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Abstract. Lexical Conceptual Structure (LCS) represents verbs as semantic
structures with a limited number of semantic predicates. This paper attempts to
exploit how LCS can be used to explain the regularities underlying lexical and
syntactic paraphrases, such as verb alternation, compound word decomposition,
and lexical derivation. We propose a paraphrase generation model which trans-
forms LCSs of verbs, and then conduct an empirical experiment taking the para-
phrasing of Japanese light-verb constructions as an example. Experimental results
justify that syntactic and semantic properties of verbs encoded in LCS are useful
to semantically constrain the syntactic transformation in paraphrase generation.

1 Introduction

Automatic paraphrasing has recently been attracting increasing attention due to its po-
tential in a broad range of natural language processing tasks. For example, a system that
is capable of simplifying a given text, or showing the user several alternative expres-
sions conveying the same content, would be useful for assisting a reader.

There are several classes of paraphrase that exhibit a degree of regularity. For exam-
ple, paraphrasing associated with verb alternation, lexical derivation, compound word
decomposition, and paraphrasing of light-verb constructions (LVC(s)) all fall into such
classes. Examples1 (1) and (2) appear to exhibit the same transformation pattern, in
which a compound noun is transformed into a verb phrase. Likewise, paraphrases in-
volving an LVC as in (3) and (4) (from [4]) have considerable similarities.

(1) s. His machine operation is very good.
t. He operates the machine very well.

(2) s. My son’s bat control is unskillful yet.
t. My son controls his bat poorly yet.

(3) s. Steven made an attempt to stop playing.
t. Steven attempted to stop playing.

(4) s. It had a noticeable effect on the trade.
t. It noticeably affected the trade.

1 For each example, “s” and “t” denote an original sentence and its paraphrase, respectively. Note
that our target language is Japanese. English examples are used for an explanatory purpose.
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However, the regularity we find in these examples is not so simple that it cannot be
captured only in syntactic terms. For example, the transformation pattern as in (1) and
(2) does not apply to another compound noun “machine translation.” We can also find
a range of varieties in paraphrasing of LVCs as we describe in Section 3.

In spite of this complexity, the regularity each paraphrase class exhibits were ex-
plained by recent advances in lexical semantics, such as the Lexical Conceptual Struc-
ture (LCS) [8] and the Generative Lexicon [17]. According to the LCS, for instance,
a wide variety of paraphrases including word association within compounds, transitiv-
ity alternation, and lexical derivation, were explained by means of the syntactic and
semantic properties of the verb involved. The systematicity underlying such linguistic
accounts is intriguing also from the engineering viewpoint as it could enable us to take
a more theoretically motivated but still practical approach to paraphrase generation.

The issue we address in this paper is to empirically clarify (i) what types of regular-
ities underlying paraphrases can be explained by means of lexical semantics and how,
and (ii) how lexical semantics theories can be enhanced with feedback from practical
use, namely, paraphrase generation. We make an attempt to exploit the LCS among sev-
eral lexical semantics frameworks, and propose a paraphrase generation model which
utilizes LCS combining with syntactic transformation.

2 Lexical Conceptual Structure

2.1 Basic Framework

Among several frameworks of lexical semantics, we focus on the Lexical Conceptual
Structure (LCS) [8] due to the following reasons. First, several studies [9,3,19] have
shown that the theory of the LCS provides a systematic explanation of semantic de-
composition as well as syntax determines. In particular, Kageyama [9] has shown that
even a simple typology of LCS can explain a wide variety of linguistic phenomena in-
cluding word association within compounds, transitivity alternation, and lexical deriva-
tion. Second, large-scale LCS dictionaries have been developed through practical use
on machine translation and compound noun analysis [3,19]. The LCS dictionary for
English [3] (4,163-verbs with 468 LCS types) was tailored based on a verb classifica-
tion [12] with an expansion for the semantic role delivered to arguments. For Japanese,
Takeuchi et al. [19] developed a 1,210-verbs LCS dictionary (with 12 LCS types) called
the T-LCS dictionary, following Kageyama’s analysis [9]. In this paper, we make use of
the current version of the T-LCS dictionary, because it provides a set of concrete rules
for LCS assignment, which ensures the reliability of the dictionary.

