
Perceptron Learning for Chinese Word Segmentation

Yaoyong Li†, Chuanjiang Miao‡, Kalina Bontcheva†, Hamish Cunningham†

†Department of Computer Science, The University of Sheffield, Sheffield, S1 4DP, UK

{yaoyong,kalina,hamish}@dcs.shef.ac.uk
‡Institute of Chinese Information Processing, Beijing Normal University, Beijing, 100875, China

miaochj@bnu.edu.cn

Abstract

We explored a simple, fast and effective

learning algorithm, the uneven margins

Perceptron, for Chinese word segmen-

tation. We adopted the character-based

classification framework and trans-

formed the task into several binary clas-

sification problems. We participated

the close and open tests for all the four

corpora. For the open test we only used

the utf-8 code knowledge for discrimi-

nation among Latin characters, Arabic

numbers and all other characters. Our

system performed well on the as, cityu

and msr corpora but was clearly worse

than the best result on the pku corpus.

1 Introduction

We participated in the closed and open tests for

all the four corpora, referred to as, cityu, msr and

pku, respectively. We adopted the character-based

methodology for Chinese word segmentation, that

processed text character by character. We ex-

plored a simple and effective learning algorithm,

the Perceptron with Uneven Margins (PAUM) for

Chinese word segmentation task.

For the open task, we only used the minimal ex-

ternal information – the utf-8 code knowledge to

distinguish Latin characters and Arabic numbers

from other characters, justified by the fact that

the English text requires no segmentation since

they has been segmented already, and another fact

that any Arabic number in one particular context

should have the same segmentation.

2 Character Based Chinese Word

Segmentation

We adopted the character based methodology for

Chinese word segmentation, in which every char-

acter in a sentence was checked one by one to

see if it was a word on its own or it was begin-

ning, middle, or end character of a multi-character

word. In contrast, another commonly used strat-

egy, the word based methodology segments a Chi-

nese sentence into the words in a pre-defined

word list possibly with probability information

about each word, according to some maximum

probability criteria (see e.g. Chen (2003)). The

performance of word based segmentation is de-

pendent upon the quality of word list used, while

the character based method does not need any

word list – it segments a sentence only based on

the characters in the sentence.

Using character based methodology, we trans-

form the word segmentation problem into four

binary classification problems, corresponding to

single-character word, the beginning, middle and

end character of multi-character word, respec-

tively. For each of the four classes a classifier was

learnt from training set using the one vs. all others

paradigm, in which every character in the train-

ing data belonging to the class considered was re-

garded as positive example and all other charac-

ters were negative examples.

After learning, we applied the four classifiers to

each character in test text and assigned the char-

acter the class which classifier had the maximal

output among the four. This kind of strategy has

been widely used in the applications of machine

learning to named entity recognition and has also

154

been used in Chinese word segmentation (Xue

and Shen, 2003). Finally a word delimiter (often a

blank space, depending on particular corpus) was

added to the right of one character if it was not the

last character of a sentence and it was predicted

as end character of word or as a single character

word.

3 Learning Algorithm

Perceptron is a simple and effective learning al-

gorithm. For a binary classification problem, it

checks the training examples one by one by pre-

dicting their labels. If the prediction is correct,

the example is passed; otherwise, the example is

used to correct the model. The algorithm stops

when the model classifies all training examples

correctly. The margin Perceptron not only classi-

fies every training example correctly but also out-

puts for every training example a value (before

thresholding) larger than a predefined parameter

(margin). The margin Perceptron has better gen-

eralisation capability than the standard Percep-

tron. Li et al. (2002) proposed the Perceptron al-

gorithm with uneven margins (PAUM) by intro-

ducing two margin parameters τ+ and τ− into the

update rules for the positive and negative exam-

ples, respectively. Two margin parameters allow

the PAUM to handle imbalanced datasets better

than both the standard Perceptron and the margin

Perceptron. PAUM has been successfully used for

document classification and information extrac-

tion (Li et al., 2005).

We used the PAUM algorithm to train a clas-

sifier for each of four classes for Chinese word

segmentation. For one test example, the output of

the Perceptron classifier before thresholding was

used for comparison among the four classifiers.

The important parameters of the learning algo-

rithm are the uneven margins parameters τ+ and

τ−. In all our experiments τ+ = 20 and τ− = 1

were used.

Table 1 presents the results for each of the

four classification problems, obtained from 4-fold

cross-validation on training set. Not surprisingly,

the classification for middle character of multi-

character word was much harder than other three

classification problems, since middle character of

Chinese word is less characteristic than beginning

or end character or single-character word. On the

other hand, improvement on the classification for

middle character, while keeping the performances

of other classification, would improve the overall

performance of segmentation.

