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Abstract

Current NER approaches include:
dictionary-based, rule-based, or ma-
chine learning. Since there is no
consolidated nomenclature for most
biomedical NEs, most NER systems
relying on limited dictionaries or rules
do not perform satisfactorily. In this
paper, we apply Maximum Entropy
(ME) to construct our NER framework.
We represent shallow linguistic infor-
mation as linguistic features in our ME
model. On the GENIA 3.02 corpus, our
system achieves satisfactory F-scores
of 74.3% in protein and 70.0% overall
without using any dictionary. Our
system performs significantly better
than dictionary-based systems. Using
partial match criteria, our system
achieves an F-score of 81.3%. Using
appropriate domain knowledge to
modify the boundaries, our system has
the potential to achieve an F-score of
over 80%.

1 Introduction

Biomedical literature available on the web has ex-
perienced unprecedented growth in recent years.
Therefore, demand for efficiently processing
these documents is increasing rapidly. There has
been a surge of interest in mining biomedical
literature. Some possible applications for such
efforts include the reconstruction and prediction
of pathways, establishing connections between

genes and disease, finding the relationships be-
tween genes, and much more.

Critical tasks for biomedical literature min-
ing include named entity recognition (NER), to-
kenization, relation extraction, indexing and cate-
gorization/clustering (Cohen and Hunter, 2005).
Among these technologies, NER is most fun-
damental. It is defined as recognizing objects
of a particular class in plain text. Depending
on required application, NER can extract objects
ranging from protein/gene names to disease/virus
names.

In general, biomedical NEs do not follow any
nomenclature (Shatkay and Feldman, 2003) and
can comprise long compound words and short ab-
breviations (Pakhomov, 2002). Some NEs con-
tain various symbols and other spelling variations.
On average, any NE of interest has five synonyms.
Biomedical NER is a challenging problem. There
are many different aspects to deal with. For ex-
ample, one can have unknown acronyms, abbre-
viations, or words containing hyphens, digits, let-
ters, and Greek letters; Adjectives preceding an
NE may or may not be part of that NE depend-
ing on the context and applications; NEs with the
same orthographical features may fall into differ-
ent categories; An NE may also belong to mul-
tiple categories intrinsically; An NE of one cate-
gory may contain an NE of another category in-
side it.

To tackle these challenges, researchers use
three main approaches: dictionary-based, rule-
based, and machine learning. In biomedical do-
main, there are more and more well-curated re-
sources, including lexical resources such as Lo-
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cusLink (Maglott, 2002) and ontologies such as
MeSH (NLM, 2003). One might think that
dictionary-based systems relying solely on these
resources could achieve satisfactory performance.
However, according to (Pakhomov, 2002), they
typically perform quite poorly, with average re-
call rates in the range of only 10-30%. Rule-based
approaches, on the other hand, are more accurate,
but less portable across domains. Therefore, we
chose the machine learning approach.

Various machine learning approaches such as
ME (Kazama et al., 2002), SVM (Kazama et al.,
2002; Song et al., 2004), HMM (Zhao, 2004) are
applied to NER. In this paper, we chose ME as
our framework since it is much easier to represent
various features in such a framework. In addi-
tion, ME models are flexible enough to capture
many correlated features, including overlapping
and non-independent features. We can thus use
multiple features with more ease than on an HMM
system. ME-based tagger, in particular, excel at
solving sequence tagging problems such as POS
tagging (Ratnaparkhi, 1997), general English
NER (Borthwick, 1999), and Chunking (Koeling,
2000).

In this paper, we describe how to construct a
ME-based framework that can exploit shallow lin-
guistic information in the recognition of biomed-
ical named entities. Hopefully, our experience
in integrating these features may prove useful for
those interested in constructing machine learning
based NER system.

2 Maximum Entropy Based Tagger

2.1 Formulation

In the Biomedical NER problem, we regard each
word in a sentence as a token. Each token is asso-
ciated with a tag that indicates the category of the
NE and the location of the token within the NE,
for example,B c, I c wherec is a category, and
the two tags denote respectively the beginning to-
ken and the following token of an NE in category
c. In addition, we use the tagO to indicate that a
token is not part of an NE. The NER problem can
then be phrased as the problem of assigning one
of 2n + 1 tags to each token, wheren is the num-
ber of NE categories. For example, one way to
tag the phrase “IL-2 gene expression, CD28, and

NF-kappa B” in a paper is [B-DNA, I-DNA, O, O,
B-protein, O, O, B-protein, I-protein].

