
eBonsai: An integrated environment for annotating treebanks

Ichikawa Hiroshi, Noguchi Masaki, Hashimoto Taiichi, Tokunaga Takenobu, Tanaka Hozumi
Department of Computer Science, Tokyo Institute of Technology

Tokyo MeguroÔokayama 2-12-1, Japan
ichikawa@cl.cs.titech.ac.jp

Abstract

Syntactically annotated corpora (tree-
banks) play an important role in re-
cent statistical natural language pro-
cessing. However, building a large tree-
bank is labor intensive and time con-
suming work. To remedy this prob-
lem, there have been many attempts to
develop software tools for annotating
treebanks.

This paper presents an integrated en-
vironment for annotating a treebank,
called eBonsai. eBonsai helps annota-
tors to choose a correct syntactic struc-
ture of a sentence from outputs of a
parser, allowing the annotators to re-
trieve similar sentences in the treebank
for referring to their structures.

1 Introduction

Statistical approach has been a main stream of
natural language processing research for the last
decade. Particularly, syntactically annotated cor-
pora (treebanks), such as Penn Treebank (Marcus
et al., 1993), Negra Corpus (Skut et al., 1997)
and EDR Corpus (Jap, 1994), contribute to im-
prove the performance of morpho-syntactic anal-
ysis systems. It is notorious, however, that build-
ing a large treebank is labor intensive and time
consuming work. In addition, it is quite difficult
to keep quality and consistency of a large tree-
bank. To remedy this problem, there have been
many attempts to develop software tools for anno-
tating treebanks (Plaehn and Brants, 2000; Bird et
al., 2002).

This paper presents an integrated environment
for annotating treebanks, called eBonsai. Fig-
ure 1 shows a snapshot of eBonsai. eBonsai
first performs syntactic analysis of a sentence us-
ing a parser based on GLR algorithm (MSLR
parser) (Tanaka et al., 1993), and provides can-
didates of its syntactic structure. An annotator
chooses a correct structure from these candidates.
When choosing a correct structure, the annotator
can consult the system to retrieve already anno-
tated similar sentences to make the current deci-
sion. Integration of annotation and retrieval is a
significant feature of eBonsai.

To realize the tight coupling of annotation and
retrieval, eBonsai has been implemented as the
following two plug-in modules of an universal
tool platform: Eclipse (The Eclipse Foundation,
2001).

• Annotation plug-in module: This module
helps to choose a correct syntactic structure
from candidate structures.

• Retrieval plug-in module: This module re-
trieves similar sentences to a sentence in
question from already annotated sentences in
the treebank.

These two plug-in modules work cooperatively
in the Eclipse framework. For example, infor-
mation can be transferred easily between these
two modules in a copy-and-past manner. Further-
more, since they are implemented as Eclipse plug-
in modules, these functionalities can also inter-
act with other plug-in modules and Eclipse native
features such as CVS.

108



Figure 1: A snapshot of eBonsai

���������	�
����
����

��������	�
��
��
���������	�
��
��
���������	�
��
��
���������	�
��
��
�

��������	�
� ���������������	�
� ���������������	�
� ���������������	�
� �������

� ��� � �

�
���
�
� � ����� ���	�
� ��� � � � � � 
� ���

���� �� 
� � �
�� 
� �
�� ����� �� 
� � �
�� 
� �
�� ����� �� 
� � �
�� 
� �
�� ����� �� 
� � �
�� 
� �
�� �

� ����� � � � ���	�
��� � � ��
��� �

�
����
� � �
� � �

� � �������
� �
� ��� 
�� � �������
� �
� ��� 
�� � �������
� �
� ��� 
�� � �������
� �
� ��� 
�

� ��� � � ��	�
� ���
� � �
� � ��
� �
� ��
� ��� 
��

�
��� ����
��� ����
��� ����
��� ���

���������	���
��
���
�
�

�����

� �� � �� 	 ��

Figure 2: A workflow of annotation using eBonsai

109



2 Annotating treebanks

Figure 2 shows a workflow of annotating a tree-
bank using eBonsai.

1. An annotator picks a sentence to annotate
from plain-text corpora.

2. The MSLR parser (Tanaka et al., 1993) per-
forms syntactic analysis of the sentence.

3. The annotator chooses a correct syntactic
structure from the output of the parser. If
necessary, retrieval of structures in the tree-
bank is available in this step.

4. The annotator adds the chosen syntactic
structure to the treebank.

The coverage of Japanese grammar used in the
MSLR parser is fairly wide. The number of gram-
mar rules of the current system is almost 3,000.
That means we have a lot of outputs as a result
of syntactic analysis in step 2. These structures
are represented in terms of a special data struc-
ture called packed shared forest (PSF) (Tomita,
1986). The main role of eBonsai is supporting
annotators to choose a correct one from a lot of
candidate structures in step 3.

