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Abstract

We present a method for improving 

dependency structure analysis of Chi-

nese. Our bottom-up deterministic ana-

lyzer adopt Nivre’s algorithm (Nivre 

and Scholz, 2004). Support Vector Ma-

chines (SVMs) are utilized to deter-

mine the word dependency relations. 

We find that there are two problems in 

our analyzer and propose two methods 

to solve them. One problem is that 

some operations cannot be solved only 

using local feature. We utilize the 

global features to solve this. The other 

problem is that this bottom-up analyzer 

doesn’t use top-down information. We 

supply the top-down information by 

constructing SVMs based root node 

finder to solve this problem. Experi-

mental evaluation on the Penn Chinese 

Treebank Corpus shows that the pro-

posed extensions improve the parsing 

accuracy significantly. 

1 Introduction 

Many syntactic analyzers for English have been 

implemented and have demonstrated good per-

formance (Charniak, 2000; Collins, 1997; Rat-

naparkhi, 1999). However, implementation of 

Chinese syntactic structure analyzers is still lim-

ited, since the structure of the Chinese language 

is quite different from other languages. There-

fore the experience in processing western lan-

guages cannot be guaranteed that it can apply to 

Chinese language directly (Lee, 1991). Chinese 

language has many special syntactic phenomena 

substantially different from western languages. 

Discussions about such characteristics of Chi-

nese language can be found in the literature 

(Chao 1968; Li and Thompson 1981; Huang 

1982).

About the previous work of Chinese depend-

ency structure analysis, Zhou proposed a rule 

based approach (Zhou, 2000). Lai et al. pro-

posed a span-based statistical probability ap-

proach (Lai, 2001). Ma et al. proposed a statistic 

dependency parser by using probabilistic model 

(Ma, 2004). Using machine learning-based ap-

proaches for dependency analysis of Chinese is 

still limited. In this paper, we propose a deter-

ministic Chinese syntactic structure analyzer by 

using global features and a root node finder.  

Our analyzer is a dependency structure ana-

lyzer. We utilize a deterministic method for de-

pendency relation construction. First, a 

dependency relation matrix is constructed, in 

which each element corresponds to a pair of to-

kens. A likelihood value is assigned to the de-

pendency relation of each pair of tokens.  

Second, the optimal dependency structure is es-

timated using the likelihood of the whole sen-

tence, provided there is no crossing between 

dependencies. A bottom-up algorithm proposed 

by (Nivre and Scholz, 2004) is use for a deter-

ministic dependency structure analysis. Our de-

pendency relations are composed by machine 

learners. SVMs (Vapnik, 1998) deterministically 

estimate if there is a dependency relation be-

tween a pair of words in the methods. 

However, this method has two problems. First, 

some operations in the algorithm needs long 

distance information. However, the long dis-

tance information cannot be available if we as-

sume a context of a fixed size in all operations. 
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The second problem is that the top-down infor-

mation isn’t used in the bottom-up approach. 

We use the global features to solve the first 

problem and we construct a SVM-based root 

node finder in our system to supplement the top-

down information. 

Our analyzer is trained on the Penn Chinese 

Treebank 5.0 (Xue et al., 2002), which is a phrase 

structure annotated corpus. The phrase structure 

is converted into a dependency structure accord-

ing to the head rules. We perform experimental 

evaluation in several settings on this corpus. 

In the next section, we describe our determi-

nistic dependency structure analysis algorithm. 

Section 3 shows the global features and the two-

step process. Section 4 describes the use of the 

root node finder. Section 5 describes the ex-

perimental setting and the results. Finally, we 

summarize our findings in the conclusion. 

2 Parsing method 

This chapter presents a basic parsing algorithm 

proposed by (Nivre and Scholz, 2004). The al-

gorithm is the base of our dependency analyzer. 

This algorithm is based on a deterministic ap-

proach, in which the dependency relations are 

constructed by a bottom-up deterministic 

schema. While Nivre’s method uses memory-

based learning, we use SVMs instead. The algo-

rithm consists of two major procedures:  

(i) Extract the surrounding features for the 

focused node (or node pair). 

(ii) Estimate the dependency relation opera-

tion for the focused node by a machine 

learning method. 

