Rapid Prototyping of Scalable Grammars. Towards Modularity in
Extensionsto a L anguage-I ndependent Core

Emily M. Bender

Dan Flickinger

Department of Linguistics Center for the Study of Language and Information

University of Washington
Box 354340
Seattle WA 98195-4340 USA
ebender @i. washi ngt on. edu

Abstract

We present a new way to simplify the
construction of precise broad-coverage
grammars, employing typologically-
motivated, customizable extensions to
a language-independent core grammar.
Each ‘module’ represents a salient di-
mension of cross-linguistic variation,
and presents the grammar developer
with simple choices that result in auto-
matically generated language-specific
software. We illustrate the approach for
several phenomena and explore the in-
terdependence of the modules.

1 Introduction

Manual development of precise broad-coverage
grammar implementations, useful in a range of
natural language processing/understanding tasks,
is a labor-intensive undertaking, requiring many
years of work by highly trained linguists. Many
recent efforts toward reducing the time and level
of expertise needed to produce a new grammar
have focused on adapting an existing grammar of
another language (Butt et al., 2002; Kim et al.,
2003; Bateman et al., ip). Our work on the ‘Gram-
mar Matrix’ has pursued an alternative approach,
identifying a set of language-independent gram-
mar constraints to which language-specific con-
straints can be added (Bender et al., 2002). This
approach has the hitherto unexploited potential
to benefit from the substantial theoretical work
on language typology. In this paper, we present

203

Stanford University
Stanford CA 94305-2150 USA
danf @sli.stanford. edu

a prototype Grammar Matrix customization sys-
tem. This system draws on phenomenon-specific
modules encoding dimensions of linguistic varia-
tion, presents the grammar developer with simple
choices for each phenomenon, and then automati-
cally generates a working starter-grammar, incor-
porating both the cross-linguistic Matrix core and
language-specific constraints. The prototype ad-
dresses basic word order, sentential negation, yes-
no questions, and a small range of lexical entries.

2 TheGrammar Matrix

Wide-coverage grammars representing deep lin-
guistic analysis exist in several frameworks, in-
cluding Head-Driven Phrase Structure Grammar
(HPsG), Lexical-Functional Grammar, and Lex-
icalized Tree Adjoining Grammar. In HPSG (P.
and Sag, 1994), the most extensive grammars
are those of English (Flickinger, 2000), German
(Hinrichs et al., 1997; Muller and Kasper, 2000;
Crysmann, ip), and Japanese (Siegel, 2000; Siegel
and Bender, 2002). The Grammar Matrix is an at-
tempt to distill the wisdom of existing grammars
and document it in a form that can be used as the
basis for new grammars. The main goals of the
project are: (i) to develop in detail semantic rep-
resentations and the syntax-semantics interface,
consistent with other work in HPSG; (ii) to repre-
sent generalizations across linguistic objects and
across languages; and (iii) to allow for very quick
start-up as the Matrix is applied to new languages.

The original Grammar Matrix consisted of
types defining the basic feature geometry, types
associated with Minimal Recursion Semantics
(e.g., (Copestake et al., 2001)), types for lex-

ical and syntactic rules, and configuration files
for the LkB grammar development environment
(Copestake, 2002) and the PET system (Callmeier,
2000). Subsequent releases have refined the orig-
inal types and developed a lexical hierarchy. The
constraints in this ‘core’ Matrix are intended to be
language-independent and monotonically exten-
sible in any given grammar. With the typology-
based modules presented here, we extend the con-
straint definitions which can be supplied to gram-
mar developers to those that capture generaliza-
tions holding only for subsets of languages.

3 Typology-based modules

In general, we find two kinds of typological vari-
ation across languages. On the one hand, there
are systems (formal or functional) which must be
represented in every language. For example, ev-
ery language has some set of permissible word or-
ders (formal) and a means of expressing sentential
negation (functional). On the other hand, there
are linguistic phenomena which appear in only
some languages, and are not typically conceptual-
ized as alternative realizations of some universal
function, phenomena such as noun incorporation,
numeral classifiers, and auxiliary verbs. Each of
these phenomena are found in recurring varieties
that can be subjected to typological analysis (see,
e.g., (Mithun, 1984)). Our approach is designed
to handle both kinds of typological variation.

