
http://www.reliefweb.com.

2Paraphrase here includes sentences generated in an In-
formation Fusion task (Barzilay et al., 1999).

88

sentence generation as a search problem. Given

a set of words (taken from some set of sentences

to paraphrase), we search for the most likely se-

quence given some language model. Intuitively,

we want the generated string to be grammatical

and to accurately reflect the content of the source

text.

Within the Viterbi search process, each time we

append a word to the partially generated sentence,

we consider how well it attaches to a dependency

structure. The focus of this paper is to evaluate

whether or not a series of iterative considerations

of dependency structure results in a grammatical

generated sentence. Previous preliminary evalu-

ations (Wan et al., 2005) indicate that the gen-

erated sequences contain less fragmented text as

measured by an off-the-shelf dependency parser;

more fragments would indicate a grammatically

problematic sentence.

However, while encouraging, such an evalu-

ation says little about what the actual sentence

looks like. For example, such generated text

might only be useful if it contains complete

clauses. Thus, in this paper, we use the precision

and recall metric to measure how many generated

verb arguments, as extracted from dependency re-

lations, are correct.

The remainder of this paper is structured as fol-

lows. Section 2 provides an overview introducing

our approach. In Section 3, we briefly illustrate

our algorithm with examples. A brief survey of

related work is presented in Section 4. We present

our grammaticality experiments in Section 5. We

conclude with further work in Section 6.

2 An Overview of our Approach to

Statistical Sentence Generation

One could characterise the search space as being

a series of nested sets. The outer most set would

contain all possible word sequences. Within this,

a smaller set of strings exhibiting some semblance

of grammaticality might be found, though many

of these might be gibberish. Further nested sets

are those that are grammatical, and within those,

the set of paraphrases that are entailed by the in-

put text.

However, given that we limit ourselves to sta-

tistical techniques and avoid symbolic logic, we

cannot make any claim of strict entailment. We

Original Text

A military transporter was scheduled to take off in the afternoon from Yokota

air base on the outskirts of Tokyo and fly to Osaka with 37,000 blankets .

Mondale said the United States, which has been flying in blankets and is

sending a team of quake relief experts, was prepared to do more if Japan

requested .

United States forces based in Japan will take blankets to help earthquake

survivors Thursday, in the U.S. military’s first disaster relief operation in

Japan since it set up bases here.

Our approach with Dependencies

6: united states forces based in blankets

8: united states which has been flying in blankets

11: a military transporter was prepared to osaka with 37,000 blankets

18: mondale said the afternoon from yokota air base on the united states which

has been flying in blankets

20: mondale said the outskirts of tokyo and is sending a military transporter

was prepared to osaka with 37,000 blankets

23: united states forces based in the afternoon from yokota air base on the

outskirts of tokyo and fly to osaka with 37,000 blankets

27: mondale said the afternoon from yokota air base on the outskirts of tokyo

and is sending a military transporter was prepared to osaka with 37,000 blan-

kets

29: united states which has been flying in the afternoon from yokota air base

on the outskirts of tokyo and is sending a team of quake relief operation in

blankets

31: united states which has been flying in the afternoon from yokota air base

on the outskirts of tokyo and is sending a military transporter was prepared to

osaka with 37,000 blankets

34: mondale said the afternoon from yokota air base on the united states which

has been flying in the outskirts of tokyo and is sending a military transporter

was prepared to osaka with 37,000 blankets

36: united states which has been flying in japan will take off in the after-

noon from yokota air base on the outskirts of tokyo and is sending a military

transporter was prepared to osaka with 37,000 blankets

Figure 2: A selection of example output. Sen-

tences are prefixed by their length.

thus propose an intermediate set of sentences

which conserve the content of the source text

without necessarily being entailed. These are re-

ferred to as the set of verisimilitudes, of which

properly entailed sentences are a subset. The aim

of our choice of features and our algorithm exten-

sion is to reduce the search space from gibberish

strings to that of verisimilitudes. While generat-

ing verisimilitudes is our end goal, in this paper,

we are concerned principally with the generating

of grammatical sentences.