Examples of LCS in the T-LCS dictionary are shown in Table 1. An LCS consists
of a combination of semantic predicates (“CONTROL,” “BE AT,” etc.) and their argu-
ment slots (x, y, and z). Each argument slot corresponds to a semantic role, such as
“Agent,” “Theme,” and “Goal,” depending on its surrounding semantic predicates. Let
us take “yakusu (to translate)” as an example. The inner structure “[y BE AT z]” de-
notes the state of affairs where z (“Goal”) indicates the state or physical location of y
(“Theme”). The predicate “BECOME” expresses a change of y. In the case of example
phrase in Table 1, the change of the language of the book is represented. The leftmost
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Table 1. Examples of LCS

LCS for verb (example verb)
example Japanese phrase

[y BE AT z] (ichi-suru (to locate), sonzai-suru (to exist))
gakkou-ga kawa-no chikaku-ni ichi-suru.
school-NOM river-GEN near-DAT to locate-PRES
The school (Theme) locates near the river (Goal).

[BECOME [y BE AT z]] (houwa-suru (to become saturate), bunpu-suru (to be distributed))
kono-hana-ga sekaiju-ni bunpu-suru.
this flower-NOM all over the world-DAT to distribute-PRES
This flower (Theme) is distributed all over the world (Goal).

[x CONTROL [BECOME [y BE AT z]]] (yakusu (to translate), shoukai-suru (to introduce))
kare-ga hon-o nihongo-ni yakusu.
he-NOM book-ACC Japanese-DAT to translate-PRES
He (Agent) translates the book (Theme) into Japanese (Goal).

[x ACT ON y] (unten-suru (to drive), sousa-suru (to operate))
kare-ga kikai-o sousa-suru.
he-NOM machine-ACC to operate-PRES
He (Agent) operates the machine (Theme).

[y MOVE TO z] (ido-suru (to move), sen’i-suru (to propagate))
ane-ga tonarimachi-ni ido-suru.
my sister-NOM neighboring town-DAT to move-PRES
My sister (Theme) moves to a neighboring town (Goal).

part “[x CONTROL . . .]” denotes that the “Agent” causes the state change. The differ-
ence between “BECOME BE AT” and “MOVE TO” is underlying their telicity: the for-
mer indicates telic, and thus the verb can be perfective, while the latter atelic. Likewise,
“CONTROL” implicates a state change, while “ACT ON” merely denotes an action. The
following are examples of syntactic and semantic properties represented in LCS:

– Semantic role of argument (e.g. “[x CONTROL . . .]” indicates x=“Agent”)
– Syntactic case particle pattern (e.g. “[y MOVE TO z]” indicates y=NOM, z=DAT)
– Aspectual property (e.g. “MOVE TO” is atelic (“∗ket-tearu (to kick-PERF)”), while

“BECOME BE AT” is telic (“oi-tearu (to place-PERF).”))
– Focus of statement

(e.g. x is focused in “[x CONTROL . . .]”, while z in “[z BE WITH . . .]”)
– Semantic relations in lexical derivation

• transitivity alternation (“kowasu (to break (vt))” ⇔ “kowareru (to break (vi))”)
• lexical active-passive alternation (“oshieru (to teach)” ⇔ “osowaru (to be

taught)”)

2.2 Disambiguation in LCS Analysis

In principle, a verb is associated with more than one LCS if it has multiple senses.
The mapping from syntactic case assignments to argument slots in LCS is also many-
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to-many in general. In the case of Japanese, the case particle “ni” tends to be highly
ambiguous as demonstrated in (5).

(5) a. shuushin-jikan-o yoru-11ji-ni henkou-shita.
bedtime-ACC 11 p.m.-DAT (complement) to change-PAST
I changed my bedtime to 11 p.m.

b. yoru-11ji-ni yuujin-ni mail-o okut-ta.
11 p.m.-DAT (adjunct) friends-DAT (complement) mail-ACC to send-PAST
I sent a mail to my friends at 11 p.m.

Resolution of these sorts of ambiguity is called semantic parsing and has been ac-
tively studied by many researchers recently [6,2] as semantically annotated corpora and
lexical resources such as the FrameNet [1] and the Proposition Bank [16] have become
available. Relying on the promising results of this trend of research, we do not address
the issue of semantic parsing in this paper to focus our attention on the generation side
of the whole problem.

