
R. Dale et al. (Eds.): IJCNLP 2005, LNAI 3651, pp. 792 – 803, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Global Path-Based Refinement of Noisy Graphs  
Applied to Verb Semantics 

Timothy Chklovski and Patrick Pantel 

Information Sciences Institute,University of Southern California, 
4676 Admiralty Way,Marina del Rey, CA  90292 

{timc, pantel}@isi.edu 

Abstract. Recently, researchers have applied text- and web-mining algorithms 
to mine semantic resources. The result is often a noisy graph of relations be-
tween words. We propose a mathematically rigorous refinement framework, 
which uses path-based analysis, updating the likelihood of a relation between a 
pair of nodes using evidence provided by multiple indirect paths between the 
nodes. Evaluation on refining temporal verb relations in a semantic resource 
called VERBOCEAN showed a 16.1% error reduction after refinement. 

1   Introduction 

Increasingly, researchers are creating broad-coverage semantic resources by mining 
text corpora [1][5] and the Web [2][6]. These resources typically consist of a noisy 
collection of relations between words. The data is typically extracted on a per link 
basis (i.e., the relation between two nodes is determined without regard to other 
nodes). Yet, little work has taken a global view of the graph of relations, which may 
provide additional information to refine local decisions by identifying inconsistencies, 
updating confidences in specific edges (relations), and suggesting relations between 
additional pairs of nodes. 

For example, observing the temporal verb relations “discover happens-before re-
fine” and “refine happens-before exploit” provides evidence for the relation “discover 
happens-before exploit,” because the happens-before relation is transitive. 

We conceptualize a semantic resource encoding relations between words as a graph 
where words are nodes and binary relations between words are edges. In this paper, we 
investigate the refinement of such graphs by updating the confidence in edges using a 
global analysis relying on link semantics. Our approach is based on the observation that 
some paths (chains of relations) between a pair of nodes xi and xj imply the presence or 
absence of a particular direct relation between xi and xj. Despite each individual path 
being noisy, multiple indirect paths can provide sufficient evidence for adding, remov-
ing, or altering a relation between two nodes. As illustrated by the earlier example, 
inferring a relation based on the presence of an indirect path relies on the semantics of 
the links that make up the path, like transitivity or equivalence classes. 

As an evaluation and a sample practical application, we apply our refinement 
framework to the task of refining the temporal precedence relations in VERBOCEAN,  
a broad-coverage noisy network of semantic relations between verbs extracted by 
mining the Web [2]. Examples of new edges discovered (added) by applying the 
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framework include: “ascertain happens-before evaluate”, “approve happens-before 
back”, “coat happens-before bake”, “plan happens-before complete”, and “interrogate 
happens-before extradite”. 

Examples of edges that are removed by applying our framework include: “induce 
happens-before treat”, “warm happens-before heat”, “halve happens-before slice”, 
and “fly happens-before operate”. 

Experiments show that our framework is particularly good at filtering out the in-
correct temporal relations in VERBOCEAN. Removing incorrect relations is particu-
larly important for inference systems. 

2   VerbOcean 

We apply our path-based refinement framework to VERBOCEAN [2], a web-extracted 
lexical semantics resource with potential applications to a variety of natural language 
tasks such as question answering, information retrieval, document summarization, and 
machine translation. VERBOCEAN is a graph of semantic relations between verbs, with 
3,477 verbs (nodes) and 22,306 relations (edges). Although the framework applies 
whenever some paths through the graph imply presence or absence of a relation, for 
the evaluation we focus on the temporal precedence relation in VERBOCEAN, and, in 
an ancillary role, on the similarity relation. Senses are not discriminated and an edge 
indicates that the relation is believed to hold between some senses of the verbs in this 
relation. 

The five semantic relations present in VERBOCEAN are presented in Table 1. Tem-
poral precedence (happens-before) is a transitive asymmetric temporal relation be-
tween verbs. Similarity is a relation that suggests two nodes are likely to be in the 
same equivalence class, although polysemy makes it only weakly transitive. 