To do so, the extension adds an extra feature

propagation mechanism to the Viterbi algorithm

such that features are passed along a word se-

quence path in the search space whenever a new

word is appended to it. Propagated features are

used to influence the choice of subsequent words

suitable for appending to a partially generated

sentence. In our case, our feature is a depen-

dency structure of the word sequence correspond-

ing to the search path. Our present dependency

representation is based on that of (Kittredge and

89

Mel’cuk, 1983). However, it contains only the

head and modifier of a relation, ignoring relation-

ship labels for the present.

Algorithmically, after appending a word to a

path, a dependency structure of the partially gen-

erated string is obtained probabilistically. Along

with bigram information, the long-distance con-

text of dependency head information of the pre-

ceding word sequence will be useful in generat-

ing better sentences by filtering out all words that

might, at a particular position in the string, lead

to a spurious dependency relation in the final sen-

tence. Example output is presented in Figure 2.

As the dependency “parsing” mechanism is lin-

ear3 and is embedded within the Viterbi algo-

rithm, the result is an O(� �
) algorithm.

By examining surface-syntactic dependency

structure at each step in the search, resulting sen-

tences are likely to be more grammatical. This

marraige of models has been tested in other fields

such as speech recognition (Chelba and Jelinek,

1998) with success. Although it is an impover-

ished representation of semantics, considering de-

pendency features in our application context may

also serendipitously assist verisimilitude genera-

tion.

3 The Extended Viterbi Algorithm:

Propagating Dependency Structure

In this section, we present an overview of the

main features of our algorithm extension. We di-

rect the interested reader to our technical paper

(Wan et al., 2005) for full details.

The Viterbi algorithm (for a comprehensive

overview, see (Manning and Schütze, 1999)) is

used to search for the best path across a network

of nodes, where each node represents a word in

the vocabulary. The best sentence is a string of

words, each one emitted by the corresponding vis-

ited node on the path.

Arcs between nodes are weighted using a com-

bination of two pieces of information: a bigram

probability corresponding to that pair of words;

and a probability corresponding to the likelihood

of a dependency relation between that pair of

words. Specifically, the transition probability

3The parse is thus not necessarily optimal, in the sense of
guaranteeing the most likely parse.

defining these weights is the average of the depen-

dency transition probability and the bigram prob-

ability.

To simplify matters in this evaluation, we

assume that the emission probability is always

one. The emission probability is interpreted

as being a Content Selection mechanism that

chooses words that are likely to be in a summary.

Thus, in this paper, each word has an equally

likely chance of being selected for the sentence.

Transition Probability is defined as:���	��
	�
�	����� �
�������������������
�� � �"!$# ��%'&
 � � �(� � � � �*)+� �	�",'-�.
 � � �(� � � � ���
where, ���	� !/# ��%'&
 �0� �(��� �0�����21�354/687
 � �)9� �	��� �1�3:4;6<7
 � � �
The second function, =?>+@:A�BDC , is the focus of this

paper and discussed in Section 3.1.
Emission Probability (for this paper, always set to
1): � - &E
 �F�(�HG
Path Probability is defined recursively as:� . %:�	I
 �0J�):K'K'K')9�0� �(��������	� !$# ��%'&
 �0� �(��� �0���
LM� - &E
	�F�NLO� . %'�PI
 �0JNK:K'K9�0�D�
In the remaining subsections, we present an

example-based discussion of how dependency-

based transitions are used, and a discussion of

how the dependency structure of the unfolding

path is maintained and propagated within the

search process.

3.1 Word Selection Using Dependency

Transitions

Given two input sentences “The relief workers

distributed food to the hungry.” and “The UN

workers requested medicine and blankets.”, the

task is to generate a single sentence that contains

material from these two sentences. As in (Barzi-

lay et al., 1999), we assume that the sentences

stem from the same event and thus, references can

be fused together.