Example:  (The great triumph that Cheng Cheng-Kung recaptured Taiwan.)

Fig. 1. The operations of the Nivre algorithm

recaptured

VV

(name)

NR

S I

recaptured

VV

(name)

NR

S I

Right

S I

recaptured

VV

(name)

NR

S I

Left

S I S I

Reduce

S I S I

Shift

recaptured

VV

(name)

NR

Taiwan

NR

Taiwan

NR

recaptured

VV

(name)

NR

Taiwan

NR

recaptured

VV

(name)

NR

Taiwan

NR

DE

DEG

DE

DEG

recaptured

VV

(name)

NR

Taiwan

NR

recaptured

VV

(name)

NR

Taiwan

NR

great

VA

DE

DEG

great

VA

DE

DEG

Triumph

NN

great

VA

great

VA

DE

DEG

DE

DEG

great

VA

Taiwan

NR

Taiwan

NR

position t-1 position n position n+1position t

t-1 n n+1t

t-1 n n+1t

t-1 n n+1t t-1 n n+1t

t-1 n n+1t

t-1 n n+1t

t-1 n n+1t

A{    } A{ -> }

A{ -> } A{ -> , -> }

A{ -> ,

-> }

A{ -> ,

-> }

A{ -> ,

-> }

A{ -> ,

-> }

18



2.1   Algorithm 

We utilize a bottom-up deterministic algorithm 

proposed by (Nivre and Scholz, 2004) in our 

analyzer. In the algorithm, the states of analyzer 

are represented by a triple AIS ,, . S and I are 

stacks, S keeps the words being in consideration, 

and I keeps the words to be processed. A is a list 

of dependency relations decide during the algo-

rithm. Given an input word sequence W, the 

analyzer is initialized by the triple φ,,Wnil .

The analyzer estimates the dependency relation 

between two words (the top elements of stack S

and stack I). The algorithm iterates until the list 

I becomes empty. Then, the analyzer outputs the 

word dependency relations A.

There are four possible operations for the con-

figuration at hand: 

Right: Suppose the current triple is 

AInSt ,|,| (t and n are the top elements, S and 

I are the remaining elements in the stacks), if 

there is a dependency relation that the word t

depends on word n, add the new dependency 

relation ( )nt →  into A, remove t from S. The 

configuration now becomes ( ){ }ntAInS →,|, .

Left: In the current triple is AInSt ,|,|  , if 

there is a dependency relation that the word n

depends on the word t, adds the new dependency 

relation ( )tn →  into A, push n onto the stack S.

The configuration now becomes 

( ){ }tnAIStn →,,|| .

Suppose the current triple is AInSt ,|,| , if 

there is no dependency relation between n and t, 

check the following conditions. 

Reduce: If there are no more words 'n ( In ∈' )

which may depend on t, and t has a parent on its 

left side, the analyzer removes t from the stack S.

The configuration now becomes AInS ,|, .

Shift: If there is no dependency between n and t, 

and the triple doesn’t satisfy the conditions for 

Reduce, then push n onto the stack S. The con-

figuration now becomes AIStn ,,|| .

These operations are depicted in Fig. 1. Given 

an input sentence of length N (words), the ana-

lyzer is guaranteed to terminate after at most 2N

actions. The dependency structure given at the 

termination is well-formed if and only if the re-

lations in A constitute a single connected tree. 

This means that the algorithm produces a well-

formed dependency graph.  

2.2   Machine learning method 

A classification task usually involves with train-

ing and testing data which consist of annotated 

data instances. Each instance in the training set 

contains one “target value” (class label) and 

several “attributes” (features). The goal of a 

classifier is to produce a model which predicts 

target value of data instances in the testing set 

which only give the attributes. 

SVMs are binary classifiers based on the 

maximal margin strategy. Suppose we have a set 

of training data for a binary classification prob-

lem: )y)...(y( nn11 ,, , where nR∈i  is the fea-

ture vector of the i-th sample in the training data 

and }1,1{ −+∈iy is the class label of the sample. 

The goal is to find a decision function 

))(()(
∈

+=
SV

ii

i

bKyasignxf i,  for an input vec-

tor . The vectors SV∈  are called support 

vectors, which are representative examples. 