As with earlier versions of the Matrix, we aim
to support rapid prototyping of precision gram-
mars that can scale up to broad-coverage (as have
the NorSource (Hellan and Haugereid, 2003) and
Modern Greek (Kordoni and Neu, 2003) gram-
mars, based on early versions of the Matrix). This
sets a high bar for the modules themselves, requir-
ing them to be good early approximations which
may need to be refined but not thrown out. It also
requires that the automatically generated gram-
mar files maintain a high degree of readability so
that they may be effectively modified. In future
work, we intend to extend the system to allow the
linguist to revise decisions in the face of new in-
formation or improved linguistic analyses.

The core Matrix and modular extensions to it
may appear analogous to the Principles and Pa-
rameters proposed by Chomsky (1981) and oth-
ers. However, whereas Parameters are meant to

204

be abstract ‘switches’” which simultaneously con-
trol multiple different, apparently unrelated phe-
nomena, the modules in the Matrix each encode
the constraints necessary to handle one particu-
lar phenomenon. Nonetheless, this does not make
the modules trivial: they need to be carefully de-
signed in order to be mutually consistent, ide-
ally across all possible combinations. Our strat-
egy is thus consistent with a bottom-up, data-
driven investigation of linguistic universals and
constraints on cross-linguistic variation. As the
number and breadth of implemented grammars
grows, we expect linguistic predictions to emerge
and become part of improved modules, particu-
larly with respect to interactions among the dis-
tinct phenomena covered. Our approach should in
time be instrumental in assisting large-scale typo-
logical investigations (covering hundreds of lan-
guages), making use of the linguistically precise
constraints encoded in these modules to uncover
deeper and more subtle facts about languages.

4 Implementations of prototype system

We have implemented a prototype system with
a small set of modules targeting basic word or-
der, main-clause yes-no questions, and senten-
tial negation.! The corresponding choices and
a questionnaire for creating a small lexicon are
presented to the user through an html form inter-
face. A perl/cgi back-end produces a starter gram-
mar from the user input and an internal knowl-
edge base. The resulting grammars can be used
immediately to parse and generate a fragment of
the target language. The system can be accessed
at http://www.delph-in.net/matrix/modules.html.
This section describes its linguistic coverage.

41 Word order

The word order module addresses the so-called
basic word order in a language: the relative or-
der of subjects, verbs, and verbal complements.
Languages vary in their rigidity in this respect,
and the question of how to determine the basic
word-order of a language is notoriously complex.
Nonetheless, we believe that most linguists work-
ing on linguistic description analyze some orders
as primary and others as derived. Thus the word

Drellishak and Bender (ta) present a module for coordi-
nation which is integrated with those described here.

order module is meant to capture the relative or-
dering of major constituents in clauses without
word-order changing phenomena such as topical-
ization, extraposition, subject-verb inversion, etc.
Modules for such phenomena will need to interact
appropriately with the basic word-order module.
The Matrix core grammar provides defini-
tions of basic head-complement and head-subject
schemata which are consistent with our imple-
mentation of compositional semantics (Flickinger
and Bender, 2003), as well as definitions of head-
initial and head-final phrase types. The word
order module creates subtypes joining the head-
complement and head-subject schemata with the
types specifying head/dependent order, creates in-
stances of those types as required by the LkB
parser, and constrains the rules to eliminate spu-
rious ambiguity in the case of free word order. It
currently handles SOV, SVO, VSO, VOS, OVS,
0OSV, V-final, V-initial, and free word order. We
leave to future work variations such as V2 or-
der, differing word order in main v. subordinate
clauses, and flexible ordering among comple-
ments in otherwise strict word order languages.