Imagine also that bigram frequencies have been

collected from a relevant UN Humanitarian cor-

pus. Figure 3 presents bigram probabilities and

two sample paths through the lattice. The path

could follow one of two forks after encountering

90

Graph nodes:�Q� is workers�
R is distributed�
S is food�NT is blankets� is the end-of-sentence state�F� � R �0S �
� T

�<
 w R$� w � � �<
 w S � w R5�
�<
 w T � w R �VU�XW

�<
 E YEZ � w T��
�<

E YEZ �

w [�
Figure 3: Two search paths. One is consistent

with the input text, the other is not. Assume that

the probabilities are taken from a relevant corpus

such that =M\ b]*̂N� _̀Fa8b�c0d d e5cfb5g(e5h$iVb�a8jQk is not zero.
the word distributed, since the corpus may have

examples of the word pairs distributed food and

distributed blankets. Since both food and blankets

can reach the end-of-sentence state, both might

conceivably be generated by considering just n-

grams. However, only one is consistent with the

input text.

To encourage the generation of verisimilitudes,

we check for a dependency relation between blan-

kets and distributed in the input sentence. As no

evidence is found, we score this transition with

a low weight. In contrast, there is evidence for

the alternative path since the input text does con-

tain a dependency relation between food and dis-

tributed.

In reality, multiple words might still conceiv-

ably be modified by future words, not just the im-

mediately preceding word. In this example, dis-

tributed is the root of a dependency tree struc-

ture representing the preceding string. However,

any node along the rightmost root-to-leaf branch

of the dependency tree (that represents the par-

tially generated string) could be modified. This

dependency structure is determined statistically

using a probabilistic model of dependency rela-

tions. To represent the rightmost branch, we use a

stack data structure (referred to as the head stack)

whereby older stack items correspond to nodes

closer to the root of the dependency tree.

The probability of the dependency-based transi-

tion is estimated as follows:���	�",'-�.�
 �0� �(��� �0���ml�<
 Z �9�$nDo &
 � � �(�)"p;�'��q�r 7 � 1�s
 � � �������tvu:wI�x�I - % ,:y �	%5zD{5|~} �*� �;
 Z �9� nDo &�
 �0� �(��)"p/���
where =E*��a�=?�:����\"����� �;��� k�k is inspired by and
closely resembles the probabilistic functions in

(Collins, 1996).

After selecting and appending a new word, we

update this representation containing the govern-

ing words of the extended string that can yet be

modified. The new path is then annotated with

this updated stack.

3.2 Maintaining the Head Stack

There are three possible alternative outcomes to

the head stack update mechanism. Given a head

stack representing the dependency structure of the

partially generated sentence and a new word to

append to the search path, the first possibility is

that the new word has no dependency relation to

any of the existing stack items, in which case we

simply push the new word onto the stack. For

the second and third cases, we check each item

on the stack and keep a record only of the best

probable dependency between the new word and

the appropriate stack item. The second outcome,

then, is that the new word is the head of some

item on the stack. All items up to and including

that stack item are popped off and the new word is

pushed on. The third outcome is that it modifies

some item on the stack. All stack items up to (but

not including) the stack item are popped off and

the new word is pushed on.

We now step through the generation of the sen-

tence “The UN relief workers distributed food to

the hungry” which is produced by the exploration

of one path in the search process. Figure 4 shows

how the head stack mechanism updates and prop-

agates the stack of governing words as we append

words to the path to produce this string.

We first append the determiner the to the new

string and push it onto the empty stack. As dic-

tated by a high n-gram probability, the word UN

follows. However, there is no evidence of a rela-

tion with the preceding word, so we simply push

it on the stack. Similarly, relief is appended and

also pushed on the stack.

When we encounter the word workers we find

evidence that it governs each of the preceding

91

Graph nodes:�Q� is The �0� is food�
R is UN �Q� is to� S is relief �0� is the� T is workers �0� is hungry� [is distributed � is the end-of-sentence state
� � �0R � S �
T � [
� [�0� � � � � �0� �

� � �X� � �0R� �X� � �0S�0R� �X� � �NT �
� � [� � �0�� [� � � �� [� � �
�� �� [� � �0�� ��Q�� [��

Figure 4: Propagating the head stack feature

along the path.

three words. The modifiers are popped off and

workers is pushed on. Skipping ahead, the tran-

sition distribute food has a high bigram probabil-

ity and evidence for a dependency relation exists.

