
Two-Phase Shift-Reduce Deterministic Dependency Parser of Chinese

Meixun Jin, Mi-Young Kim and Jong-Hyeok Lee
Div. of Electrical and Computer Engineering,

Pohang University of Science and Technology (POSTECH)
Advanced Information Technology Research Center (AITrc)

{Meixunj, colorful, jhlee}@postech.ac.kr

Abstract

In the Chinese language, a verb may
have its dependents on its left, right or on
both sides. The ambiguity resolution of
right-side dependencies is essential for de-
pendency parsing of sentences with two or
more verbs. Previous works on shift-
reduce dependency parsers may not guar-
antee the connectivity of a dependency tree
due to their weakness at resolving the
right-side dependencies. This paper pro-
poses a two-phase shift-reduce dependency
parser based on SVM learning. The left-
side dependents and right-side nominal de-
pendents are detected in Phase I, and right-
side verbal dependents are decided in
Phase II. In experimental evaluation, our
proposed method outperforms previous
shift-reduce dependency parsers for the
Chine language, showing improvement of
dependency accuracy by 10.08%.

1 Introduction

Dependency parsing describes syntactic struc-
ture of a sentence in terms of links between in-
dividual words rather than constituency trees.
The fundamental relation in dependency parsing
is between head and dependent. Robinson[1]
formulates four axioms to the well-formed de-
pendency structures, known as single headed,
acyclic, connective and projective.

In this paper, we present a dependency pars-
ing strategy that produces one dependency struc-
ture that satisfies all these constraints.

This paper is organized as follows. Related
works are introduced in section 2. In section 3,
detailed analysis of the work of Nivre[2] and
Yamada[3] are given. Then our parsing strategy

is introduced. In section 4, experiments and re-
sults are delivered. Finally a conclusion will be
given in section 5.

2 Overview of Related Works

Most nature language grammars tend to as-
sign many possible syntactic structures to the
same input utterance. A parser should output a
single analysis for each sentence. The task of
selecting one single analysis for a given sen-
tence is known as disambiguation.

Some of the parsing strategies first produce
all possible trees for a sentence. The disam-
biguation work is done in the end by searching
the most probable one through parsing tree for-
est. Statistical parsers employ probability as a
disambiguation measure and output the tree with
the highest probability[4,5]. However, in the
work of Collins [6], 42% of the correct parse
trees were not in the candidate pool of ~30-best
parses. Disambiguation work by searching
throughout the parsing tree forest has limitations.

The alternative way is to disambiguate at each
parsing step and output the parsing result deter-
ministically. Nivre[2] and Yamada[3] suggest a
shift-reduce like dependency parsing strategy. In
section 3.1 we give a detailed analysis of their
approach.

There are several approaches for dependency
parsing on Chinese text. Ma[5] and Cheng[18]
are examples of these approaches. The training
and test set Ma[5] used, are not sufficient to
prove the reliability of Ma’s[5] approach. On the
frame of parsing Chinese with CFG, there are
several approaches to apply the original English
parsing strategies to Chinese [7,8,9]. The poten-
tial purposes of these works are to take advan-
tage of state-of-art English parsing strategy and
to find a way to apply it to Chinese text. Due to
the differences between Chinese and English,

256

the performance of the system on Chinese is
about 10% lower comparing the performance of
the original system.

3 Two-Phase Dependency Parsing

3.1 Review of Previous Shift-Reduce Dependency
Parsers

Nivre[3] presented a shift-reduce dependency
parsing algorithm which can parse in linear time.
The Nivre’s parser was represented by a triples
<S, I, A>, where S is a stack, I is a list of (re-
maining) input tokens, and A is the set of deter-
mined dependency relations. Nivre defined four
transitions: Left-Arc, Right-Arc, Reduce, and
Shift. If there is a dependency relation between
the top word of the stack and the input word,
according to the direction of the dependency arc,
it can be either Left-Arc or Right-Arc. Otherwise,
the transition can be either shift or reduce. If the
head of the top word of the stack is already de-
termined, then the transition is reduce, otherwise
shift. The action of each transition is shown in
Fig.1. For details, please refer to Nivre[3,10].
Fig.2 gives an example1 of parsing a Chinese
sentence using Nivre’s algorithm.