2.2 Maximum Entropy Modeling

ME is a flexible statistical model which assigns
an outcome for each token based on its history
and features. ME computes the probabilityp(o|h)
for anyo from the space of all possible outcomes
O, and for everyh from the space of all possi-
ble historiesH. A history is all the condition-
ing data that enables one to assign probabilities
to the space of outcomes. In NER, history can
be viewed as all information derivable from the
training corpus relative to the current token. The
computation ofp(o|h) in ME depends on a set of
binary-valued features, which are helpful in mak-
ing predictions about the outcome. For instance,
one of our features is: when all alphabets of the
current token are capitalized, it is likely to be part
of a biomedical NE. Formally, we can represent
this feature as follows:

f(h, o) =


1 : if W0-AllCaps(h)=true

and o=B-protein
0 : otherwise

(1)

Here,W0-AllCaps(h)is a binary function that
returns the value true if all alphabets of the cur-
rent token in the historyh are capitalized. Given a
set of features and a training corpus, the ME esti-
mation process produces a model in which every
featurefi has a weightαi. From (Berger et al.,
1996), we can compute the conditional probabil-
ity as:

p(o|h) =
1

Z(h)

∏
i

α
fi(h,o)
i (2)

Z(h) =
∑
o

∏
i

α
fi(h,o)
i (3)

The probability is given by multiplying the
weights of active features (i.e., thosefi(h, o) =
1). The weightαi is estimated by a procedure
called Generalized Iterative Scaling (GIS) (Dar-
roch and Ratcliff, 1972). This method improves
the estimation of weights iteratively. The ME esti-
mation technique guarantees that, for every fea-
turefi, the expected value of ıequals the empirical
expectation of ıin the training corpus.
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As noted in (Borthwick, 1999), ME allows
users to focus on finding features that character-
izes the problem while leaving feature weight as-
signment to the ME estimation routine. When
new features, e.g., syntax features, are added to
ME, users do not need to reformulate the model as
in the HMM model. The ME estimation routine
can automatically calculate new weight assign-
ments. More complete discussions of ME includ-
ing a description of the MEs estimation proce-
dure and references to some of the many success-
ful computational linguistics systems using ME
can be found in the following introduction (Rat-
naparkhi, 1997).

2.3 Decoding

After having trained an ME model and assigned
the proper weights ıto each featurefi, decoding
(i.e., marking up) a new piece of text becomes
simple. First, the ME module tokenizes the text.
Then, for each token, we check which features are
active and combineαi of the active features ac-
cording to Equation 2. Finally, the probability of
a tag sequencey1...yn given a sentencew1...wn

is approximated as follows:

p(o1...on|w1...wn) ≈
n∏

j=1

p(oj |hj) (4)

wherehj is the context for wordwj . The tag-
ger uses beam search to find the most probable
sequence given the sentence. Sequences contain-
ing invalid subsequences are filtered out. For in-
stance, the sequence [B-protein, I-DNA] is in-
valid because it does not contain an ending token
and these two tokens are not in the same cate-
gory. Further details on the beam search can be
found in http://www-jcsu.jesus.cam.
ac.uk/ ∼tdk22/project/beam.html .

3 Linguistic Features

3.1 Orthographical Features

Table 1 lists some orthographical features used
in our system. In our experience, ALLCAPS,
CAPSMIX, and INITCAP are more useful than
others.

Table 1: Orthographical features

Feature name Regular Expression
INITCAP [A-Z].*

CAPITALIZED [A-Z][a-z]+
ALLCAPS [A-Z]+
CAPSMIX .*[A-Z][a-z].* |

.*[a-z][A-Z].*
ALPHANUMERIC .*[A-Za-z].*[0-9].* |

.*[0-9].*[A-Za-z].*
SINGLECHAR [A-Za-z]
SINGLEDIGIT [0-9]
DOUBLEDIGIT [0-9][0-9]