This results in a strong overall path probability as

opposed to the alternative fork in Figure 3. Since

distributed can still be modified in the future by

words, it is not popped off. The word food is

pushed onto the stack as it too can still be modi-

fied.

The sentence could end there. Since we multi-

ply path, transition and emission probabilities to-

gether, longer sentences will have a lower prob-

ability and will be penalised. However, we can

choose to continue the generation process to pro-

duce a longer sentence. The word tomodifies dis-

tributed. To prevent crossing dependencies, food

is popped off the stack before pushing to. Ap-

pending the rest of the words is straightforward.

4 Related Work

In recent years, there has been a steady stream of

research in statistical text generation (see Langk-

ilde and Knight (1998), and Bangalore and Ram-

bow (2000)). These approaches begin with a rep-

resentation of sentence semantics that has been

produced by a content planning stage. Compet-

ing realisations of the semantic representation are

ranked using an n-gram model. Our approach dif-

fers in that we do not start with a semantic repre-

sentation. Rather, we paraphrase the original text,

searching for the best word sequence and depen-

dency tree structure concurrently.

Summarization researchers have also studied

the problem of generating non-verbatim sen-

tences: see (Jing and McKeown, 1999), (Barzi-

lay et al., 1999) and more recently (Daumé III

and Marcu, 2004). Jing uses a HMM for learn-

ing alignments between summary and source sen-

tences. Daume III also provides a mechanism

for sub-sentential alignment but allows for align-

ments between multiple sentences. Both ap-

proaches provide models for later recombining

sentence fragments. Our work differs primar-

ily in granularity. Using words as a basic unit

potentially offers greater flexibility in pseudo-

paraphrase generation; however, like any ap-

proach that recombines text fragments, it incurs

additional problems in ensuring that the generated

sentence reflects the information in the input text.

In work describing summarisation as transla-

tion, Knight andMarcu (Knight andMarcu, 2002)

also combine syntax models to help rank the

space of possible candidate translations. Their

work differs primarily in that they search over a

space of trees representing the candidate trans-

lations and we search over a space of word se-

quences which are annotated by corresponding

trees.

5 Evaluation

In this section, we describe two small experiments

designed to evaluate whether a dependency-

based statistical generator improves grammatical-

ity. The first experiment uses a precision and re-

call styled metric on verb arguments. We find that

our approach performs significantly better than

the bigram baseline. The second experiment ex-

amines the precision and recall statistics on short

and long distance verb arguments. We now de-

scribe these two experiments in more detail.

5.1 Improvements in Grammaticality: Verb

Argument Precision and Recall

In this evaluation, we want to know what advan-

tages a consideration of input text dependencies

affords, compared to just using bigrams from the

input text. Given a set of sentences which has

been clustered on the basis of similarity of event,

the system generates the most probable sentence

92

by recombining words from the cluster.4 The aim

of the evaluation is to measure improvements in

grammaticality. To do so, we compare our depen-

dency based generation method against a bigram

model baseline.

Since verbs are crucial in indicating the gram-

maticality of a clause, we examine the verb argu-

ments of the generated sentence. We use a recall

and precision metric over verb dependency rela-

tions and compare generated verb arguments with

those from the input text. For any verbs included

in the generated summary, we count how many

generated verb-argument relations can be found

amongst the input text relations for that verb. A

relation match consists of an identical head, and

also an identical modifier. Since word order in

English is vital for grammaticality, a matching re-

lation must also preserve the relative order of the

two words within the generated sentence.
The precision metric is as follows:

precision �
count
 matched-verb-relations �
count
 generated-verb-relations �

The corresponding recall metric is defined as:

recall �
count
 matched-verb-relations �
count
 source-text-verb-relations �

The data for our evaluation cases is taken from

the information fusion data collected by (Barzi-

lay et al., 1999). This data is made up of news

articles that have first been grouped by topic, and

then component topic sentences further clustered

by similarity of event. We use 100 sentence clus-

ters and on average there are 4 sentences per clus-

ter.

Each sentence cluster forms an evaluation case

for which the task is to generate a single sentence.

For each evaluation case, the baseline method and

our method generates a set of answer strings, from

1 to 40 words in length.