4.2 Yes-no questions

For yes-no questions, we implement four alterna-
tives: inversion of the subject and a main or aux-
iliary verb relative to declarative word order and
sentence-initial or final question particles.
Inversion of the subject and the main verb is
implemented with a lexical rule which relocates
the subject (the value of suBJin the valence spec-
ifications) to be the first on the comps list, and
further assigns a positive value for an additional
feature INV (inverted) on verbs. This feature may
well have independent syntactic motivation in the
language, but is in any case used here so the
declarative/interrogative distinction can be made
in the semantics once the clause is constructed.
Subject-aux inversion is a minor extension of the
basic inversion type, constraining the lexical rule
to only apply to auxiliary verbs. This module han-
dles ‘support’ verbs like do in English in not li-
censing inversion with main verbs, while licens-
ing similar strings with a semantically empty sup-
port verb (if it is in the lexicon). The third type of
mechanism employs a distinct question particle,
here treated as a pre- or post-modifying sentence

205

adverb. The grammar developer is prompted for
this positional distinction, and for the spelling of
the particle; the code for the relevant lexical en-
try is then autogenerated, instantiating a question
particle type which supplies the remaining syn-
tactic and semantic constraints needed.

Future work on this module includes support
for “intonation questions’, where the same string
can be associated with either proposition or ques-
tion semantics, as well as the integration of
declarative/interrogative punctuation contrasts.

4.3 Sentential negation

The sentential negation module handles two gen-
eral negation strategies, several variants on each,
and allows for both to coexist in a single grammar.

The first strategy is negation via verbal inflec-
tion. For this strategy, the grammar developer
specifies whether the inflection attaches to main
verbs, auxiliaries, or either; whether it is a prefix
or a suffix; and the form of the affix. We cur-
rently only allow for strictly concatenative mor-
phology. In a more fully developed system, the
syntax-semantics modules here would be inter-
faced with a separate means of specifying mor-
phophonology (cf. (Bender and Good, ip)).

The second strategy is negation via a negative
adverb, with two sub-cases: The negative adverb
may be an independent modifier (of V, VP, or S
and pre- or post-head) or it may be a selected
complement of the verb (main verbs only, aux-
iliaries only, or both) (Kim, 2000). The grammar
developer specifies the form of the adverb.

Neither, either or both of these strategies may
be selected. If neither, the grammar produced will
not contain an analysis of negation. If both, the
grammar developer must specify how the strate-
gies interact, from among five choices: (i) the two
strategies are in complementary distribution, (ii)
the two strategies can appear independently or to-
gether, (iii) both inflection and an adverb are re-
quired to express sentential negation, (iv) the ad-
verb is obligatory, but it may appear with or with-
out the inflection, and (v) the inflection is obliga-
tory, but it may appear with or without the adverb.

In the generated grammars, independent ad-
verbs are implemented by adding appropriate lex-
ical types and lexical entries. Selected adverbs
and inflection are handled via lexical rules similar

to those presented in (Sag et al., 2003). For exam-
ple, in a language where sentential negation can
be expressed by inflection alone or inflection in
combination with a (selected) adverb, we gener-
ate two lexical rules. One changes the form of the
verb and adds the negative semantics. The other
changes the form of the verb and adds the nega-
tive adverb to its complements list.

44 Lexicon

As HPSG is a strongly lexicalist theory, words
tend to carry quite a bit of information. This
information is encoded in lexical types; lexical
entries merely specify the type they instantiate,
their orthographic form, and their semantic predi-
cate. Many of the constraints required (e.g., for
the linking of syntactic to semantic arguments)
are already provided by the core Matrix. How-
ever, there is also cross-linguistic variation.