INTEGER -?[0-9]+
REAL -?[0-9][.,]+[0-9]+

ROMAN [IVX]+
HASDASH .*-.*
INITDASH -.*
ENDDASH .*-

PUNCTUATION [,.;:?!-+]
QUOTE [̈‘’]

3.2 Context Features

Words preceding or following the target word
may be useful for determining its category. Take
the sentence “The IL-2 gene localizes to bands
BC on mouse Chromosome 3” for example. If the
target word is “IL-2,” the following word “gene”
will help ME to distinguish “IL-2 gene” from the
protein of the same name. Obviously, the more
context words analyzed the better and more pre-
cise the results. However, widening the context
window quickly leads to an explosion of the num-
ber of possibilities to calculate. In our experience,
a suitable window size is five.

3.3 Part-of-speech Features

Part of speech information is quite useful for iden-
tifying NEs. Verbs and prepositions usually indi-
cate an NEs boundaries, whereas nouns not found
in the dictionary are usually good candidates for
named entities. Our experience indicates that five
is also a suitable window size. The MBT POS
tagger (Daelemans et al., 1996) is used to provide
POS information. We trained it on GENIA 3.02p
and achieves 97.85% accuracy.

3.4 Word Shape Features

NEs in the same category may look similar (e.g.,
IL-2 and IL-4). So we have come up with sim-
ple way to normalize all similar words. Accord-
ing to our method, capitalized characters are all
replaced by ‘A’, digits are all replaced by ‘0’,
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Table 2: Basic statistics for the data set
Data # abs # sen # words

GENIA 3.02 2,000 18,546 472,006 (236.00/abs)

non-English characters are replaced by ‘’ (un-
derscore), and non-capitalized characters are re-
placed by ‘a’. For example, Kappa-B will be nor-
malized as “AaaaaA”. To further normalize these
words, we shorten consecutive strings of iden-
tical characters to one character. For example,
“AaaaaA” is normalized to “AaA”.

3.5 Prefix and Suffix Features

Some prefixes and suffixes can provide good
clues for classifying named entities. For example,
words which end in “ase” are usually proteins. In
our experience, the acceptable length for prefixes
and suffixes is 3-5 characters.

4 Experiment

4.1 Datasets

In our experiment, we use the GENIA version
3.02 corpus (Kim et al., 2003). Its basic statis-
tics is summarized in Table 2. Frequencies for all
NE classes in it are showed in Table 3.

4.2 Results

In Table 4, one can see that F-scores for protein
and cell-type are comparably high. We believe
this is because protein and cell type are among
the top three most frequent categories in the train-
ing set (as shown in Table 3). One notices, how-
ever, that although DNA is the second most fre-
quent category, it does not have a high F-score.
We think this discrepancy is due to the fact that
DNA names are commonly used in proteins, caus-
ing a substantial overlap between these two cate-
gories. RNAs performance is comparably low be-
cause its training set is much smaller than those
of other categories. Cell lines performance is the
lowest since it overlaps heavily with cell type and
its training set is also very small.

In Table 5, one can see that, using the par-
tial matching criterion, the precision rates, recall
rates, and F-scores of protein names are all over
85%. The overall F-Score is 81.3%. The table
also shows that 83.9% of our systems suggestions

Table 4: NER performance of each NE category
on the GENIA 3.02 data (10-fold CV)

NE category Precision Recall F-score
protein 74.1 74.5 74.3
DNA 65.9 54.4 59.6
RNA 75.3 48.0 58.6

cell line 65.4 51.4 57.6
cell type 72.3 69.1 70.7
Overall 72.0 67.9 70.0

Table 5: Partial matching performance on the GE-
NIA 3.02 corpus (10-fold CV)

NE category Precision Recall F-score
protein 85.3 85.5 85.4
DNA 80.3 66.3 72.7
RNA 84.0 53.0 65.0

cell line 80.9 63.3 71.1
cell type 83.1 79.4 81.2
Overall 83.9 78.9 81.3

correctly identify at least one part of an NE, and
that our system tags at least one part of 78.9%
of all NEs in the test corpus. The precision rate in
all categories is over 80%, showing that , by using
appropriate post-processing methods, our system
can achieve high precision in all NE categories.