3 Annotation plug-in module

3.1 Overview

The annotation plug-in module helps to choose a
correct syntactic structure from a set of structures
represented by a packed shared forest which is an
output of the MSLR parser.

Since there are generally so many syntactic
structures given by the parser, it is impractical to
find a correct one by checking all of them. The an-
notation plug-in module shows a single structure
at a time as shown in figure 1, and asks annotators
to specify a constraint. The system reflects the
constraint immediately by filtering out the struc-
tures violating it. This process is repeated until
a single correct structure is identified. The con-
straints which can be specified by annotators are
following two:

1. Annotators can specify a destination con-
stituent of a dependent constituent.

2. Annotators can specify a correct label of a
node.

This plug-in module is a reimplementation of an
annotation tools developed by Okazaki (Okazaki
et al., 2001) in an Eclipse framework.

3.2 Example of annotation

Take the following Japanese sentence for an ex-
ample to explain the usage of the annotation plug-
in module.

警告の黄色の用紙を (yellow paper for
warning-ACC)郵便受けに (mailbox-
DAT)入れておいたが (put, but)，まだ
支払われていない (not being paid yet).
(I put a yellow paper for warning in the
mailbox, but it is not paid yet.)

1. An annotator double-clicks a PSF file name
in Eclipse “Navigator” (a left window) to
pick up a sentence to annotate.

2. A new window opens and one of the struc-
tures is shown in terms of a syntactic tree (a
right window).

This window is called “Annotation editor”.
The notation “1/9” in the left-top part of the
window indicates that the presented struc-
ture is the first one out of nine.

3. A red node (e.g. “<動詞句-用-無 >” (verb
phrase)) indicates that this node has other
possible label names.

4. Clicking a right button on the red node
makes a list of possible label names pop up
as shown below.

110



5. Annotators can choose a correct label name
of the node in the list. In this case, label “<
名詞句-サ変-無>” will be selected.

6. Then label “< 動詞句-用-無 >” (verb
phrase) changes to “< 名詞句-サ変-無 >”
(noun phrase) in the tree and its color be-
comes black at the same time. Black label
names indicate that there is no other possi-
ble label for this node.

Now, the number of structures shown in the
left-top part of Annotation editor decreases
to 3.

7. A green node (e.g. “< 補足節-を-無-無
>”) indicates the constituent governed by
that node can depend on more than one con-
stituent.

8. Clicking a right button on node “<補足節-
を-無-無 >” makes a list of destinations of
dependency pop up as shown below.

9. Annotators can choose a correct destination
in the list. In this case, “郵便受けに入れてお
いた (put (a yellow paper) in the mailbox)”
will be selected.

10. At this moment, all nodes have turned into
black and the number of structure becomes
1. That means the annotation of this sentence
has been finished.

Figure 3: A popup menu of Annotation editor

3.3 Other features

The following features are also implemented.

• Unlimitedly repeatable Undo/Redo. It is
possible to undo/redo after saving results by
using the popup menu. (figure 3).

• Viewing other structures. Items [Previous
tree] and [Next tree] in the popup menu
shows different structures.

• Folding constituents. Clicking a right but-
ton on a node and selecting item [Switch
folding] makes the structure under the node
folded. Selecting the same item again un-
folds the structure.

• Copying a part of a structure to the retrieval
plug-in module. Item [Copy to search] in
the popup menu copies a selected structure
to the query input window. This feature will
be described in detail in the later section.

4 Retrieval plug-in module

4.1 Overview

During the course of annotation, annotators usu-
ally put constraints to narrow down to a correct
structure considering the meaning of a sentence.
However, there are cases in which it is difficult to
pin down a correct one by referring to only that
sentence. Annotators can consult the system to
retrieve the similar structure of sentences in the
treebank. The retrieval plug-in module provides
annotators such functionality. The retrieval plug-
in module receives a syntactic structure as a query
and provides a list of sentences which include the
given structure.

The retrieval plug-in module has been realized
with the method proposed by Yoshida (Yoshida et
al., 2004). The method is based on Yoshikawa’s

111



method (Yoshikawa et al., 2001) which was orig-
inally proposed for handling XML documents ef-
fectively by using relational database (RDB) sys-
tems. Yoshida adopted Yoshikawa’s method to
deal with syntactic structures in the database.
Since an XML document can be represented as
a tree, Yoshikawa’s method is also applicable to
deal with syntactic structures.

Figure 4: An input query for retrieval

An input query is given as a tree as shown in
Figure 4. The structure is then translated into a
SQL query and the retrieval is performed.

A query involving a large number of nodes gen-
erates a longer SQL query, thus degrades retrieval
speed significantly. Yoshida proposed to decom-
pose an input query into a set of subtrees, and to
translate each subtree into a SQL query.

4.2 Example of structure retrieval

1. An annotator puts a query tree in the query
input window (upper-left window of Fig-
ure 5). The query can be modified by the
following way.