We ask the grammar developer to specify two
nouns and two verbs (one transitive and one in-
transitive), as well as an auxiliary, two deter-
miners, two case-marking adpositions, a nega-
tive adverb and a question particle, if appropriate.
Nouns are specified as to whether they require,
allow, or disallow determiners. Verbs are speci-
fied as to whether each argument is expressed as
an NP or a PP, and optionally for an additional
(non-finite) form. Auxiliaries are specified as to
whether they introduce independent predicates or
only carry tense/aspect; take S, VP or V com-
plements; appear to the left, right or either side
of their complements; and take NP or PP sub-
jects. Case-marking adpositions must be specified
as either prepositions or postpositions. Finally,
the questionnaire requires orthographic forms and
predicate names. Note that the forms are assumed
to be fully inflected (modulo negation), support
morphological processes awaiting future work.

We use this information and the knowledge
base to produce a set of lexical types inherit-
ing from the types defined in the core Matrix
and specifying appropriate language-specific con-
straints, and a set of lexical entries.

5 Limitsof modularity

Recent computational work in HPSG has asked
whether different parts of a single grammar can
be abstracted into separate, independent mod-

206

ules, either for processing (Kasper and Krieger,
1996; Theofilidis et al., 1997) or grammar devel-
opment (KeSelj, 2001). Our work is most simi-
lar to KeSelj’s though we are pursuing different
goals: Kes3elj is looking to support a division of
labor among multiple individuals working on the
same grammar and to support variants of a single
grammar for different domains. His modules each
have private and public features and types, and he
illustrates the approach with a small-scale ques-
tion answering system. In contrast, we are ap-
proaching this issue from the perspective of reuse
of grammar code in the context of multilingual
grammar engineering (a possibility suggested, but
not developed, by Theofilidis et al).

Our notion of modularity is influenced by the
following constraints: (i) The questions in the
customization interface must be sensible to the
working linguist; (ii) The resulting starter gram-
mars must be highly readable so that they can
be extended by the grammar developer (typically
only one per grammar); and (iii) HPSG prac-
tice values capturing linguistic generalizations by
having single types encode many different con-
straints and, ideally, single constraints contribute
to the analysis of many different phenomena.

Even with the modest linguistic coverage of
the existing system, we have found many cases
of non-trivial interaction between the modules:
Our phrase structure rules, following HPSG prac-
tice, capture cross-categorial generalizations: if
both verbs and adpositions follow their comple-
ments, then a single complement-head rule serves
for both. However, few languages (if any) are
completely consistent in their ordering of heads
and dependents. Thus, before defining the types
and instances for these rules, we must determine
whether the fragment requires auxiliaries (for
negation or yes-no questions) or case-marking ad-
positions, and whether their order with respect to
their complements is consistent with that of main
verbs. A second example is the lexical type for
main verbs, whose definition depends on whether
the language has auxiliaries (requiring a feature
AUX distinguishing the two kinds of verbs and
a feature FORM governing the distribution of fi-
nite and non-finite verbs). As a third example, the
negation and question modules each have options
requiring auxiliaries, but we must posit the asso-

ciated types and constraints at most once.

Thus we find that, for our purposes, the relevant
notion of modularity is modularity from the point
of view of the linguist who uses the system to cre-
ate a starter grammar. To support this, we strive to
make the questions we ask of the linguist be as in-
dependent of each other as possible, and to make
it clear when one particular choice (e.g., negation
as inflection) requires further information (suffix
v. prefix). The fact that the questions we present
to the linguist don’t correspond to neatly isolated
parts of the underlying knowledge base is not a
failure of the approach, but rather a reflection of
the complexity of language. The very intercon-
nectedness of grammatical phenomena is at the
heart of research in theoretical syntax. We in-
tend our system to provide a data-driven cross-
linguistic exploration of that interconnection.

6 Validation of prototype system

To verify the mutual consistency of the mod-
ules developed so far and to illustrate their ap-
plicability to a interesting range of languages,
we developed abstract test suites for seven lan-
guages. This convenience sample of languages is
not representative, either typologically or geneti-
cally. The grammatical and ungrammatical exam-
ples in each test suite use a small, artificial lexi-
con, and reflect the typological properties of each
language along the dimensions of basic word or-
der, sentential negation, and yes-no questions (Ta-
ble 1). Table 2 presents the performance of each
grammar (as generated by our prototype system
with appropriate input) on its associated test suite.