For each cluster, sentences are parsed

using the Connexor dependency parser

(www.connexor.com) to obtain dependency

relations used to build dependency models for

that cluster. In the interests of minimising con-

flating factors in this comparison, we similarly

4This sentence could be an accurate replica of an original
sentences, or a non-verbatim sentence that fuses information
from various input sentences.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

P
re

c
is

io
n

Sentence Length

Precision of Verb Arguments across Sentence Lengths

Baseline
System

Figure 5: Verb-Argument Relation Precision

scores for generated output compared to a bigram

baseline

train bigram language models on the input cluster

of text. This provides both the bigram baseline

and our system with the best possible chance

of producing a grammatical sentence given the

vocabulary of the input cluster. Note that the

baseline is a difficult one to beat because it is

likely to reproduce long sequences from the

original sentences of the input cluster. However,

the exact regurgitation of input sentences is not

necessarily the outcome of the baseline generator

since, for each cluster, bigrams from multiple

sentences are combined into a single model.

We do not use any smoothing algorithms for

dependency counts in this evaluation since at

present time. Thus, given the sparseness arising

from a small set of sentences, our dependency

probabilities tend towards boolean values. For

both our approach and the baseline, the bigrams

are smoothed using Katz’s back-off method.

5.1.1 Results and Discussion

Figure 5 shows the average precision score

across sentence lengths. That is, for each sentence

length, there are 100 instances whose precisions

are averaged. As can be seen, the system almost

always achieves a higher precision than the base-

line. As expected, precision decreases as sentence

length increases.

Our approach is designed to minimise the num-

ber of spurious dependency relations generated in

the resulting sentence. As this is typically mea-

sured by precision scores, recall scores are less in-

93

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

R
e
c
a
ll

Sentence Length

Recall of Verb Arguments across Sentence Lengths

Baseline
System

Figure 6: Verb-Argument Relation Recall scores

for generated output compared to a bigram base-

line

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

P
re

c
is

io
n

Sentence Length

Precision of Adjacent Verb Arguments across Sentence Lengths

Baseline
System

Figure 7: Adjacent Verb-Argument Relation Pre-

cision scores for generated output compared to a

bigram baseline

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

P
re

c
is

io
n

Sentence Length

Precision of Long Distance Verb Arguments across Sentence Lengths

Baseline
System

Figure 8: Long Distance Verb-Argument Relation

Precision scores for generated output compared to

a bigram baseline

teresting as a measure of the generated sentence.

However, for completeness, they are presented

Figure 6. Results indicate that our system was

indistinguishable from the baseline. This is un-

surprising as our approach is not designed to in-

crease the retrieval of dependency relations from

the source text.

Using a two-tailed Wilcoxon test (alpha �
0.05), we find that the differences in precision

scores are significant for most sentence lengths

except lengths 17 and 32. The failure to reject the

null hypothesis5 for these lengths is interpreted as

idiosyncratic in our data set. In the case of the

recall scores, differences are not significant.

The results support the claim that a

dependency-based statistical generator im-

proves grammaticality by reducing the number

of spurious verb-argument dependency relations.

It is also possible to treat dependency precision

as being a superficial measure of content conser-

vation between the generated sentence and the

input sentences. Thus, it can also be seen as a

poor measure of how well the summary captures

the source text.

5.2 Examining Short and Long Distance

Verb Arguments

Intuitively, one would expect the result from the

first experiment to be reflected in both short (ie.

adjacent) and long distance verb dependencies.

To test this intuition, we examined the precision

and recall statistics for the two types of depen-

dencies separately. The same experimental setup

is used as in the first experiment.

The results for adjacent (short) dependencies

echo that of the first experiment. The precision

results for adjacent dependencies are presented in

Figure 7. Again, our system performs better than

the baseline in terms of precision. Our system is

indistinguishable in recall performance from the

baseline. Due to space constraints, we omit the

recall graph. Using the same significance test as

before, we find that the differences in precision

are generally significant across sentence lengths.

That our approach should achieve a better pre-

cision for adjacent relations supports the claim

of improved grammaticality. The result resonates

5That is, the means of scores by our system and the base-
line are not different.

