
A Novel Method for Content Consistency and Efficient Full-text
Search for P2P Content Sharing Systems

Hideki Mima
University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
mima@biz-model.t.u-tokyo.ac.jp

Hideto Tomabechi
Cognitive Research Lab

7-8-25 Roppongi, Minato-ku, Tokyo, Japan
Hideto_Tomabechi@crl.co.jp

Abstract
A problem associated with current P2P (peer-to-peer)
systems is that the consistency between copied contents
is not guaranteed. Additionally, the limitation of full-
text search capability in most of the popular P2P
systems hinders the scalability of P2P-based content
sharing systems. We proposed a new P2P content
sharing system in which the consistency of contents in
the network is maintained after updates or modifications
have been made to the contents. Links to the
downloaded contents are maintained on a server. As a
result, the updates and modifications to the contents can
be instantly detected and hence get reflected in future
P2P downloads. Natural language processing including
morphological analysis is performed distributedly by the
P2P clients and the update of the inverted index on the
server is conducted concurrently to provide an efficient
full-text search. The scheme and a preliminary
experimental result have been mentioned

1 Introduction
P2P content sharing systems can distribute large

amounts of contents with limited resources. By utiliz-
ing this exceptional feature, the P2P content sharing
model is expected to be one of the major means for
exchanging contents.

However, the presently available P2P content shar-
ing systems are mainly used to illegally copy movies
and music contents. In some cases, the service provid-
ers are accused of such illegal data exchange.

We have recognized that the following technical
problems may result in the above mentioned misuse
of P2P.

First, the presently available commercial P2P con-
tent sharing systems do not provide sufficient func-
tions to track the exchange of contents among users.
Due to this, service providers cannot monitor the
illegal exchange or tampering of shared contents
among users.

Second, the presently available commercial P2P
content sharing systems only provide simple search
functions, such as keyword search; therefore, they are
unsuitable for contents that are either frequently up-
dated or have text. In practice, the current P2P content
sharing systems are mainly used to only share movies
and music contents because these are not frequently
updated. The development of an appropriate search

method for the P2P content sharing system is required
in order to apply them to search text contents and the
latest version of contents.

In order to solve these technical problems, we are
developing a content consistency maintenance method
and an information search technique for P2P content
sharing systems. Our content consistency maintenance
method consists of a technique that prevents the tam-
pering of contents and a method that maintains consis-
tency between the following:

1. how users exchange contents on a P2P contents
sharing system and

2. how the service provider recognizes the
exchange of contents.

Finally, we aim to standardize the result of previ-
ous research [10].

In order to handle the updates of contents, the P2P
content sharing system that we are developing main-
tains digital signs for each version of the content. Our
system uses a download protocol based on asymmet-
ric key encryption to maintain content consistency. In
order to obtain the latest version of contents, even for
updated contents, this method employs links to the
original and the downloaded contents. These links are
managed on a central server.

In order to efficiently implement a full-text search,
clients connected to our system perform morphologi-
cal analysis and summarization of the text to generate
text information that is necessary for building a re-
verse index on a central server. The text information
is stored on a central server when the content is up-
dated. To reduce the load of full-text search, the
search results are cached on clients. By these tech-
niques, we can distribute the load of natural language
processing among clients and rapidly search text con-
tents with content updates.

In this paper, we briefly describe the P2P content
sharing system that we are developing and the tech-
niques used in it, namely, a content consistency main-
tenance method and a full-text search method. We
also report the result of a preliminary experiment on
load balancing of full-text search by our technique.

This paper is structured as follows: Section 2 de-
scribes related work. Section 3 briefly describes the

25

P2P content sharing system that we are developing.
Sections 4 and 5 describe techniques for content con-
sistency maintenance and full-text search, respectively.
Finally, Section 6 presents the conclusion and future
work.

2 Related Work
The two kinds of researches related to our work are

researches on content consistency maintenance and
those on information search in a P2P environment.

In this paper, we refer to a hybrid P2P system, such
as Napster that uses a central server, as a P2P system,
although it is not entirely decentralized. This is be-
cause, even a hybrid P2P system has an important
advantage in terms of content sharing; it can distribute
large amounts of contents with less bandwidth con-
sumption on the service providers side.

2.1 Contents Consistency Maintenance
Since the contents are stored on clients in a P2P

content sharing system, malicious clients can tamper
with the contents if no protection method against
tampering is provided.

The MD5 hash function in the protocol of Napster
 [4] enables a content publisher to send the hash value
of a content to a central server when it publishes the
content. Freenet [2] prevents tampering with the con-
tent by using the hash value of a content as its key.