Language? Order Negation Yes-no Q°
English SVO aux-selected adv aux inv
Hindi Sov pre-V adv S-init part.
Japanese V-final verbal suffix S-final part
Mandarin SVO pre-V adv S-final part,
A-not-A
Polish free pre-V adv S-init part
Slave SOV post-V adv S-init part
Spanish SVO pre-V adv main V inv

Table 1: Languages used in testing

While these test suites are quite modest, we be-
lieve they show that the prototype system is able

2Sources: Hindi: Snell and Weightman, 2000, Mandarin:
Liand Thompson, 1981, Polish: Adam Przepiorkowski, p.c.,
Slave (Athabaskan): Rice, 1989

3In addition to intonation questions, if any.

207

Language Pos. Coverage Neg. Overgen.
English 5 100% 10 10%
Hindi 5 100% 10 0%
Japanese 6 100% 10 0%
Mandarin 4 75% 9 0%
Polish 14 100% 8 0%
Slave 3 100% 6 0%
Spanish 5 100% 7 0%

Table 2: Parsing evaluation results

to produce good first-pass grammar fragments for
an interesting variety of languages. More study is
needed to develop a means of testing the cross-
compatibility of all choices on all modules, to
evaluate the coverage against a typologically jus-
tified sample, and to gauge the success of this
strategy in producing grammars which are com-
prehensible to beginning grammar developers.

7 Conclusion and outlook

We have described a method for extending
a language-independent core grammar like the
Grammar Matrix with modules handling cross-
linguistically variable but still recurring patterns.
This method allows for extremely rapid prototyp-
ing of deep precision grammars in such a way
that the prototypes themselves can serve as the
basis for sustained development. We envision at
least four potential uses for this kind of grammar
prototyping: (i) in pedagogical contexts, where
it would allow grammar engineering students to
more quickly work on cutting-edge problems, (ii)
in language documentation, where a documen-
tary linguist in the field might be collaborating
remotely with a grammar engineer to propose and
test hypotheses, (iii) in leveraging the results from
economically powerful languages to reduce the
cost of creating resources for minority languages,
and (iv) in supporting typological or comparative
studies of linguistic phenomena or interactions
between phenomena across languages.

Acknowledgments

We thank Scott Drellishak, Stephan Oepen, Lau-
rie Poulson, and the 2004 and 2005 multilingual
grammar engineering classes at the University of
Washington for valuable input and NTT Com-
munication Science Laboratories for their support
through a grant to CSLI (Stanford). All remaining
errors are our own.

References

J.A. Bateman, |. Kruijff-Korbayovd, and G.-J. Krui-
jff. ip. Multilingual resource sharing across both
related and unrelated languages: an implemented,
open-source framework for practical natural lan-
guage generation. Res. on Lang. and Computation.

E.M. Bender and J. Good. ip. Implementation for
discovery: A bipartite lexicon to support morpho-
logical and syntactic analysis. In CLS41.

E.M. Bender, D. Flickinger, and S. Oepen. 2002.
The grammar matrix. COLING 2002 Workshop on
Grammar Engineering and Evaluation.

M. Butt, H. Dyvik, T.H. King, H. Masuichi, and
C. Rohrer. 2002. The parallel grammar project. In
COLING 2002 Workshop on Grammar Engineering
and Evaluation.

U. Callmeier. 2000. PET — A platform for ex-
perimentation with efficient HPSG processing tech-
niques. Natural Lang. Engineering, 6 (1):99-108.

N. Chomsky. 1981. Lectures on Government and
Binding. Foris, Dordrecht.

A. Copestake, A. Lascarides, and D. Flickinger. 2001.
An algebra for semantic construction in constraint-
based grammars. In ACL 2001.