Support vectors and other constants are deter-

mined by solving a quadratic programming 

problem. )( zx,K is a kernel function which maps 

vectors into a higher dimensional space. We use 

the polynomial kernel: dK )1()( zxzx, ⋅+= . The 

performance of SVMs is better than using other 

machine learning methods, such as memory 

based learning or maximum entropy method, in 

our analyzer. This is because that SVMs can 

adopt combining features automatically (using 

the polynomial kernel), whereas other method 

cannot. To extend binary classifiers to multi-

class classifiers, we use the pair-wise method, 

which utilizes 2Cn  binary classifiers between all 

pairs of the classes (Kreel, 1998). We use 

Libsvm (Lin et al., 2001) in our experiments. 

2.3   Features (Local features) 

 It should be noted that we use a different ma-

chine learner from the original method (Nivre, 

2004). Nivre’s work used memory based learn-

ing in their analyzer, we utilize SVMs in our 

analyzer. Therefore, the features of our analyzer 

are different from the original Nivre’s method.  

In our method, the analyzer considers the de-

pendency of two nodes (n,t) which are in current 
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triple. The nodes include the word, the POS-tag 

and the information of its children. The context 

features we use are 2 preceding nodes of node t

(and t itself), 2 succeeding nodes of node n (and

n itself), and their child nodes. The distance be-

tween nodes n and t is also used as a feature.  

We call these features as local features.

3 Global features and two-step process 

In the algorithm, the operation Reduce needs 

the condition that the node n should have no 

child in I. However, it is difficult to check this 

condition. In a long sentence, the modifier of the 

focused node n may be far away from n. More-

over, some non-local dependency may cause this 

kind of error. In this section, we will describe 

this problem and a solution to it. 

3.1   Global features 

The analyzer selects features for deciding the 

optimum operation, and then gives these fea-

tures to machine learner. The machine learner 

uses the same information to decide the opti-

mum operation even when these operations es-

sentially disagree. However, the different 

operation consists of different condition. In the 

deterministic bottom-up dependency analysis, 

we can generally consider the process as two 

tasks:

Task 1: Does the focused word depend on a 

neighbor node? 

Task 2: Does the focused word may have a 

child in the remaining token sequence? 

In the Task 1, the problem can be resolved by 

using the information of the neighbor nodes. 

This information is possibly the same as the fea-

tures that we described in section 2.3. However, 

these features may not be able to resolve the 

problem in task 2. For resolving the problem in 

task 2, we need the information of long distance 

dependency. In Fig. 2, for example, the analyzer 

is considering the relation between focused 

words “  (tell)” and “  (he)”. The features 

used in this original analysis are the information 

of words “  (please)”, “  (tell)”, “ (he)”, 

“  (what time)” and “  (prepare)”. These 

features are “local features”. The correct answer 

in this situation is the operation “Shift”. It is 

because the word “  (tell)” has a child “

(start)” which is not yet analyzed and the fo-

cused words don’t depend on each other. How-

ever, the local features do not include the 

information of word “  (start)”. Therefore, 

the analyzer possibly estimates the answer as the 

operation “Reduce”. The results make a mistake 

in this situation because of the lack of long dis-

tance information. To resolve this problem, we 

should refer some information of long distance 

dependency in machine learning. The informa-

tion about long distance relations is defined as 

“global features”. In this paper, we select the 

words which remain in stack I but don’t be con-

sider in local features as global features. 

Fig. 2. An example of the ambiguity of deciding the long distance dependency relation and using two-

steps classification dependency relation 

prepareplease
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tell I What time startHe

S I

(Please  tell me what time he will prepare to start.)

Classification 

with local 
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3.2   two-step process 

To use the global features, we cannot use them 

immediately because the global features are not 

effective in all operations. For using global fea-

tures efficiently, we propose a two-step process 

in our analyzer. The analysis processes are di-

vided to two processes. First, the analyzer uses 

only the local features (as described in Section 

2.3) to decide the optimum operation. If the re-

sult is “Reduce” or “Shift”, it means that the 

focused words do not have any dependency rela-

tion. The analyzer leaves the decision to another 

machine learner that makes use of global fea-

tures. The analyzer will select global features for 

analyzing the Task 2. Then the analyzer outputs 

the final answer of this analysis process.  