This technique is effective in preventing the tam-
pering of static content such as a movie or music
content. However, when this technique is applied to
frequently updated contents, each version is treated as
a separate content because different versions have
different keys. To handle such frequently updated
contents, Freenet introduced indirect files in which the
hash values of the contents are stored. By retrieving
an indirect file, a user can retrieve the last updated
content in two steps. In order to share frequently up-
dated contents, we need to provide a mechanism that
associates the content ID with the hash value of a
particular version of the content, as in the case of
Freenet.

Another problem of P2P content sharing systems is
that the provider of a content sharing service cannot
trace the exchange of contents among users.
Napster, which is a centralized P2P content sharing
system similar to our system, uses a download proto-
col by which the clients send a download request to
the central server before they download the content
from another client. After this, the central server does
not participate in the download process of the content.
Using this protocol, the central server cannot identify
whether a download has been carried out successfully
or not. A malicious client can send the same informa-
tion to the central server and pretend that a download
request has been made by another client. It is also

possible to send tampered content to another client
without being detected by the central server.

2.2 Information Search in P2P Environment
The two types of search techniques that are widely

used in P2P content sharing systems include using a
central search server [4] and flooding of search re-
quests [6].

The problems of using a central server, such as
poor scalability of a central search server and vulner-
ability that arises from a single point of failure, are
widely known. The flooding of search requests also
has scalability problems. As the number of nodes in a
network increases, more search requests are flooded
that consume a major part of the bandwidth. In order
to reduce search requests, many systems use flooding
techniques that often limit the search range with heu-
ristic methods. As a result, it cannot be assured that all
existing contents in a network can be found in these
systems.

In order to solve the problems associated with the
above mentioned techniques, several search methods
based on distributed hash tables (DHT) have been
proposed [5] [7]. These methods are scalable to a con-
siderable extent. A characteristic of these methods is
that exact match key search can be done with O (log

n) or O (na) hops.
Reynolds and Vahdat proposed a method for im-

plementing full-text search by distributing the reverse
index on a DHT. In this method, a key in a hash table
corresponds to a particular keyword in a document,
and a value in a hash table corresponds to a document
that contains a keyword. A client that publishes a
document notifies the nodes that correspond to the
keywords contained in the document and updates the
reverse indexes on these nodes. In this method, the
load of the full-text search can be distributed among
the nodes. We can also expect that the reverse indexes
on the nodes can be updated rapidly by pushing the
latest keywords in the contents from a client.

On the other hand, this method has several limita-
tions. For example, when an AND search is per-
formed by this method, the search results must be
transferred between the nodes. Li estimated the
amount of resources that is necessary to implement a
full-text search engine based on this method and
pointed out that it is difficult to implement a large-
scale search engine, such as Google, by this method
 [8].

Furthermore, if this method were applied to a P2P
content sharing system, the problem of low availabil-
ity of nodes would arise because the users’ PCs would
be used as nodes in such a system. In order to store
reverse indexes on the nodes, we have to replicate
them to ensure the availability of indexes. This would
require more resources than that estimated by Li.

26

Based on the above mentioned reasons, we believe
that a full-text search technique using a central search
server that manages reverse indexes is more feasible
than a distributed reverse index technique for imple-
menting a full-text search engine in a P2P environ-
ment.

3 System Architecture
Figure 1 shows the architecture of our system. As

described earlier, we chose a central server architec-
ture to provide a full-text search of the contents.

The public keys of the clients are stored on a cen-
tral server. By sending a request to the server, a client
can obtain a public key of another client that is con-
nected with the central server. The central server also
has private and public keys. Its public key is available
to all the clients.
Each client has a unique ID. When a client connects
to the central server, it sends its own IP address. An-
other client can obtain the IP address of a client by
querying to the server using its client ID. The central
server provides a content consistency maintenance
mechanism and a full-text search engine. These
mechanisms are described in the following sections.

4 Content Consistency Maintenance

4.1 Data Structure for Content Management
In this system, a publisher of a document digitally

signs a document with its private key and registers its
sign to the central search server with its unique ID.
When a document is a text document, a client per-
forms morphological analysis to generate search key-
words from a document.

The ID of contents and digital signs corresponding
to different versions are managed on the central
search server. Using the ID and version, a client can
obtain a digital sign for a document by querying to the
central server using its ID and version. Using a digital
sign ensures that a malicious client does not tamper
with a document.

A search result obtained from the central server is
also digitally signed to ensure that a client does not
tamper with it. As described in detail in section 5, a
search result is cached on a client and can be modified.
To prevent this, a search result comprises the ID of
contents and a digital sign.