Table 1: Results for each of the four classifiers:

F1 (%) averaged over 4-fold cross-validation on

training sets of the four corpora. C1, C2 and

C3 refer to the classifier for beginning, middle

and end character of multi-character word, re-

spectively, and C4 refers to the classifier for single

character word.

C1 C2 C3 C4

as 95.64 90.07 95.47 95.27

cityu 96.64 90.06 96.43 95.14

msr 96.36 89.79 96.00 94.99

pku 96.09 89.99 96.18 94.12

Support vector machines (SVM) is a popular

learning algorithm, which has been successfully

applied to many classification problems in natural

language processing. Similar to the PAUM, SVM

is a maximal margin algorithm. Table 2 presents

a comparison of performances and computation

times between the PAUM and the SVM with lin-

ear kernel1 on three subsets of cityu corpora with

different sizes. The performance of SVM was

better than the PAUM. However, the larger the

training data was, the closer the performance of

PAUM to that of SVM. On the other hand, SVM

took much longer computation time than PAUM.

As a matter of fact, we have run the SVM with

linear kernel on the whole cityu training corpus

using 4-fold cross-validation for one month and it

has not finished yet. In contrast, PAUM just took

about one hour to run the same experiment.

4 Features for Each Character

In our system every character was regarded as

one instance for classification. The features for

one character were the character form itself and

the character forms of the two preceding and

the two following characters of the current one.

In other word, the features for one character c0

were the character forms from a context win-

1The SVMlight package version 5.0, available from
http://svmlight.joachims.org/, was used to learn the SVM
classifiers in our experiments.

155

Table 2: Comparison of the Perceptron with SVM

for Chinese word segmentation: averaged F1 (%)

over the 4-fold cross-validation on three subsets

of cityu corpus and the computation time (in sec-

ond) for each experiment. The three subsets have

100, 1000 and 5000 sentences, respectively.

100 1000 5000

PAUM 73.55 78.00 88.08

4s 14s 92s

SVM 75.50 79.15 88.78

227s 3977s 49353s

dow centering at c0 and containing five char-

acters {c−2, c−1, c0, c1, c2} in a sentence. Our

experiments on training data showed that co-

occurrences of characters in the context win-

dow were helpful. Taking account of all co-

occurrences of characters in context window is

equivalent to using a quadratic kernel in Percep-

tron, while not using any co-occurrence amounts

to a linear kernel. Actually we can only use part

of co-occurrences as features, which can be re-

garded as some kind of semi-quadratic kernel.

Table 3 compares the three types of ker-

nel for Perceptron, where for the semi-

quadratic kernel we used the co-occurrences

of characters in context window as those

used in (Xue and Shen, 2003), namely

{c−2c−1, c−1c0, c0c1, c1c2, c−1c1}. It was

shown that the quadratic kernel gave much better

results than linear kernel and the semi-quadratic

kernel was slightly better than fully quadratic ker-

nel. Semi-quadratic kernel also led to less feature

and less computation time than fully quadratic

kernel. Therefore, this kind of semi-quadratic

kernel was used in our submissions.

Table 3: Comparisons between different kernels

for Perceptron: F1 (%) averaged over 4-fold

cross-validation on three training sets.

linear quadratic semi-quadratic

cityu 81.30 94.78 95.13

msr 79.80 94.78 94.93

pku 82.33 94.80 95.05

Actually it has been noted that quadratic ker-

nel for Perceptron, as well as for SVM, per-

formed better than linear kernel for informa-

tion extraction and other NLP tasks (see e.g.

Carreras et al. (2003)). However, quadratic ker-

nel was usually implemented in dual form for

Perceptron and it took very long time for train-

ing. We implemented the quadratic kernel for

Perceptron in primal form by encoding the linear

and quadratic features into feature vector explic-

itly. Actually our implementation performed even

slightly better than the Perceptron with quadratic

kernel as we used only part of quadratic features,

and it was still as efficient as the Perceptron with

linear kernel.

5 Open Test

While closed test required the participants only to

use the information presented in training material,

open test allowed to use any external information

or resources besides the training data. In our sub-

missions for the open test we just used the min-

imal external information, namely the utf-8 code

knowledge for identifying a piece of English text

or an Arabic number. and What we did by us-

ing this kind of knowledge was to pre-process the

text by replacing each piece of English text with

a symbol “E” and replacing every Arabic num-

ber with another symbol “N”. This kind of pre-

processing resulted in a smaller training data and

less computation time and yet slightly better per-

formance on training data, as shown in Table 4

which compares the results of collapsing the En-

glish text only and collapsing both the English

text and Arabic number with those for closed test.