Nivre’s[3,10] approach has several advan-
tages. First, the dependency structure produced
by the algorithm is projective and acyclic[3].
Second, the algorithm performs very well for
deciding short-distance dependences. Third, at
each parsing step, all of the dependency rela-
tions on the left side of the input word are de-
termined. Also as the author emphasizes, the
time complexity is linear.

However, wrong decision of reduce transition,
like early reduce, cause the word at the top of
the stack loses the chance to be the head of oth-
ers. Some words lose the chance to be the head
of other following words. As a result, the de-
pendents of this word will have a wrong head or
may have no head.

The parsing steps of a Chinese sentence using
Nivre’s[3] algorithm are given in Fig.2. At step-
5 of Fig.2, after reduce, the top of the stack was
popped. The algorithm doesn’t give a chance for
the word 扩大 to be the head of other words.
Therefore, word ‘引资’ cannot have word ‘扩
大’ as its head. In the final dependency tree of
example-1 in Fig.2, the arc from 计划 to 引资 is
wrong. Fig.3 gives the correct dependency tree.
Here, 扩大 is the head of word 引资.

1 All the example sentences are from CTB.

If there is a dependency relation between top.stack and input

If the dependency relation is Left_arc
 Insert (input, top.stack) pair into set A
 pop(stack);
Else

 Insert (top.stack, input) pair into set A
 push(input);

Else
If the head of top of the stack is determined
 pop(stack);

 Else
 push(input);

Fig. 1. Transitions defined by Nivre[3]

这个 省 计划 扩大 招商 引资，
This province plan extend attract merchants attract investments.
The province plans to expand attracting merchants and investments.
 stack , input relation set A

Step-0: <nil,这个省计划扩大招商引资,{}>

Step-1: S <这个,省计划扩大招商引资,{}>

Step-2: LA <省,计划扩大招商引资,{(省,这个)}>

Step-3: LA <计划,扩大招商引资,{(省,这个),(计划,省)}>

Step-4: RA <扩大 计划,招商引资,{(省,这个),(计划,省),

(计划，扩大)}>

Step-5: R <计划,招商引资,{(省,这个),(计划,省),

(计划,扩大)}>

Step-6: S <招商 计划,引资,{(省,这个),(计划,省),

(计划,扩大)}>

Step-7: LA <计划,引资,{(省,这个),(计划,省),

(计划,扩大),(引资,招商)}>

Step-8: LA <计划,nil,{(省,这个),(计划,省),

(计划,扩大),(引资,招商),(计划，引资)}>

The dependency structure of the output:

这个 省 计划 扩大 招商 引资，

S:Shift LA:Left-arc RA:Right-arc R:reduce
Fig. 2. Example-1: Parsing using Nivre’s algorithm

这个 省 计划 扩大 招商 引资，
Fig. 3. The correct parse tree of Example-1

Fig.4. gives the parsing step of another example.
As the final dependency tree in Fig.4 shows,
there is no head for word 消息。After Step-5,
the top of the stack is word 给 and input word is
一 . There is no dependency relation between
these two words. Since the head of the word 给
is already determined in step-2，the next transi-
tion is R(educe). As a result, word 给 loses the
chance to be the head of word 消息. So, there is
no head assigned to word 消息 in Fig.4. There-
fore, Nivre’s algorithm causes some errors for
determining the right-side dependents.

Yamada’s[4] approach is similar to Nivre’s[3].

Reduce

shift

Right_arc

Left_arc

257

Yamada’s algorithm define three actions: left,
right and shift, which were similar to those of
Nivre’s. Yamada parsed a sentence by scanning
the sentence word by word from left to right,
during the meantime, left or right or shift actions
were decided. For short dependents, Yamada’s
algorithm can cope with it easily. For long de-
pendents, Yamada tried to solve by increasing
the iteration of scanning the sentences. As Ya-
mada pointed out, ‘shift’ transition was executed
for two kinds of structure. This may cause
wrong decision while deciding the action of
transition. Yamada tried to resolve it by looking
ahead for more information on the right side of
the target word.