In this system, a client can obtain the latest version
of a document when a document is updated, by query-
ing its ID to the central server. However, a limitation
associated with this method is that only the latest
version of documents can be obtained. For example,
by using indirect files and hash values of contents as
in Freenet, we can obtain previous versions of a
document by directly specifying a hash value of an
earlier version. However, neither does Freenet assure
that the latest version is always obtained nor does it

assure that a particular earlier version is obtained
because a previous version may be deleted if there is
no request for it in a certain period. In our system, we
consider only the latest version of a document which
can be obtained at any time. Thus, we define our
document query protocol in order to obtain the latest
version.

In order to prevent the concentration of download
requests on a certain client, our system manages a list
of clients that have downloaded the latest version of a
document and distributes download sources to these
clients using this list.

In this method, the ID of a client that downloads
the latest version of a document is added to a list; this
ID corresponds with the ID of the document. When a
client sends a request to the central server to
download a document, the central server selects an
appropriate client from a downloader’s list and returns
its ID to the client. When the publisher updates a
document, the list corresponding to that document is
emptied.

We describe this procedure by the following
pseudo codes, where download is a function that
requests the download of a document, nodeId is the
ID of a client that requests the download, update is
a function that requests the update of a document, and
getNodeId is a function that gets the ID of a client
that downloads a document whose ID is docId.
 nodeIdList: document ID x node ID list

 download(docId, nodeId) {
 nodeIdList[docId].add(nodeId); }

 update(docId, nodeId) {
 nodeIdList[docId] = {nodeId}; }

 getNodeId(docId) {
 index = rand() * nodeIdList[docId].length;
 return nodeIdList[docId][index]; }

4.2 Tracing How Contents are Exchanged
In a P2P content sharing system that uses a simple
download protocol, such as Napster, when a service

- Client public keys
- Contents certificate
- Links to contents
- Full-text search index

- Contents

Figure 1. System Architecture

Central
server

Client

Client Client

27

provider keeps records about how contents are trans-
ferred among clients, there exist possibilities of a
client tampering with such records by sending false
information about downloading content to the central
server.

For example, by Napster protocol, a request to start
a download that is sent when a client begins to
download from another client is the information that
the central server receives from the client. Therefore,
the central server can obtain the same information in
the case when a download source does not transfer a
document as well as in the case when a download
source transfers a document successfully.

To avoid this problem, our system uses a download
protocol that employs the public keys of clients man-
aged on the central server. The protocol is described
as follows wherein a download destination client is
denoted as client A and a download source client as
client B.
1 Client A sends a download request to the central

server. The central server generates a common
encryption key and sends it to client B.

2 Client B encrypts the requested content with a
common encryption key, signs it digitally, and
sends the encrypted content to client A.

3 Client A confirms that the downloaded content
has been signed by client B. Client A then sends a
request for the common encryption key to the
central server. The central server records that the
content is downloaded.

4 Client A decrypts the downloaded content with
the common encryption key. Client A then veri-
fies that the downloaded content is not altered us-
ing digital sign on the central server.

5 If the downloaded content is altered, client A
sends the downloaded data with a sign of client B
to the central server. The central server can then
confirm that it is signed by client B and is altered.
The central server can then cancel the download
record created in step 3.

By this protocol, the following properties are satis-
fied:
・ A content download is recorded on the central

server as long as a download source client fol-
lows the above protocol.

・ The central server does not create a record when
a document is not downloaded by a client.

When a download source client encrypts a docu-
ment with a common encryption key following the
protocol, a download destination client has to send a
request for a common key to the central server. Thus,
the central server can record a download. As a result,
the first property is satisfied.

Further, when a client that downloaded a document
sends a request for a common key, it obtains a sign of
a download source client for the document. When the
downloaded content is altered or different from the

requested one, a download record can be cancelled by
sending the downloaded data to the central server.
Thus, the second property is satisfied.
However, even with this protocol, in the case when

both a download source client and a destination client
do not follow this protocol, the central server cannot
record downloads of contents, for example, in the
case where a download source client does not encrypt
the content with a common key. Currently, our system
does not handle such situations. We would like to
consider this problem in our future work. In order to
handle such situations, we evaluated the credibility of
clients from download histories and selected a credi-
ble client as a download source.

5 Full-text Search

5.1 Load Balancing of Full-text Search
To reduce the load of full-text search on the central

server, our system uses a caching technique to cache
the search results of clients. It has been reported that
approximately 30% to 40% of search requests are
repeated on a full-text search engine [9]. Therefore, a
caching technique is expected to considerably reduce
the full-text search load. We employed an applied
form of a hash-based caching method, as described in
 [3]. In this section, we describe the manner in which a
full-text search is performed and search results are
cached.