In Table 6, we compare our system with two
dictionary-based systems. One exploits hand-
crafted rules based on heuristics and protein name
dictionaries (Seki and Mostafa, 2003). We de-
note this system as “rule + dictionary”. The other
system (Tsuruoka and Tsujii, 2004) has two con-
figurations: the first one exploits patterns to de-
tect protein names and their fragments, which
is denoted as “dictionary expansion”; the sec-
ond one further applies naive Bayes filters to ex-
clude erroneous detections, which is denoted as
“dictionary expansion + filters”. One can see
that our system performs better than these dic-
tionary/heuristic systems by a wide margin. The
basic “rule + dictionary” system achieves only
54.4% recall. By expanding the original dic-
tionary (“dictionary expansion”), they improve
the recall rate to 68.1%. After applying post
processing filters (“dictionary expansion + fil-
ters”), the recall rate dropped slightly, but preci-
sion increased by 25.7%. Still, our system per-
forms better than the best dictionary-based system
by 7.6%.
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Table 3: Frequencies for NEs in each data set

Data protein DNA RNA cell type cell line All
GENIA 3.02 30,269 9,533 951 6,718 3,830 51,301

Table 6: Performance comparison between sys-
tems with and w/o dictionaries in extracting pro-
tein names on the GENIA 3.02 data

System Precision Recall F-score
our system 74.1 74.5 74.3

rule + dictionary 42.6 54.4 47.8
dictionary expansion 46.0 68.1 54.8

dictionary expansion + filters 71.7 62.3 66.6

5 Analysis and discussion

Recognition disagreement between our system
and GENIA is caused by the following two fac-
tors: Annotation problems:

1. Preceding adjective problem
Some descriptive adjectives are annotated as
parts of the following NE, but some are not.

2. Nested NEs
In GENIA, we found that in some instances
only embedded NEs are annotated while in
other instances, only the outside NE is an-
notated. However, according to the GENIA
tagging guidelines, the outside NE should be
tagged. For example, in 59 instances of the
phrase “IL-2 gene”, “IL-2” is tagged as a
protein 13 times, while in the other 46 it is
tagged as a DNA. This irregularity can con-
fuse machine learning based systems.

3. Cell-line/cell-type confusion
NEs in the cell line class are from certain cell
types. It is difficult even for an expert to dis-
tinguish them.

System recognition errors:

1. Misclassification
Some protein molecules or regions are mis-
classified as DNA molecules or regions.
These errors may be solved by exploiting
more context information.

2. Coordinated phrases
In GENIA, most conjunction phrases are

tagged as single NEs. However, conjunc-
tion phrases are usually composed of several
NEs, punctuation, and conjunctions such as
“and”, “or” and “but not”. Therefore, our
system sometimes only tags one of these NE
components. For example, in the phrase “c-
Fos and c-Jun family members”, only “c-
Jun family members” is tagged as a protein
by our system, while in GENIA, the whole
phrase is tagged as a protein.

3. False positives
Some entities appeared without accompany-
ing a specific name, for example, only men-
tion about “the epitopes” rather than which
kind of epitopes. The GENIA corpus tends
to ignore these entities, but their contexts are
similar to the entities with specific names,
therefore, our system sometimes incorrectly
recognizes them as an NE.

6 Conclusion

Our system successfully integrates linguistic fea-
tures into the ME framework. Without using
any biomedical dictionaries, our system achieves
a satisfactory F-score of 74.3% in protein and
70.0% overall. Our system performs significantly
better than dictionary-based systems. Using par-
tial match criteria, our system achieves an F-score
of 81.3%. That means, with appropriate bound-
ary modification algorithms (with domain knowl-
edge), our system has the potential to achieve an
F-score of over 80%.

It is still difficult to recognize long, compli-
cated NEs and to distinguish between two over-
lapping NE classes, such as cell-line and cell-
type. This is because biomedical texts have com-
plicated syntax and involve more expert knowl-
edge than general domain news articles. An-
other serious problem is annotation inconsistency,
which confuses machine learning models and
makes evaluation difficult. Certain errors, such as
those in boundary identification, are more tolera-
ble if the main purpose is to discover relationships
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between NEs.
In the future, we will exploit more linguistic

features such as composite features and external
features. Finally, to reduce human annotation ef-
fort and to alleviate the scarcity of available anno-
tated corpora, we will develop machine learning
techniques to learn from Web corpora in different
biomedical domains.
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