3 Paraphrasing of Light-Verb Constructions

In this paper, we focus our discussion on one class of paraphrases, i.e., paraphrasing of
light-verb constructions (LVCs). Sentence (6s) shows an example of an LVC. An LVC
is a verb phrase (“kandou-o atae-ta (made an impression),” c.f., Figure 1) that consists
of a light-verb (“atae-ta (to give-PAST)”) that syntactically governs a deverbal noun
(“kandou (an impression)”). A paraphrase of (6s) is shown in sentence (6t), where the
deverbal noun functions as the main verb with its verbalized form (“kandou-s-ase-ta (to
be impressed-CAUSATIVE-PAST)”).

(6) s. eiga-ga kare-ni saikou-no kandou-o atae-ta.
film-NOM him-DAT supreme-GEN impression-ACC to give-PAST
The film made an supreme impression on him.

t. eiga-ga kare-o saikou-ni kandou-s-ase-ta.
film-NOM him-ACC supreme-DAT to be impressed-CAUSATIVE-PAST
The film supremely impressed him.

Example (6) indicates that we need an information to determine how the voice of target
sentence must be changed and how the case particles of the nominal elements must be
reassigned. These decisions depend not only on the syntactic and semantic attributes of
the light-verb, but also on those of the deverbal noun [14]. LVC paraphrasing is thus a
novel challenging material for exploiting LCS.

Figure 1 demonstrates tree representations of source and target expressions involved
in LVC paraphrasing, taking (6) as an example. To generate this type of paraphrase, we
need a computational model that is capable of the following operations:

Change of the dependence: Change the dependences of the elements (a) and (b) due
to the elimination of the original modifiee, the light-verb. This operation can be
done by just making them dependent on the resultant verb.
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saikou-nisaikou-ni

kare-okare-o

eiga-gaeiga-ga

**

kandou-okandou-o

kare-nikare-ni

(c) <noun>+GEN

saikou-nosaikou-no

**

(d) <adjective> or <embedded clause>

(a) <adverb>

(b) <noun>

+ <case particle>

LVC
kandou-
s-ase-ta
kandou-
s-ase-ta

<deverbal noun>

+ <verbal suffixes>

(a)

(b)

(d)
eiga-gaeiga-ga

atae-taatae-ta

**

**

(c)<deverbal noun>

+ <case particle>

<light-verb>

+ <verbal suffixes>

Fig. 1. Dependency structure showing the range which the LVC paraphrasing affects. The oval
objects denote Japanese base-chunks so-called bunsetsu.

Re-conjugation: Change the conjugation form of the elements (d) and occasionally
(c), according to the syntactic category change of their modifiee: the given deverbal
noun is verbalized. This operation can be carried out independently of the LVC
paraphrasing.

Selection of the voice: Choose the voice of the target sentence among active, passive,
causative, etc. In example (6), the causative (the auxiliary verb “ase”) is chosen.
The decision depends on the syntactic and semantic attributes of both the given
light-verb and the deverbal noun [14].

Reassignment of the cases: Assign the case particles of the elements (b) and (c), the
arguments of the main verb. In (6), the syntactic case of “kare (him),” which was
originally assigned dative case “ni” is changed to accusative “o.”

Among these operations, this paper focuses on the last two, namely handling the ele-
ment (b), the sibling cases of the deverbal noun. Triangles in both trees in Figure 1 indi-
cate the range which we handle. Henceforth, elements outside of the triangles, namely,
(a), (c), and (d), are used only for explanatory purposes.

4 LCS-Based Paraphrase Generation Model

Figure 2 illustrates how our model paraphrases the LVC, taking (7) as an example.

(7) s. Ken-ga eiga-ni shigeki-o uke-ta.
Ken-NOM film-DAT inspiration-ACC to receive-PAST
Ken received an inspiration from the film.

t. Ken-ga eiga-ni shigeki-s-are-ta.
Ken-NOM film-DAT to inspire-PASSIVE-PAST
Ken was inspired by the film.

The generation process consists of the following three steps:

Step 1. Semantic analysis: The model first analyzes a given input sentence including
an LVC to obtain its LCS representation. In Figure 2, this step generates LCSV 1 by
filling arguments of LCSV 0 with nominal elements.
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LCSdic.LCSdic.