The central server selects a fixed number of clients
as caches for the search results that connect for a long
duration. The central server assigns them to the
equally divided range of a hash function. A client
obtains a list of caches when it connects to the central
server. When a client performs a search, it calculates
the hash value of a search keyword and sends a re-
quest to the cache assigned to a section of the range
containing the hash value of the keyword.

In an experiment described later, SHA1 is used as a
hash function for clients IDs and search keywords. By
comparing several upper bits of hash values, we im-
plement equally divided range of a hash function.

If a cache does not have a search result for a search
keyword, it forwards the search request to the central
server. The central server then returns the result to the
cache with a search keyword, search time, and digital
sign. The search time and digital sign that a client
receives along with the search result from a cache can
confirm that the result is not stale and not tampered
with by a cache.

When a client sends a search request to a cache and
detects that a cache is not available because it is con-
nected to the network or is overloaded, the request
sending client marks that it is not available on a list of
caches. It then sends the search request to a cache
assigned to the next section of the hash range. When
the number of unavailable caches exceeds a certain

28

fixed number, it requests the central server for the
most recent list of caches and updates it.

5.2 A Load Balancing Experiment
It is reported that the number of search requests for

each keyword follows Zipf distribution [9]. Therefore,
when we increase the number of caches by sub-
dividing the range of a hash function, it is possible
that search requests are concentrated to a certain
cache.

On the other hand, if we increase the number of
caches by maintaining the number of sections of the
range of a hash function and increasing the number of
clients assigned to each section, the cache hit ratio
would decrease.
In this research, a preliminary experiment is per-

formed in order to verify the advantages and disad-
vantages of these alternatives.

First, we generate a list of search keywords so that
the number of requests for each keyword follows Zipf
distribution. In this list, 40% of the queries are re-
peated and requests of the most frequently repeated
word correspond to 0.2% of the entire range of re-
quests. These numbers follow the search trace of
Excite, as reported in [9].

If all search results corresponding to keywords in
this list can be cached, the cache hit ratio would be
40%.

Using this list, we measure the cache hit ratio, re-
quired cache capacity, and the number of search re-
quest counts for each cache client in the following
three cases: (1) the range of a hash function is divided
into 256 sections, a single client is assigned to each
section, and 100,000 requests are sent; (2) the range
of a hash function is divided into 1024 sections, a
single client is assigned to each section, and 400,000
requests are sent; (3) the range of a hash function is
divided into 256 sections, 4 clients are assigned to
each section, and 400,000 requests are sent. We as-
sume that the same capacity is required to cache a
search result for any keyword. Therefore, the number
of keywords that are requested more than twice are
counted as the required cache capacity.

Figure 2 shows the experimental results. This
graph shows the number of requests to each cache that
is sorted in a descending order. In order to compare
these three cases, the scale of the x-axis of the result
of case (1) is expanded by four times.

In case (1), although the range of the hash function
is divided equally, the number of requests to the most
frequently requested cache is less than twice that of

the least frequently requested one. This shows that
both the hash value of a frequently searched keyword
and a not so frequently searched one are likely to be
contained in one interval when the range is divided
into relatively large intervals. Thus, the search re-
quests for each interval are balanced. This result also
shows that the cache hit ratio in case (1) is relatively
high.

When the number of caches and search requests are
increased from that in case (1) and when the range is
divided into smaller intervals, as in case (2), search
requests are concentrated to a certain cache, as shown
in Table 1. This shows that the search load becomes
unbalanced among the caches. However, in compari-
son to case (1), the cache hit ratio is improved be-
cause the number of search requests is increased in
this case. As shown in Figure 1, the search loads are
well balanced between most of the caches except a
few caches where the search requests are concentrated
in case (2). In order to balance the search load, we
employed certain techniques to forward the search
requests from overloaded caches to others. Currently,
the above results only measure the number of search
requests and do not consider the search load on caches.
As a future work, we intend to perform a quantitative
experiment of search load balancing under the condi-
tion when our system would forward search requests
from overloaded caches to others.

When the number of clients assigned to each sec-
tion increases, as in case (3), the search load is well
balanced as shown in Figure 2, which is similar to that
of case (1). However, the cache hit ratio decreases
remarkably. In order to increase the cache hit ratio in
this situation, other techniques such as hierarchical
cache would have to be used.