转达 给 教师们 一 件 令人欣喜 的 消息，
declare to teachers a piece exciting of news.
Declare a piece of exciting news to teachers.
… … …
Step-2 : S <转达，给教师们一件令人欣喜的消息,{}>

Step-3 : RA <给，教师们一件令人欣喜的消息,{(转达,给)}>

Step-4 : RA <教师们，一件令人欣喜的消息,{(转达,给),

(给,教师们)}>

Step-5 : R <给，一件令人欣喜的消息,{(转达,给),

(给,教师们)}>

Step-6 : R <转达，一件令人欣喜的消息,{(转达,给),

(给,教师们)}>

… … …
Step-n: RA <转达,nil,{(转达,给),(给,教师们),(件,一)，

(的,令人欣喜),(消息,的),(消息,件)}>

The dependency structure of the output:

转达 给 教师们 一 件 令人欣喜 的 消息，

Fig. 4. Example-2: Parsing with Nivre’s algorithm

报告 了 二百个 引进 外国 投资 的 计划.
report _ 200 attract foreign country investment of plan.
Report 200 plans in attracting foreign investment.
… … …
step-i : RA < 报告, 引进外国投资的计划,{(报告,了)} >

Fig. 5. Example-3: Parsing with Nivre’s algorithm

When applying to Chinese parsing, the deter-
mination of dependency relation between two
verbs is not effective. In the example-3 of Fig.5,
at step-i, the parser decides whether the depend-
ency relation between 报告 and 引进 is either
Left-arc or Right-arc. The actual head of the
verb 引进 is 的, which is distant. By looking
only two or three right side words ahead, to de-
cide the dependency relation between these
verbs at this moment is not reliable. Yamada’s
algorithm is not a clear solution to determine the
right side dependents either.

3.2 Two-Phase Dependency Parsing

For the head-final languages like Korean or
Japanese, Nivre[3] and Yamada’s[4] approaches
are efficient. However, being applied to Chinese
text, the existing methods cannot correctly de-
tect various kinds of right-side dependents in-
volved in verbs. All wrong decisions of reduce
transition mainly occur if the right dependent of
a verb is also a verb, which may have right-side
dependents.

For the correct detection of the right-side de-
pendents, we divide the parsing procedure into
two-phase. Phase I is to detect the left-side de-
pendents and right-side nominal dependents.
Although some nominal dependents are right-
side, they don’t have dependents on the right
side, and will not cause any ambiguities related
to right-side dependents. In Phase II, the detec-
tion of right-side verbal dependents, are per-
formed.

3.2.1 Phase I
In Phase I, we determine the left-side depend-

ents and right-side nominal dependents. We de-
fine three transitions for Phase I: Shift, Left-Arc,
Right-Arc. The actions of transition shift and
Left-Arc are the same as Nivre[3] defines. How-
ever, in our method, the transition of Right-Arc
does not push the input token to the stack. The
original purpose for pushing input to stack after
right-arc, is to give a chance for the input to be
a potential head of the following words. In Chi-
nese, only verbs and prepositions have right-side
dependents. For other POS categories, the action
of pushing into stack is nonsense. In case that
the input word is a preposition, there is no am-
biguities we describe. Only the words belong to
various verbal categories may cause problems.
The method that we use is as follows. When the
top word of the stack and the next input word
are verbs, like VV, VE, VC or VA2 [11], the
detection of the dependency relation between
these two verbs is delayed by transition of shift.
To differentiate this shift from original shift, we
call this verbal-shift. The determination of the
dependency relation between these two verbs
will be postponed until phase II. The transitions
are summarized as Fig.6.

If there is no more input word, phase I termi-
nates. The output of the phase I is a stack, which

2 VV, VE, VC and VA are Penn Chinese Treebank POS
categories related to verbs. For details, please refer to [11].

258

contains verbs in reverse order of the original
appearance of the verbs in the sentence. Each
verb in the stack may have their partial depend-
ents, which are determined in Phase I.