Step 2

LCS transformation

Step 2

LCS transformation

+

Step 3

Surface generation

Step 3

Surface generation

“ukeru”
(to receive)
z-NOM y-ACC x-DAT

“shigeki-suru”
(to inspire)
x’-NOM y’-ACC

Step 1

Semantic analysis

Step 1

Semantic analysis

LCS
N0

LCS
V0

LCS
V1

LCS
N1

Input sentence

Paraphrased sentence Ken-NOM film-DAT to inspire-PASSIVEKen-NOM film-DAT to inspire-PASSIVE

Ken-NOM film-DAT inspiration-ACC to receive-ACTKen-NOM film-DAT inspiration-ACC to receive-ACT

[BECOME [[Ken]z BE WITH

[[inspiration]y MOVE FROM [film]x TO [Ken]z]]]

[BECOME [[Ken]z BE WITH

[[inspiration]y MOVE FROM [film]x TO [Ken]z]]]

[[film]x’ ACT ON [Ken]y’][[film]x’ ACT ON [Ken]y’][BECOME [[Ken]z BE WITH …] [BECOME [[Ken]z BE WITH …] 

[[film]x’ ACT ON [Ken]y’][[film]x’ ACT ON [Ken]y’]

LCS
S

[BECOME [[Ken]z BE WITH

[[inspiration]y MOVE FROM [film]x TO [Ken]z]]]

[BECOME [[Ken]z BE WITH

[[inspiration]y MOVE FROM [film]x TO [Ken]z]]]

Fig. 2. LCS-based paraphrase generation model

Step 2. Semantic transformation (LCS transformation): The model then transfers
the obtained semantic structure to another semantic structure so that the target struc-
ture consists of the LCS of the verbalized form of the deverbal noun. In our exam-
ple, this step generates LCSN1 together with the supplement “[BECOME [. . .]]”. We
refer to such a supplement as LCSS .

Step 3. Surface generation: Having obtained the target LCS representation, the model
finally generates the output sentence from it. LCSS triggers another syntactic alter-
nation such as passivization and causativization.

The idea is to use the LCS representation as a semantic representation and to re-
trieve semantic constraints to relieve the syntactic underspecificity underlying the LVC
paraphrasing. Each step consists of a handful of linguistically explainable rules, and
thus is scalable when the typology and resource of LCS is given. The rest of this sec-
tion elaborates on each step, differentiating symbols to denote arguments; x, y, and z
for LCSV , and x′, y′, and z′ for LCSN .

4.1 Semantic Analysis

Given an input sentence (a simple clause with an LVC), the model first looks up the
LCS template LCSV 0 for the given light-verb in the T-LCS dictionary, and then applies
the case assignment rule below to obtain its LCS representation LCSV 1:

– In the case of the LCSV 0 having argument x, fill the leftmost argument of the
LCSV 0 with the nominative case of the input, the second leftmost with the ac-
cusative, and the rest with the dative case.

– Otherwise, fill arguments y and z of the LCSV 0 with the nominative and the dative
cases, respectively.

This rule is proposed in [19] instead of semantic parsing in order to tentatively
automate LCS-based processing. In the example shown in Figure 2, LCSV 0 for the



914 A. Fujita, K. Inui, and Y. Matsumoto

[BECOME [[Ken]z BE WITH

[[inspiration]y MOVE FROM [film]x TO [Ken]z]]]

[BECOME [[Ken]z BE WITH

[[inspiration]y MOVE FROM [film]x TO [Ken]z]]]

[[film]x’ ACT ON [Ken]y’][[film]x’ ACT ON [Ken]y’][BECOME [[Ken]z BE WITH …] [BECOME [[Ken]z BE WITH …] +

LCS
V1

LCS
N1

Predicate and

argument matching

Treatment of

non-transferred predicates 

LCS
S

Fig. 3. An example of LCS transformation

given light-verb “ukeru (to receive)” has argument x, thus the nominative case, “Ken,”
fills the leftmost argument z. Accordingly, the accusative (“shigeki (inspiration)”) and
the dative (“eiga (film)”) fill y and x, respectively.

4.2 LCS Transformation

The second step matches LCSV 1 with the another LCS for the verbalized form of the
deverbal noun LCSN0 to generate the target LCS representation LCSN1. Figure 3 shows
a more detailed view of this process for the example shown in Figure 2.

Muraki [14] described that the direction of action and the focus of statement are
important clues to determine the voice in LVC paraphrasing. We therefore incorporate
the below assumptions into matching process. The model first matches predicates in
LCSV 1 and LCSN0, assuming that the agentive argument x is relevant to the direc-
tion of action. We classify the semantic predicates into the following three groups: (i)
agentive predicates (involve argument x): “CONTROL,” “ACT ON,” “ACT TO,” “ACT,”
and “MOVE FROM TO,” (ii) state of affair predicates (involve only argument y or z):
“MOVE TO,” “BE AT,” and “BE WITH,” and (iii) aspectual predicates (with no argu-
ment): “BECOME,” and allowed any pair of predicates in the same group to match. In
our example, “MOVE FROM TO” matches “ACT ON” as shown in Figure 3.