Fig. 2 describes an example of using two-step 

classification for analyzing dependency relation. 

In this example, the focused words are “  (I)”

and “  (He)”. The word “  (I)” depends on 

the word “  (tell)”. The local features are 

surrounded by dotted line and the global features 

are surrounded by solid line. The analyzer used 

local features to analyze the operation of this 

situation. The result is the operation “shift”. The 

analyzer then selected the global features to ana-

lyze again and the output is the operation “re-

duce”. The final result of this situation is the 

operation “reduce”.

4 The root node finder 

In Isozaki’s work (Isozaki et. al, 2004), they 

adopted a root finder in their system to find the 

root word of the input sentence. Their method 

used the information of the root word as a new 

feature for machine learning. Their experiments 

showed that information of root word was a 

beneficial feature. However, we think the infor-

mation of root word can be used not only as the 

feature of machine learning, but also can be used 

to divide the sentence. Therefore, the complex-

ity of the sentence can be alleviated by dividing 

the input sentence. 

4.1   Root node and dividing sentence by 

using root finder 

In the fundamental definition of dependency 

structure, there is one and only one head word in 

a dependency structure. An element cannot have 

dependents lying on the other side of its own 

governor.  

These peculiarities imply that the head word 

divides the phrase into two independent parts 

and each part does not cross the head word. As 

in Fig. 3, the original input sentence has a root 

word (the head word of phrase) “ (and)”. 

There are not any dependency relation which 

crosses the root word. Therefore we can divide 

this sentence into two sub-sentence “  (exo-

dus) /  (do) /  (study) /  (and)” and ”

(and) /  (go) /  (foreign country) / (do)

/  (visit)”. Both these sub-sentences have 

their root word and the root word is ” (and)”.

We can conceive that to analyze the dependency 

structure of the full sentence is to analyze the 

dependency structure of two sub-sentences. 

Combining structures of two sub-sentences, we 

can get the full structure of original sentence. 

Our dependency analyzer is a bottom-up deter-

ministic analyzer. Instinctively, the accuracy of 

analyzing short sentence is significantly better 

than analyzing long sentence. Thus the perform-

ance of the dependency analyzer can be im-

proved by this method. 

4.2   Constructing a root finder 

To use the root node, we should construct the 

root finder. Similarly to Isozaki’s work, we use 

machine learner (SVMs) to construct the root 

finder. We refer to the features which are used 

in Isozaki’s work and investigate other effective 

features. The performance of our root node 

finder is 90.71%. This is better than the root ac-

curacy of our analyzer (86.22%, see Table 2).

Fig. 3. Dividing the phrase as two phrases by the root 

word 

(To Leave native country to study and to visit other country.)

The root word

The root word The root word

Original input 

sentence:

Divide by the 

root word:

Part 1 Part 2
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Therefore, using the root finder can give the de-

pendency analyzer more top-down information.  

The tags and features of the root finding are 

shown in Fig. 4. We extract all root words in the 

training data and tagging every word to show 

that it is root word or not. For example, the root 

word in Fig. 4 is “  (get)”. The root finder 

analyzes each word in the sentence and gives the 

tag “true” or “false” to indicate the root word. 

The features for machine learning of root finder 

include the contextual features (the information 

about the focused word, the two preceding 

words, and two succeeding words) and the word 

relation features (the words which are in the out-

side of the window). Other effectual features 

include the Boolean features “root word is 

found” and “the focus word is the first/last word 

of sentence”. For example, the contextual fea-

tures of the word “  (economic)“ include 

information of the focused (n) word “  (eco-

nomic)”, the “n-1”th word “  (wide)”, the 

“n-2”th word ”  (DE)”, the “n+1”th word” 

 (environment)” and the “n+2”th word ”

(will)”. The word relation features include the 

preceding word set {  (China)}, the suc-

ceeding word set { , , , } and 

the Boolean features are: 

“root_word_is_found=false”,  

“first_word=false” ,”last_word=false”.  