If the action is Verbal-shift

: push the input to the stack
else if the action is Shift
 push the input to the stack
else if the action is Left-arc
 set the dependency relation for two words; pop
the top of the stack
else if the action is Right-arc
 set the dependency relation for two words

Fig. 6. Types of transitions in the phase I

The type of transition is determined by the top

word of the stack, input word and their context.
Most of the previous parsing models[4,12,13]
use lexical words as features. Compared to Penn
English Treebank, the size of Penn Chinese
Treebank (version 4.0, abbreviated as CTB) is
rather small. Considering the data sparseness
problem, we use POS tags instead of lexical
words itself. As Fig.7. shows, the window for
feature extraction is the top word of the stack,
input word, previous word of the top of the
stack, next word of the input. The left-side
nearest dependent of these is also taken into
consideration. Besides, we use two more fea-
tures, if_adjoin, and Punc. The feature vector for
Phase I is shown in Fig.7.

3.2.2 Phase II
 After Phase I, only verbs remain in the stack.
In Phase II, we determine the right-side verbal
dependents. We take the output stack of Phase I
as input. Some words in the stack will have
right-side dependents as shown in Fig.8. For
Phase II, we also define three transitions: shift,
left-arc, right-arc. The operations of these three
transitions are the same as Phase I, but there are
no verbal-shifts. Fig.9 shows the output of Phase
I and parsing at Phase II of example given in
Fig.8.

The window for feature extraction is the same
as that of Phase I. The right-side nearest de-
pendent is newly taken as features for Phase II.
The feature vector for Phase II is shown in
Fig.10.

The two-phase parsing will output a projec-
tive, acyclic and connective dependency struc-
ture. Nivre[10] said that the time complexity of
his parser is 2 times the size of the sentence. Our
algorithm is 4 times the size of the sentence, so

the time complexity of our parser is still linear to
the size of the sentence.

Windows for feature extraction :
t.stack : top word of the stack
p.stack: previous word of top of the stack
input : input word
n.input: next word of the input word

x.pos : POS tag of word x
x.left.child : the left-side nearest dependent of word x

punc : the surface form of punctuation between top word of the

stack and input word, if there is any
if_adjoin : a binary indicator to show if the top word of the
stack and input word are adjoined

The feature vector for Phase I is :
<p.stack.pos t.stack.pos input.pos n.input.pos p.stack.left.child.pos
t.stack.left.child.pos input.left.child.pos punc if_adjoin>

Fig. 7. Feature vector for Phase I

这位官员说，四川将奉行更加开放的政策，不断改善投资环境，

引进更多的海外资金、先进的技术和管理经验。
(The official said that Sichuan will pursue a more open door policy,
continuously improve the investment environments and attract more
capitals from overseas, advanced techniques and experiences of ad-
ministration.)

The contents of stack after Phase I: <引进，改善，奉行，说>.

(attract, improve, pursue, said)

The dependents of each verb in the stack

Fig. 8. Dependents of each verb after Phase I

step-0 <nil, 引进 改善 奉行 说，{}>
step-1 S < 引进, 改善 奉行 说，{}>
step-2 RA < 引进, 奉行 说，{(引进,改善)}>
step-3 RA < 引进, 说，{(引进,改善),(引进,奉行)}>
step-4 LA < nil, 说，{(引进,改善),(引进,奉行),

(说,引进)}>
step-5 S < 说, nil，{(引进,改善),(引进,奉行),

(说,引进)}>
Fig. 9. Example of parsing at Phase II

The feature vector for Phase II is :
<p.stack.pos t.stack.pos input.pos n.input.pos
p.stack.left.child.pos t.stack.left.child.pos input.left.child.pos
p.stack.right.child.pos t.stack.right.child.pos in-
put.right.child.pos n.input.right.child.pos punc if_adjoin>
Fig. 10. Feature vector for Phase II.

4 Experiments and Evaluation

Our parsing procedure is sequentially per-
formed from left to right. The feature vectors for

引

经

改

不 环

奉

政

将

四

说

官

right-side right-side right-sideleft-side left-side

left-side

left-side

259

Phase I and Phase II are used as the input for the
parsing model. The model outputs a parsing ac-
tion, left-arc, right-arc or shift. We use SVM as
the model to obtain a parsing action, and use
CTB for training and test the model.