Having matched the predicates, the model then fills each argument slot in LCSN0

with its corresponding argument in LCSV 1. In Figure 3, argument z is matched with
y′, and x with x′. As a result, “Ken” and “eiga” come to y′ and x′ slots, respectively.
When an argument is filled with another LCS, arguments within the inner LCS are also
taken into account. Likewise, we introduced some exceptional rules assuming that the
input sentences are periphrastic. For instance, arguments filled with the implicit filler
(e.g. “name” for “to sign” is usually not expressed in Japanese) and the deverbal noun,
which is already represented by LCSN0 are never matched. Argument z in LCSV 1 is
allowed to match with y′ in LCSN0.

LCS representations have right-embedding structures, and inner-embedded pred-
icates denote the state of affairs. We thus prioritize the rightmost predicates in this
matching process. In other words, the proceeds from the rightmost inner predicates
to the outer ones, and the matching process is repeated until the leftmost predicate in
LCSN0 or that in LCSV 1 matched.

If LCSV 1 has any non-transferred part LCSS when the predicate and argument
matching has been completed, it represents the semantic content that is not expressed
by LCSN1 and needs to be expressed by auxiliary linguistic devices such as voice
auxiliaries. As described in Section 2.1, the leftmost part specifies the focus of state-
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ment. The model thus attaches LCSS to LCSN0 as a supplement, and then use it to
determine auxiliaries in the next step, the surface generation. In the case of Figure 3,
“[BECOME [[Ken]z BE WITH]]” in LCSV 1 remains non-transferred and be attached.

4.3 Surface Generation

The model again applies the aforementioned case assignment rule to generate a sentence
from the resultant LCS. From the LCSN1 in Figure 2, sentence (8) is generated.

(8) eiga-ga Ken-o shigeki-shi-ta.
film-NOM Ken-ACC to inspire-PAST
The film inspired Ken.

The model then makes the final decision on the selection of the voice and the reas-
signment of the cases. As we described above, the attached structure LCSS is a clue to
determine what the focus is. We therefore use the following decision list:

1. If the leftmost argument of LCSS has the same value as the leftmost argument in
LCSN1, the viewpoints of LCSS and LCSN1 are same. Thus, the active voice is
selected and the case structure is left as is.

2. If the leftmost argument of LCSS has the same value as either z′ or y′ in LCSN1,
the model makes the argument a subject (nominative). That is, the passive voice is
selected and case alternation (passivization) is applied.

3. If LCSS has “BE WITH” and its argument has the same value as x′ in LCSN1, the
causative voice is selected and case alternation (causativization) is applied.

4. If LCSS has an agentive predicate, and its argument is filled with a value different
from those of the other arguments, then the causative voice is selected and case
alternation (causativization) is applied.

5. Otherwise, active voice is selected and thus no modification is applied.

The example in Figure 2 satisfies the second condition, thus the model chooses “s-
are-ru (PASSIVE)” and passivizes the sentence (8). As a result, “Ken” becomes to be
the nominative “ga” as in (7t).

5 Experiment

5.1 Paraphrase Generation and Evaluation

To conduct an empirical experiment, we collected the following data sets. Note that
more than one LCS was assigned to a verb if it was polysemous.

Deverbal nouns: We regard “sahen-nouns” and adverbial forms of verbs as deverbal
nouns. We retrieved 1,210 deverbal nouns from the T-LCS dictionary. The set con-
sists of (i) activity nouns (e.g., “sasoi (invitation)” and “odoroki (surprise)”), (ii) Sino-
Japanese verbal nouns (e.g., “kandou (impression)” and “shigeki (inspiration)”), and
(iii) English borrowings (e.g., “drive” and “support”).

Tuples of light-verb and case particle: A verb takes different meanings when it con-
stitutes LVCs with different case particles, and not every tuple of a light-verb v and a
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case particle c functions as an LVC. We therefore tailored an objective collection of
tuples 〈v, c〉 from corpus in the following manner:

Step 1. From a corpus consisting of 25 million parsed sentences of newspaper articles,
we collected 876,101 types of triplet 〈v, c, n〉, where v, c, and n denote a base form
of verb, a case particle, and an deverbal noun.