A. Copestake. 2002. Implementing Typed Feature
Sructure Grammars. CSLI, Stanford, CA.

B. Crysmann. ip. Relative clause extraposition in ger-
man: An efficient and portable implementation. Re-
search on Lang. and Computation.

S. Drellishak and E.M. Bender. ta. Coordination
modules for a crosslinguistic grammar resource. In
Proc. of HPSG 2005.

D. Flickinger and E.M. Bender. 2003. Compositional
semantics in a multilingual grammar resource. In
Proc. of the Workshop on Ideas and Strategies for
Multilingual Grammar Development, ESSLLI 2003,
pages 33-42.

D. Flickinger. 2000. On building a more efficient
grammar by exploiting types. Natural Lang. En-
gineering, 6 (1):15-28.

L. Hellan and P. Haugereid. 2003. Norsource: An
exercise in matrix grammar-building design. In
Proc. of the Workshop on Ideas and Strategies for
Multilingual Grammar Development, ESS_LI 2003,
pages 41-48.

W.D. Hinrichs, E.and Meurers, F. Richter, M. Sailer,
and H. Winhart. 1997. Ein HPSG-Fragement des
Deutschen. Arbeitspapiere des Sonderforschungs-
bereichs 340, Bericht Nr. 95.

W. Kasper and H.-U. Krieger. 1996. Modularizing
codescriptive grammars for efficient parsing. In
COLING 1996, pages 628-633.

V. KeSelj. 2001. Modular HPSG. Technical Report
CS-2001-05, Department of Computer Science,
University of Waterloo, Waterloo, Ont., Canada.

R. Kim, M. Dalrymple, R.M. Kaplan, T.H. King,
H. Masuichi, and T. Ohkuma. 2003. Multlingual
grammar development via grammar porting. In
Proc. of the Workshop on Ideas and Strategies for
Multilingual Grammar Development, ESSL_LI 2003,
pages 49-56.

J. Kim. 2000. The Grammar of Negation: A
Constraint-Based Approach. CSLI, Stanford, CA.

V. Kordoni and J. Neu. 2003. Deep gramamr develop-
ment for Modern Greek. In Proc. of the Workshop
on Ideas and Strategies for Multilingual Grammar
Development, ESSLLI 2003, pages 65—72.

C.N. Li and S.A. Thompson. 1981. Mandarin Chi-
nese: A Functional Reference Grammar. Univer-
sity of California Press, Berkeley, CA.

M. Mithun. 1984. The evolution of noun incorpora-
tion. Language, 60(4):847-894.

S. Miller and W. Kasper. 2000. HPSG analy-
sis of German. In W. Wahlster, editor, \Verbmo-
bil. Foundations of Speech-to-Speech Trandation,
pages 238 —253. Springer, Berlin, Germany.

Carl P. and I.A. Sag. 1994. Head-Driven Phrase
Sructure Grammar. The Univeristy of Chicago
Press, Chicago, IL.

K. Rice. 1989. A Grammar of Save. Mouton de
Gruyter, Berlin.

I.A. Sag, T. Wasow, and E.M. Bender. 2003. Synactic
Theory: A Formal Introduction. CSLI, Stanford,
CA, 2nd edition.

M. Siegel and E.M. Bender. 2002. Efficient deep
processing of Japanese. In Proc. of the 3rd Work-
shop on Asian Language Resources and Interna-
tional Standardization at COLING 2002.

M. Siegel. 2000. HPSG analysis of Japanese.
In W. Wabhlster, editor, Verbmobil. Foundations
of Speech-to-Speech Trandation, pages 265 — 280.
Springer, Berlin, Germany.

R. Snell and S. Weightman. 2000. Hindi. Teach Your-
self Books.

A. Theofilidis, P. Schmidt, and T. Declerck. 1997.
Grammar modularization for efficient processing:
Language engineering devices and their instantia-
tions. In Proc. of the DGFS/CL.

208