Table 4 also presents the 95% confidence intervals

for the F-measures.

6 Results on Test Data

Table 5 presents our official results on test corpora

for both close and open tests. First, comparing

with the results in Table 4, the results on test set

are significantly different from the result using 4-

fold cross validation on training set for all the four

corpora. The test result was better than the results

on training set for the msr corpus but was worse

for other three corpora, especially for the pku cor-

pora. We suspected that this may be caused by

difference between training and test data, which

needs further investigation.

156

Table 4: Comparisons between the results for

close and open tests: averaged F1 (%) and the

95% confidence interval on the 4-fold cross-

validation on the training sets of four corpora and

the computation time (in hour) for each experi-

ment. “English” means only collapsing English

texts and “E & N” means collapsing both English

texts and Arabic numbers.

close test English E & N

as 95.53±0.46 95.65±0.47 95.78±0.46

8.88h 7.66h 7.07h

cityu 95.13 ±1.49 95.25 ±1.48 95.25 ±1.48

1.03h 0.86h 0.82h

msr 94.92 ±0.36 94.98 ±0.40 95.00 ±0.39

2.62h 1.69h 1.62h

pku 95.05 ±0.43 95.08 ±0.36 95.15 ±0.46

0.70h 0.63h 0.60h

Secondly, the test results for close and open

tests are close to each other on other three corpora

except the pku corpora, for which the result for

open test is clearly better than that for close test.

This was mainly because of different encoding

of Arabic number in training and test sets of the

pku corpus. Since Arabic number was encoded in

three bytes in training set but was encoded in one

byte in test set for the pku corpora, for close test

the trained model for Arabic number was not ap-

plicable to the Arabic numbers in test set. How-

ever, for open test, as we replaced Arabic num-

ber with one symbol in both training and test sets,

the different encoding of Arabic number in train-

ing and test sets could not cause any problem at

all, which led to better result. On the other hand,

our pre-processing with respect to the English text

and Arabic numbers seemed have slightly effect

on the F-measure for other three corpora.

Finally, comparing with the results of closed

test from other participants, our F1 figures were

no more than 0.008 lower than the best ones on

the as, cityu and msr corpora, but was 0.023 lower

than the best one on the pku corpus.

7 Conclusion

We applied the uneven margins Perceptron to Chi-

nese word segmentation. The learning algorithm

is simple, fast and effective. The results obtained

Table 5: The official results on test set: F-measure

(%) for close and open tests, respectively.

as cityu msr pku

close 94.4 93.6 95.6 92.7

open 94.8 93.6 95.4 93.8

are encouraging.

The performance of Perceptron was close to

that of the SVM on Chinese word segmentation

for large training data. On the other hand, the

Perceptron took much less computation time than

SVM. We implemented the Perceptron with semi-

quadratic kernel in primal form. Our implemen-

tation was both effective and efficient.

Our system performed well for the three of four

corpora, as, cityu and msr corpora. But it was

significantly worse than the best result on the pku

corpora, which needs further investigation.

Acknowledgements

This work is supported by the EU-funded SEKT

project (http://www.sekt-project.org).

References

X. Carreras, L. Màrquez, and L. Padró. 2003. Learn-
ing a perceptron-based named entity chunker via
online recognition feedback. In Proceedings of
CoNLL-2003, pages 156–159. Edmonton, Canada.

A. Chen. 2003. Chinese Word Segmentation Using
Minimal Linguistic Knowledge. In Proceedings of
the 2nd SIGHAN Workshop on Chinese Language
Processing.

Y. Li, H. Zaragoza, R. Herbrich, J. Shawe-Taylor, and
J. Kandola. 2002. The Perceptron Algorithm with
Uneven Margins. In Proceedings of the 9th Inter-
national Conference on Machine Learning (ICML-
2002), pages 379–386.

Y. Li, K. Bontcheva, and H. Cunningham. 2005. Us-
ing Uneven Margins SVM and Perceptron for Infor-
mation Extraction. In Proceedings of Ninth Confer-
ence on Computational Natural Language Learning
(CoNLL-2005).

N. Xue and L. Shen. 2003. Chinese Word Segmen-
tation as LMR Tagging. In Proceedings of the 2nd
SIGHAN Workshop on Chinese Language Process-
ing.

157