Step 2. For each of the 50 most frequent 〈v, c〉 tuples, we extracted the 10 most fre-
quent triplets 〈v, c, n〉.

Step 3. Each 〈v, c, n〉 was manually evaluated to determine whether it functioned as an
LVC. If any of 10 triplets functioned as an LVC, the tuple 〈v, c〉 was merged into
the list of light-verbs, assigning an LCS according to the linguistic tests examined
in [19]. As a result, we collected 40 types of 〈v, c〉 for light-verbs.

Paraphrase examples: A collection of paraphrase examples, pairs of an LVC and its
correct paraphrase, were constructed in the following way:

Step 1. From the 876,101 types of triplet 〈v, c, n〉 collected above, 23,608 types of
〈v, c, n〉 were extracted, whose components, n and 〈v, c〉, were in the dictionaries.

Step 2. For each of the 245 most frequent 〈v, c, n〉, the 3 most frequent simple clauses
including the 〈v, c, n〉 were extracted from the same corpus.

Step 3. Two native speakers of Japanese, adults graduated from university, were em-
ployed to build a gold-standard collection. 711 out of 735 sentences were manually
paraphrased in the manner of LVC, while the remaining 24 sentences were not
because 〈v, c, n〉 within them did not function as LVCs.

The real coverage of these 245 〈v, c, n〉 with regard to all LVCs among the corpus falls
in the range between the below two:

Lower bound: If every 〈v, c, n〉 is an LVC, the coverage of the collection is estimated
at 6.47% (492,737 / 7,621,089) of tokens.

Upper bound: If the dictionaries cover all light-verbs and deverbal nouns, the collec-
tion covers 24.1% (492,737 / 2,044,387) of tokens.

In the experiment, our model generated all the possible paraphrases when a given
verb was polysemous with multiple entries in the T-LCS dictionary. As a result, the
model generated 822 paraphrases from the 735 input sentences, at least one for each
input. We then classified the resultant paraphrases as correct and incorrect by compar-
ing them with the gold-standard, where we ignored ordering of syntactic cases, and
obtained 624 correct and 198 incorrect paraphrases Recall, precision, and F-measure
(α = 0.5) were 0.878 (624 / 711), 0.759 (624 / 822), and 0.814, respectively.

As the baseline, we employed a statistical language model developed in [5]. Among
all the combinations of the voice and syntactic cases, the baseline model selects the
one that has the highest probability. Although the model is trained on a large amount
of data, the generated expression often falls out of the vocabulary. In such a case, the
probability cannot be calculated, and the model outputs nothing for the given sentence.
As a result of an application of this baseline model to the same set of input sentences,
we obtained 320 correct and 215 incorrect paraphrases (Recall: 0.450 (320 / 711), Pre-
cision: 0.598 (320 / 535), and F-measure: 0.514). The significant improvement indicates
that our lexical-semantics-based account benefited on the decisions we considered.



Exploiting Lexical Conceptual Structure for Paraphrase Generation 917

The language model can also be complementary used to our LCS-based paraphrase
generation. By filtering implausible paraphrases out, 66 incorrect and 15 correct para-
phrases were filtered, and the performance was further improved (Recall: 0.857, Preci-
sion: 0.822, and F-measure: 0.839).

5.2 Discussion

Although the performance has room for further improvement, we think the perfor-
mance is reasonably high under the current stage of the T-LCS dictionary. In other
words, the tendency of errors does not so differ from our expectation. As we expected
in Section 2.2, the ambiguity of dative case “ni” (c.f. (5)) occupied the largest portion
of errors (78 / 198). This was because the case assignment was performed by a rule in-
stead of semantic parsing. Each rule in our model has been created relying on a set of
linguistic tests used in the theory of LCS and our linguistic intuition on handling LCS.
However, the rule set was not sufficiently sophisticated, so that led to 59 errors. Equally,
30 errors occurred due to the immature typology of the T-LCS dictionary.

We consider the improvement of the LCS typology as the primal issue, because
our transformation rules depend on it. For the moment, we have the following two
suggestions. First, more variety of semantic roles should be handled step by step. For
example, we need to handle the object of “eikyou-suru (to affect),” which is marked by
not accusative but dative. Second, the necessity of “Source” is inconsistent. Verbs such
as “hairu (to enter)” do not require this argument (“BECOME BE AT”) , while some
other verbs, such as “ukeru (to receive),” explicitly require it (“MOVE FROM TO”). The
telicity of “MOVE FROM TO” should also be discussed. With such a feedback from
the application and an extensive investigation into lexicology, we have to enhance the
typology, and enlarge the dictionary preserving its consistency.