4.1 Conversion of Penn Chinese Treebank to
Dependency Trees

Annotating a Treebank is a tedious task. To
take the advantage of CTB, we made some heu-
ristic rules to convert CTB into dependency
Treebank. This kind of conversion task has been
done on English Treebank[14,10,4]. We use the
dependency formalism as Zhou[15] defined.

CTB contains 15,162 newswire sentences (in-
cluding titles, fragments and headlines). The
contents of CTB are from Xinhua of mainland,
information services department of HKSAR and
Sinorama magazine of Taiwan. For experiments,
12,142 sentences are extracted, excluding all the
titles, headlines and fragments.

For the conversion task, we made some heu-
ristic rules. CTB defines total 23 syntactic
phrases and verb compounds[11]. A phrase is
composed of several words accompanied to a
head word. The head word of each phrase is
used as an important resource for PCFG pars-
ing[12,13]. According to the position of the head
word with respect to other words, a phrase3 can
be categorized into head-final, head-initial or
head-middle set. Table.1 shows the head-initial,
head-final and head-middle groups.

For VP, IP and CP, these phrases have a verb
as its head word. So we find a main verb and
regard the verb the head word of the phrase. If
the head word for each phrase is determined,
other words composing the phrase simply take
the head word of the phrase as its head. In the
case of BA/LB4, we take a different view from
what is done in CTB. Zhou[15] regards BA/LB
as the dependent of the following verb. We fol-
low Zhou’s[15] thought. For sentences contain-
ing BA/LB, we converted them into dependency
trees manually. With above heuristics, we con-
verted the original CTB into dependency Tree-
bank.

3 We use the label of phrases as CTB has defined. We ex-
clude FRAG, LST, PRN. For each definition of the phrase
please refer to [11].
4 BA, LB are two POS categories of CTB. For details, see
[11].

4.2 Experiments

SVM is one of the binary classifiers based on
maximum margin strategy introduced by Vap-
nik[16]. SVM has been used for various NLP
tasks, and gives reasonable outputs. For the ex-
periments reported in this paper, we used the
software package SVMlight [17].

For evaluation matrix, we use Dependency
Accuracy and Root Accuracy defined by Ya-
mada[4]. An additional evaluation measure,
None Head is defined as following.

None Head: the proportion of words whose

head is not determined.

GROUP PHRASES
Head-initial PP; VRD; VPT;
Head-final ADJP; ADVP; CLP; DNP; DVP; DP;

LCP; NP; QP; VCD; VCP; UCP; VSB;
VNV;

Head-
middle

CP; IP; VP;

Table 1. Cluster of CTB syntactic phrases

Table 2. Comparison of dependency accuracy with Nivre’s

We construct two SVM binary classifiers,
Dep vs. N_Dep and LA vs. RA, to output the
transition action of Left-arc, Right-arc or Shift.
Dep vs. N_Dep classifier determines if two
words have a dependency relation. If two words
have no dependency relation, the transition ac-
tion is simply Shift. If there is a dependency re-
lation, the second classifier will decide the
direction of it, and the transition action is either
Left-arc or Right-arc.

We first train a model along the algorithm of
Nivre[10]. The training and test sentences are
randomly selected. Table.2 shows that 1.53% of
the words cannot find their head after parsing.
This result means that the original Nivre’s algo-
rithm cannot guarantee a connective dependency
structure.

With our two-phase parsing algorithm, there
is no none head. Then, the dependency accuracy
and root accuracy are increased by 10.08% and
13.35% respectively.

 Dependency
accuracy

Root ac-
curacy

None
head

Nivre’s algorithm[10] 73.34% 69.98% 1.53%
Ours 84.42% 83.33% ----

260

4.3 Comparison with Related Works

Compared to the original works of Nivre[10]
and Yamada[4], the performance of our system
is lower. We think that is because the target lan-
guage is different.

 Average
sentence
length

Dependency
accuracy

Root
accuracy

Ma[5] 9 80.25% 83.22%
Cheng[18] 5.27 94.44% --
Ours 34 84.42% 83.33%

Table 3 Comparison of the parsing performances
between Ma[5], Cheng[18] and ours

Table 3 gives the comparison of the perform-
ances between Ma[5], Chen[18] and ours. The
training and test domain of Ma[5] is not clear.
Cheng[18] used CKIP corpus in his experiments.
The average length of sentence in our test set is
34, which is much longer than that in Ma[5] and
Cheng[18]. The performance of our system is
still better than Ma[5] and less than Cheng[8].