• A node label can be changed by click-
ing a left button on the node and putting
a new label in the input area. A label
can contain a wild card character “%”.

• A child node can be added by clicking
a right button on a node and selecting
menu item [Add child].

2. Clicking a right button in the query input
window and selecting a menu item starts re-
trieval. There are four types of search.

• Menu item [Search] retrieves sentences
containing a structure which is exactly
the same as the query.

• Menu item [Partial search] retrieves
sentences with less rigid condition than
item [Search]. It allows some child
nodes missing from the query.

Figure 5: An example of structure retrieval

• Menu item [Narrow search] searches in
the previously retrieved sentences in-
stead of in the entire treebank.

• Menu item [Partial narrow search] is
the combination of [Partial search] and
[Narrow search].

3. Retrieval results are shown in the retrieval
result list window (a left-bottom window in
Figure 5).

4. Clicking a sentence in the list shows the de-
tailed structure of the sentence in the detail
window (a right window of Figure 5). A part
of the structure matching with the query is
colored with blue.

5. If there is more than one substructure match-
ing with the query in a sentence, the sys-
tem shows the total number of matching
parts, and the identifier of the currently col-
ored part by number. Menu items [Previous
match] and [Next match] allows annotators
to move the other matching parts.

5 Interplay between annotation and
retrieval

Since both the annotation plug-in module and
the retrieval plug-in module are implemented as

112



Eclipse plug-ins, they can easily exchange infor-
mation each other. Thanks for this feature, an-
notators can copy a part of syntactic structures
shown in Annotation editor and submit it to the
retrieval module as a query. This can be done by
the following procedure.

1. Dragging a mouse pointer over the area cov-
ering a target syntactic structure selects the
structure, of which color changes to blue.

2. Clicking a right button in Annotation editor
makes a command list pop up, and select-
ing item [Copy to search] copies the selected
structure to the query input window.

3. The annotator can modify the query if
needed.

4. Clicking a right button in the query input
window makes a command list pop up and
selecting one of search commands performs
a search.

6 Conclusion and Future Work

This paper introduced eBonsai, an integrated en-
vironment for annotating treebanks. eBonsai was
implemented as two plug-in modules of Eclipse:
the annotation plug-in module for choosing a cor-
rect syntactic structure from outputs of a parser,
and the retrieval plug-in module for retrieving
sentences including similar structure to a query in
the treebank. These two modules are tightly cou-
pled, thus during the course of annotation, anno-
tators can refer to already annotated sentences in
the treebank by using the retrieval module. This
helps to annotate difficult cases.

The future work includes the following issues.

• Introduction of a project management func-
tionality by coupling with such as the CVS
system.

• Further improvement of the interface.

• Automatic presentation of reference sen-
tences with their structure without annota-
tors’ explicit retrieval.

• Functionality to share know-how among an-
notators.

References
S. Bird, X. Maeda, K. Ma, H. Lee, B. Randall, and S. Za-

yat. 2002. TableTrans, MultiTrans, InterTrans and Tree-
Trans: Diverse tools built on the annotation graph toolkit.
In Proceedings of the Third International Conference on
Language Resources and Evaluation (LREC 2002), pages
364–370.

Japan Electronic Dictionary Research Institute, 1994.
”Electronic Dictionary User’s Manual 2.1”.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz. 1993.
Building a large annotated corpus of english: The Penn
Treebank.Computational Linguistics, 19(2):313–330.

A. Okazaki, K. Shirai, T. Tokunaga, and H. Tanaka. 2001.
A syntactic annotation tool with user navigation. InPro-
ceedings of the 15th Annual Conference of Japanese So-
ciety for Artificial Intelligence.

O. Plaehn and T. Brants. 2000. Annotate – An effi-
cient interactive annotation tool. InProceedings of the
Sixth Conference on Applied Natural Language Process-
ing ANLP-2000.

W. Skut, B. Krenn, T. Brants, and H. Uszkoreit. 1997. An
annotation scheme for free word order languages. InPro-
ceedings of the 5th Conference on Applied Natural Lan-
guage Processing, pages 88–95.

H. Tanaka, T. Tokunaga, and M. Aizawa. 1993. Integra-
tion of morphological and syntactic analysis aased on LR
parsing algorithm. InProceedings of International Work-
shop on Parsing Technologies, pages 101–109.

The Eclipse Foundation. 2001. Eclipse official site.
http://www.eclipse.org/.

M. Tomita. 1986. Efficient Parsing for Natural Language.
Kluwer Academic Publisher.

K. Yoshida, T. Hashimoto, T. Tokunaga, and H. Tanaka.
2004. Retrieving annotated corpora for corpus annota-
tion. In Proceedings of the Fourth International Con-
ference on Language Resources and Evaluation (LREC
2004), pages 1775–1778.

M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura.
2001. Xrel: A pathbased approach to storage and re-
trieval of xml documents using relational database.ACM
Transactions on Internet Technology, 1(1).

113