When we use the root finder to analyze the 

root word of the sentence, we do not know the 

structure of input sentence (either the phrase 

structure or the dependency structure). It may 

look odd that the root finder can analyzes the 

root word without any information of the struc-

ture. However, this analysis is practicable. Natu-

rally, the root word of a sentence is usually a 

verb (about 61% of sentences have a verb as the 

root word in our testing corpus). For example, in 

the example 1 of Fig. 5 “  /  /  (I go to 

school)”, we know the POS-tags are “noun, verb, 

noun” thus we can find that the root word is ”

(go)”. However, many sentences include more 

then one verb or the root word is not verb (in NP 

or PP…etc.). We can not only choose the verbs 

as root word directly. To decide the root word of 

complex sentences, there are some special 

word/POS relations that can be used to estimate 

the root node of a sentence. Considering the root 

finder in Fig. 4, the root finder gives the root tag 

to each word of the sentence. 

The processes of analyzing the root word can 

be thought as two tasks:  

Task 1: Does the focus word depend on a 

neighbor word?  

Task 2: Are there any special relation in the sen-

tence? 

 In Fig. 4, the contextual features (two pre-

ceding words and two succeeding words) can be 

used to process the Task 1, and the word rela-

tion features can be used to process the Task 2.

If the focused word possibly depends on  

neighbor words, it is impossible that the focused 

word is the root word. Therefore these words 

will be tagged as “false”. 

Alternately, considering the example 2 in Fig.

5, the sentence has a verb “  (recapture)”,

but the special word “  (DE)” is in the right 

side of the verb “  (recapture)”. Therefore, 

the verb “  (recapture)” is possibly in the

(DE)-phrase and the verb cannot be the root 

word. The special word “  (DE)” resembles a 

preposition and it is always the last word of DE-

phrase. Therefore, although we do not know the 

structure of sentence, we can identify which 

words can be the root word by the relation and 

position of the features. If the features of the 

focused word include the special word relations 

Fig. 4. The features and tag of root finder 

Word POS Tag
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Word 

relation Fig. 5. The examples of analyzing the root word 
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Root

NR       VV       NR      DEG   VA        NN
(The great triumph that Cheng Cheng-Kung recaptured 
Taiwan. )

DT      VV      NN

(I go school.) Root

Example 1:

Example 2:
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(for example, the focused word is in the preposi-

tional phrase), it isn’t the root word. The fea-

tures “word relations” in Fig. 5 can consider this 

situation.

5 Experiments 

5.1 Corpus and estimation 

We use Penn Chinese Treebank 5.0 (Xue et al., 

2002) in our experiments. This Treebank is rep-

resented by phrase structure and doesn’t include 

the head information of each phrase. The first 

step of using Penn Chinese Treebank is to derive 

the head rules for deciding the head word of 

each phrase. Some examples of head rules are 

shown in Table 1. We convert the Treebank by 

using these head rules. The training corpus in-

cludes about 377,408 words for learning and 

63,886 words for testing. It should be noted that 

the punctuation mark “ ” marks the end of a 

sentence in the Treebank. However, the punc-

tuation mark “‚” also can be the end of a sen-

tence. It is hard to determine the dependency 

rule of the clauses on the both side of comma. 

Therefore, to decide the dependency relation 

which crosses a punctuation mark “‚” is difficult. 

We do not deal with the ambiguity of commas 

and divide the sentence by the punctuation mark 

“‚”.

Phrase The order of deciding the head 

of phrase (from left) 

ADJP CC PZ ADJP JJ 

ADVP CC PZ AD 

CLP PZ CLP M LC 

DP DP CLP QP DT 

DVP DEV DEC DEG 

VCP VC VV 

Table 1. Some examples of head rules 

The performance of our dependency structure 

analyzer is evaluated by the following three 

measures:  

Dependency Accuracy: 

relationsdependencyofnumber

relationsdependencyanalyzedcorrectlyofnumber
=

Root Accuracy:  

clausesofnumber

nodesrootanalyzedcorrectlyofnumber
=

Sentence Accuracy: 

clausesofnumber

clauseanalyzedcorrectlyfullyofnumber
=

5.2 Results and discussion 

Our experimental results are shown in Table. 2.
First row in the table is the result of our basic 
analyzer (Nivre algorithm with SVMs), second 
and third row show the effects of the proposed 
extensions. The last row is the result of combin-
ing the two extensions. We had used McNemar 
test to confirm the significance of the methods. 
The McNemar test proves that using the pro-
posed methods improve the analyzers signifi-
cantly. Comparing the results of our basic 
analyzer to related works, our analyzer (dep. 
Accuracy: 87.64) is better than (Ma et al., 2004, 
dep. Accuracy: 80.38) and (Zhou, 2000, dep. 
Accuracy of newspaper: 67.7). However, these 
researches used different corpus. We cannot 
compare the performances directly.  