94

well with the earlier finding that sentences gener-

ated by the dependency-based statistical genera-

tor contain fewer instances of fragmented text. If

this is so, one would expect that a parser is able to

identify more of the original intended dependen-

cies.

The results for the long distance verb argument

precision and recall tests are slightly different.

Whilst the graph of precision scores, presented in

Figure 8, shows our system often performing bet-

ter than the baseline, this difference is not signif-

icant. As expected, the recall scores between our

system and the baseline are on par and we again

omit the results.

This result is interesting because one would ex-

pect that what our approach offers most is the

ability to preserve long distance dependencies

from the input text. However, long distance rela-

tions are fewer in number than adjacent relations,

which account for approximately 70% of depen-

dency relations (Collins, 1996). As the generator

still does not produce perfect text, if the interme-

diate text between the head and modifier of a long

distance relation contains any grammatical errors,

the parser will obviously have difficulty in iden-

tifying the original intended relation. Given that

there are fewer long distance relations, the pres-

ence of such errors quickly reduces the perfor-

mance margin for the precision metric and hence

no significant effect is detected. We expect that

as we fine-tune the probabilistic models, the pre-

cision of long distance relations is likely to im-

prove.

6 Conclusion and Future Work

In this paper, we presented an extension to the

Viterbi algorithm which selects words in the

string that are likely result in probable depen-

dency structures. In a preliminary evaluation

using precision and recall of dependency rela-

tions, we find that it improves grammaticality

over a bigram model. In future work, we in-

tend re-introduce the emission probabilities to

model content selection. We also intend to use

corpus-based dependency relation statistics and

we would like to compare the two language mod-

els using perplexity. Finally, we would like to

compare our system to that described in (Barzi-

lay et al., 1999).

References

Srinivas Bangalore and Owen Rambow. 2000. Ex-
ploiting a probabilistic hierarchical model for gen-
eration. In Proceedings of COLING, Universität
des Saarlandes, Saarbrücken, Germany.

Regina Barzilay, Kathleen R. McKeown, and Michael
Elhadad. 1999. Information fusion in the context
of multi-document summarization. In Proceedings
of ACL, Morristown, NJ, USA.

Ciprian Chelba and Fred Jelinek. 1998. Exploiting
syntactic structure for language modelling. In Pro-
ceedings of ACL-COLING, Montreal, Canada.

Michael John Collins. 1996. A new statistical parser
based on bigram lexical dependencies. In Arivind
Joshi and Martha Palmer, editors, Proceedings of
ACL, San Francisco.

Hal Daumé III and Daniel Marcu. 2004. A phrase-
based hmm approach to document/abstract align-
ment. In Proceedings of EMNLP 2004, Barcelona,
Spain.

G. David Forney. 1973. The viterbi algorithm. Pro-
ceedings of The IEEE, 61(3):268–278.

Hongyan Jing and KathleenMcKeown. 1999. The de-
composition of human-written summary sentences.
In Research and Development in Information Re-
trieval.

Richard I. Kittredge and Igor Mel’cuk. 1983. To-
wards a computable model of meaning-text rela-
tions within a natural sublanguage. In The Proceed-
ings of IJCAI.

Kevin Knight and Daniel Marcu. 2002. Summa-
rization beyond sentence extraction: a probabilis-
tic approach to sentence compression. Artif. Intell.,
139(1):91–107.

Irene Langkilde and Kevin Knight. 1998. The practi-
cal value of N-grams in derivation. In Proceedings
of INLG, New Brunswick, New Jersey.

Christopher D. Manning and Hinrich Schütze. 1999.
Foundations of Statistical Natural Language Pro-
cessing. The MIT Press, Cambridge, Mas-
sachusetts.

Stephen Wan, Robert Dale, Mark Dras, and Cecile
Paris. 2005. Searching for grammaticality and con-
sistency: Propagating dependencies in the viterbi
algorithm. In The Proceedings of EWNLG, Ab-
erdeen, Scotland.

Michael J. Witbrock and Vibhu O. Mittal. 1999.
Ultra-summarization (poster abstract): a statisti-
cal approach to generating highly condensed non-
extractive summaries. In The Proceedings of SI-
GIR, New York, NY, USA.

95