5 Conclusion

To resolve the right-side long distance de-
pendencies, we propose two-phase shift-reduce
parsing strategy. The parsing strategy not only
guarantees the connectivity of dependency tree,
but also improves the parsing performance. As
the length of sentences increases, the ambigui-
ties for parsing increase drastically. With our
two-phase shift-reduce parsing strategy, the per-
formance of syntactic parsing of long sentences
is also reasonable.

The motivation of this paper is to design a
well-formed dependency parser for Chinese. We
believe that there’re rooms to improve the per-
formance. We plan to work further to explore
the optimal features. We also plan to parse Eng-
lish text with our algorithm to see if it can com-
pete with the state-of-art dependency parsers on
English. We believe that our parsing strategy
can apply to other languages, in which head po-
sition is mixed, as Chinese language. We think
that it is the main contribution of our approach.

References
1. Robinson, J.J.: Dependency structures and

transformation rules. Language 46 (1970) 259-285
2. Nivre, J.: An efficient algorithm for projective

dependency parsing. In Proceedings of IWPT
(2003) 149-160

3. Yamada, H. and Matsumoto, Y.: Statistical de-
pendency analysis with support vector machines.
In Proceedings of IWPT (2003) 195-206

4. Eisner, J.M.:Three new probabilistic models for
dependency parsing: An exploration. In Proceed-
ings of ACL.(1996) 340-345

5. Ma,J., Zhang,Y. and Li,S.: A statistical depend-
ency parser of Chinese under small training data.
IJCNLP-04 Workshop : Beyond Shallow Analy-
ese-Formalisms and Statistical Modeling for Deep
Analyses (2004)

6. Collins,M.: Discriminative reranking for natural
language parsing. In proceedings of ICML
17.(2000) 175-182

7. Fung,P., Ngai,G, Yang,Y.S and Chen,B.: A maxi-
mum-entropy Chinese parser augmented by trans-
formation-based learning. ACM transactions on
Asian language information processing. Volume
3. Number 2.(2004) 159-168

8. Levy,R. and Manning,C.: Is it harder to parse Chi-
nese, or the Chinese Treebank? In Proceedings of
ACL. (2003) 439-446

9. Bikel, D.M. and.Chiang, D.: Two Statistical Pars-
ing models applied to the Chinese Treebank. In
proceedings of the second Chinese language
processing workshop. (2000)

10.Nivre,J, Hall,J and Nilsson,J.: Deterministic de-
pendency parsing of English text. In Proceedings
of COLING. (2004) 23–27

11.Xue,N and Xia,F.: The bracketing guidelines for
the Penn Chinese Treebank(3.0). IRCS Report 00-
08, University of Pennsylvania (2000)

12.Collins,M.: Three generative lexicalised models
for statistical parsing. In Proceedings of the 35th
Annual Meeting of the Association for Computa-
tional Linguistics, Madrid (1997) 16-23

13.Charniak,E.: A maximum-entropy-inspired parser.
In Proceedings of NAACL. Seattle (2000) 132–
139,

14.Collins,M.: A new statistical parser based on bi-
gram lexical dependencies. In Proceedings of the
Thirty-Fourth Annual Meeting of the Association
for Computational Linguistics, philladelphia
(1996) 184–191

15.Zhou,M. and Huang,C.: Approach to the Chinese
dependency formalism for the tagging of corpus.
Journal of Chinese information processing.(in
Chinese), Vol. 8(3) (1994) 35-52

16.Joachims,T.: Making large-scale SVM learning
practical. Advances in Kernel Methods-Support
Vector Learning, B.Scholkopf and C.Burges and
A.Smola(Eds.), MIT-Press (1999)

17. Vapnik, V.N.: The nature of statistical learning
theory. Springer, New York. (1995)

18. Cheng, Y.C, Asahara,M and Matsumoto Y.: De-
terministic dependency structure analyzer for Chi-
nese. In proceedings of the first IJCNLP(2004)
135-140

261