According to the second row of Table. 2, di-
viding the process of classification as two steps 
can improve the performance of dependency 
analyzer. However, the improvement of using 
this method is limited. This is because that long 
distance relations are not many in the corpus. 
The absence of global information does not oc-
cur in the sentences without long distance rela-
tions. Another reason is the distribution of 
operations. The instances of operations in our 
experimental corpus are not balanced. The op-
eration “reduce” is the least (7.8%) and it is far 
less than other operations. Therefore the in-
stances for creating the model of operation “re-
duce” are not satisfactory. These facts result in   
that our experiment of using two step classifica-
tion cannot improve the analyzer remarkably. 

About the experiment of utilizing root finder 
in our analyzer, we tried to adopt the root infor-
mation to the analyzer (using the information as 
features for machine learning). However, the 
performance is worse than the baseline (the fun-
damental analyzer “Nivre+SVMs”). Therefore, 
we use our method to improve the analyzer by 
using root information (dividing the sentence 
according to root node). 

According to the third row of Table. 2, divid-
ing the sentence into two sub-sentences can im-
prove the performance of dependency analyzer. 
However, the sentence accuracy cannot increase 
reliably. This result shows that using root finder 
and dividing sentence can reconstruct some mis-
takes in sentences. Certainly, the performance of 
the root finder influences the analyzer strongly. 
If we use a perfect root node finder into our ana-
lyzer, the performance will improve signifi-
cantly. 
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The last row of Table. 2 shows the results of 
combining the two proposed methods (using 
global features and root node finder) to improve 
our analyzer. Combining two methods can in-
crease the dependency accuracy better than us-
ing either one of the methods. It means that 
some analysis errors of fundamental analyzer 
can be resolved by using both improvement 
methods. Therefore using combined method 
cannot supply higher improvement. 

 Dep. 
Acc.

Root
Acc.

Sent.
Acc.

Baseline
(Nivre with 
SVMs)

85.25 86.18 59.98 

Baseline with 
two-step
process

85.44 86.22 60.1 

Baseline with 
root node 
finder

86.13 90.94 61.33 

Baseline with 
two-step
process and 
root node 
finder

86.18 90.94 61.33 

Table 2. The experimental results 

6 Conclusion and future work 

In this paper, we present two methods to im-
prove a deterministic dependency structure ana-
lyzer for Chinese. This basic analyzer 
implements a bottom-up deterministic algorithm 
with SVMs. We convert a phrase structure anno-
tated corpus (Penn Chinese Treebank) to de-
pendency tagged corpus by using head rules. 
According to the properties of Chinese language 
and dependency structure, we try to add a root 
finder in our dependency analyzer to improve 
the analyzer. Moreover, considering the machine 
learning process of our analyzer, we divide the 
process into two processes to improve the per-
formance of analyzer. The improving methods 
(using root finder and dividing machine learning 
process) showed to improve the analyzer. 

Future work includes three points. First, we 
should improve the performance of the root 
finder. Second, we should construct a useful 
prepositional phrase chunker, because the 
prepositional phrase is a major error source of 
our basic analyzer. The original analyzer tends 
to let the preposition governing a partial subtree 
of the full phrase. According to the properties of 
Chinese language, the prepositional phrases in 
Chinese are head-initial. Intuitively, if we can 
extract the prepositional phrases from sentence, 
the complexity of the sentence will decrease. 

Thus an important task is how to chunk the 
prepositional phrase in the sentence.  

Finally, we should deal with the ambiguity of 

the meaning of punctuation mark “,”.  The defi-

nition of “sentence” is ambiguous in Chinese. In 

Chinese articles, the normal ending mark of a 

sentence is the punctuation mark “ ”. However, 

the mark “‚” is often used at the end of a sen-

tence. To distinguish the meaning of the punc-

tuation mark “‚” is difficult. Therefore, we 

should adopt semantic analysis in our analyzer. 
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