6 Related Work

The paraphrases associated with LVCs are not idiosyncratic to Japanese but also appear
commonly in other languages such as English, French, and Spanish [13,7,4] as shown
in (3) and (4). Our approach raises an interesting issue of whether the paraphrasing of
LVCs can be modeled in an analogous way across languages.

Iordanskaja et al. [7] proposed a set of paraphrasing rules including one for LVC
paraphrasing based on the Meaning-Text Theory introduced by [13]. The model seemed
to properly handle LVC paraphrasing, because their rules were described according to
the deep semantic analysis and heavily relied on what were called lexical functions,
such as lexical derivation (e.g., S0(affect) = effect ) and light-verb generation (e.g.,
Oper1(attempt) = make). To take this approach, however, a vast amount of lexical
knowledge to form each lexical function is required, because they only virtually specify
all the choices relevant to LVC paraphrasing for every combination of deverbal noun
and light-verb individually. In contrast, our approach is to employ lexical semantics
to provide a general account of those classes of choices, and thus contributes to the
knowledge development in terms of reducing human-labor and preserving consistency.

Kaji et al. [10] proposed a paraphrase generation model which utilized an monolin-
gual dictionary for human. Given an input LVC, their model paraphrases it referring to
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the glosses of both the deverbal noun and light-verb, and a manually assigned semantic
feature of the light-verb. Their model looks robust due to the availability of resource.
However, their model fails to explain the difference between examples (7) and (9) in
the voice selection, because it selects the voice based only on the light-verb irrespec-
tive of the deverbal noun: the light-verb “ukeru (to receive)” is always mapped to the
passive voice.

(9) s. musuko-ga kare-no hanashi-ni kandou-o uke-ta.
son-NOM his-GEN talk-DAT impression-ACC to receive-PAST
My son was given a good impression by his talk.

t. musuko-ga kare-no hanashi-ni kandou-shi-ta.
son-NOM his-GEN talk-DAT to be impressed-PAST
My son was impressed by his talk.

In their model, the target expression is restricted only to the LVC itself (c.f., Figure 1).
Hence, their model is unable to reassign the case particles as we saw in example (6).

There is another trend in the research of paraphrase generation: i.e., the automatic
paraphrase acquisition from existing lexical resources such as ordinary dictionaries,
parallel/comparable corpora, and non-parallel corpora. This type of approach may be
able to reduce the cost of resource development. However, there are drawbacks that
must be overcome before they can work practically. First, automatic methods require
large amounts of training data. The issue is how to collect enough large size of data at
low cost. Second, automatically extracted knowledge tends to be rather noisy, requiring
manual correction and maintenance. In contrast, our approach, which focuses on the
regularity underlying paraphrases, is a complementary avenue to develop and maintain
knowledge resources that cover a sufficiently wide range of paraphrases.

Previous case studies [14,18,11] have employed some syntactic properties of verbs
to constrain syntactic transformations in paraphrase generation: e.g. subject agentiv-
ity, aspectual property, passivizability, and causativizability. Several classifications of
verbs have also been proposed [12,15] based on various types of verb alternation and
syntactic case patterns. In contrast, the theory of lexical semantics integrates syntactic
and semantic properties including those above, and gives a perspective to formalize and
maintain the syntactic and semantic properties of words.

7 Conclusion

In this paper, we explored what sorts of lexical properties encoded in LCS can explain
the regularity underlying paraphrases. Based on an existing LCS dictionary, we built
an LCS-based paraphrase generation model, and conducted an empirical experiment on
paraphrasing of LVC. The experiment confirmed that the proposed model was capable
of generating paraphrases accurately in terms of selecting the voice and reassigning the
syntactic cases, and revealed potential difficulties that we have to overcome toward a
practical use of our lexical-semantics-based account. To make our model more accu-
rate, we need further discussion on (i) the enhancement of the T-LCS dictionary with
feedback from experiments, (ii) the LCS transformation algorithm, and (iii) the seman-
tic parsing. Another goal is to practically clarify what extent can be done by LCS for
other classes of paraphrase, such as those exemplified in Section 1.
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