In this experiment, we assume that the appearance
ratio of repeated queries is the same. However, due to

Figure 2. Distribution of Search Requests

0

200

400

600

800

1000

1200

1400

(1) 256 clients 100,000 requests

(2) 1024 clients 400,000 requests

(3) 256x4 clients 400,000 requests

Table 1: Result of Experiment

 max search
requests

cache hit
ratio

av. cache
capacity

(1) 256 557 20.6% 75.7
(2) 1024 1193 24.3% 61.4
(3) 256×4 578 10.6% 42.1

29

limited vocabulary of the users, the ratio of repeated
queries in the entire range of queries is expected to
increase with the number of queries. Owing to this,
we can expect that the cache hit ratio does not de-
crease when the number of queries increases.

6 Conclusion
In this paper, some problems regarding currently

available P2P content sharing systems such as content
consistency maintenance and information search have
been pointed out. We proposed techniques in order to
solve these problems and described the outline of the
P2P content sharing system that we are developing.

This system uses a central server on which the digi-
tal signs of contents publishers are maintained to
prevent the tampering of contents. Further, this sys-
tem adopts a content transfer protocol that employs
asymmetric encryption keys. This protocol enables us
to record content exchanges between clients on the
central server. On the contrary, since most other P2P
content sharing systems do not employ sufficient
techniques to maintain records of content exchanges,
such records would be unreliable. In particular, it is
difficult to maintain such records in decentralized P2P
content sharing systems.

In order to solve the problem regarding information
search, we propose full-text search techniques for P2P
content sharing systems. First, morphological analysis
and summarizing of documents are performed for
each client and the results are sent to the central server
to generate reverse indexes. We can implement a
relatively efficient full-text search with this technique.
More efficient and scalable full-text search techniques
based on DHT are currently being researched. It is
difficult to implement partial matching or AND search
by these techniques; however, they can be easily im-
plemented with our method. In order to reduce the
search load on the central search server, we propose a
load balance technique that caches search results on
clients and uses a hash function to distribute search
requests to clients. In one of the experiments carried
out, it was seen that the search requests were satisfac-
torily balanced, and the cache hit ratio was relatively
high for a considerably large set of search requests
that follow Zipf distribution.

We believe that content consistency maintenance
and efficient full-text search on P2P content sharing
systems can be implemented using our techniques.

As a future work, we would like to consider novel
techniques to handle cases where multiple clients do
not follow our content transfer protocol. In addition,
we believe it is necessary to quantitatively evaluate
our implementation to confirm that our system func-
tions well in a practically large-scale environment.
With respect to the caching technique, we have to
improve our load balancing technique to avoid some
clients from being overloaded.

Acknowledgements
Hideki Mima and Hideto Tomabechi express their

gratitude to the Ministry of Internal Affairs and
Communications for promoting the study in part un-
der the SCOPE R&D grant scheme.

References
[1] P. Reynolds and A. Vahdat. Efficient Peer-to-Peer

Keyword Searching. Middleware 2003.
[2] T. Hong. Freenet: A distributed anonymous infor-

mation storage and retrieval system. In ICSI Work-
shop on Design Issues in Anonymity and Unob-
servability, 2000.

[3] David R. Karger, Eric Lehman, Frank Thomson
Leighton, Rina Panigrahy, Matthew S. Levine, and
Daniel Lewin. Consistent hashing and random
trees: Distributed caching protocols for relieving
hot spots on the World Wide Web. In ACM Sympo-
sium on Theory of Computing, pages 654-663, 1997.

[4] Napster. http://www.napster.com/,
http://opennap.sourceforge.net/.

[5] Ion Stoica, Robert Morris, David Karger, M. Frans
Kaashoek, and Hari Balakrishnan. Chord: A scal-
able peer-to-peer lookup service for Internet appli-
cations. In Proceedings of ACM SIGCOMM’01,
2001.

[6] Gnutella. http://gnutella.wego.com/.
[7] Tylvia Ratnasamy, Paul Francis, Mark Handley,

Richard Karp, and Scott Shenker. A scalable con-
tent-addressable network. In Proceedings of ACM
SIGCOMM’01, 2001.

[8] Jinyang Li, Boon Thau Loo, Joseph M. Hellerstein,
M. Frans Kaashoek, David R. Karger, Robert Mor-
ris. On the feasibility of peer-to-peer web indexing
and search. In 2nd International Workshop on
Peer-to-Peer Systems, 2003.

[9] Yinglian Xie and David O'Hallaron. Locality in
search engine queries and its implications for cach-
ing. IEEE Infocom 2002, 2002.

[10] Yasuaki Takebe, Hideki Mima, Hideto Tomabechi.
A next-generation P2P contents sharing system–
implementing content consistency maintenance and
full-text search. In 11th DPS Workshop, 2003.

30