Table 1. Types, examples and frequencies of 22,306 semantic relations in VERBOCEAN 

Semantic Relation Example Transitive Symmetric # in VERBOCEAN 

temporal precedence marry :: divorce Y N 4,205 

similarity produce :: create Y Y 11,515 

strength wound :: kill Y N 4,220 
antonymy open :: close N Y 1,973 

enablement fight :: win Y N 393 

In VERBOCEAN, asymmetric relations between two nodes are enforced to be unidi-
rectional (i.e., presence of an edge xi happens-before xj guarantees absence of an edge 
xj happens-before xi). Larger, inconsistent loops are possible, however, as extraction 
is strictly local. Taking advantage of the global picture to refine the edges of the graph 
can improve quality of the resource, helping performance of any algorithms or appli-
cations that rely on the resource. 
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3   Global Refinement 

Our approach relies on a global view of the graph to refine a relation between a given 
pair of nodes xi and xj, based on multiple indirect paths between the two nodes.  The 
analysis processes triples <xi, r, xj> for the relation r to output r, its opposite (which 
we will denote q), or neither. The opposite of happens-before is the same relation in 
the reverse direction (happens-after). The refinement is based on evidence provided 
by indirect paths, over a probabilistic representation of the graph. 

Section 3.1 introduces the steps of the refinement, Section 3.2 details which paths 
are used as evidence, and Section 3.3 derives the statistical model used for combining 
evidence from multiple unreliable paths. 

3.1   Overview of the Refinement Algorithm 

We first introduce some notation. Let Ri,j denote the event that the relation r is present 
between nodes xi and xj in the original graph – i.e., the graph indicates (perhaps spuri-
ously) the presence of the relation r between xi and xj. Let ri,j denote the relation r 
actually holding between xi and xj. Let ψi,j denote an acyclic path from xi to xj of (pos-
sibly distinct) relations {Ri,i+1 .. Rj-1,j}. For example, the path “x1 similar x2 happens-
before x3” can be denoted ψ1,3. If the edges of ψi,j indicate the relation r between the 
nodes xi and xj, we say that ψi,j indicates ri,j. 

Given a triple <xi, r, xj>, we identify the set Ψr 
full of all paths ψi,j such that ψi,j indi-

cates ri,j and ψi,j’s sequence of relations {Ri,i+1 .. Rj-1,j} matches one of the allowed 
sequences.  That is, we only consider certain path types.  The restriction on types of 
paths considered is introduced because identifying and processing all possible paths 
indicating ri,j is too demanding computationally in a large non-sparse graph. The path 
types considered are detailed in Section 3.2. Note that the intermediate nodes of paths 
can range over the entire graph. 

For each ψi,j in the above set Ψr 
full, we compute the estimated probability that ri,j 

holds given the observation of (relations that make up) ψi,j. Each edge in the input 
graph is treated as a probabilistic one, with probabilities P(ri,j) and P(ri,j|Ri,j) estimated 
from human judgments on a representative sample. Generally, longer paths and paths 
made up of less reliable edges will have lower probabilities. Section 3.3 presents the 
full model for estimating these probabilities. 

Next, we form the set Ψr by selecting from Ψr 
full only the paths which have no 

common intermediate nodes. This is done greedily, processing all paths in Ψr 
full in 

order of decreasing score, placing each in Ψr iff it does not share any intermediate 
nodes with any path already in Ψr. This is done to avoid double-counting the available 
evidence in our framework, which operates assuming conditional independence of 
paths. 

Next, we compute P(ri,j | Ψr), the probability of ri,j given the evidence provided by 
the paths in Ψr.  The model for computing this is described in Section 3.3. Similarly, 
Ψq and P(qi,j | Ψq) are computed for qi,j, the opposite of ri,j. Next, the evidence for r 
and q are reconciled by computing P(ri,j | Ψr, Ψq) and, similarly, P(qi,j | Ψr, Ψq). 

Finally, the more probable of the two relations ri,j and qi,j is output if its probability 
exceeds a threshold value Pmin (i.e., ri,j is output if P(ri,j | Ψr, Ψq) > P(qi,j | Ψr, Ψq) and 
P(ri,j | Ψr, Ψq) > Pmin. In Section 4.2, we experiment with varying values of Pmin. 
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3.2   Paths Considered 

The enabling observation behind our approach is that in a graph in which edges have 
certain properties such as transitivity, some paths Ψi,j indicate the presence of a rela-
tion between the first node xi and the last node xj. In the paths we consider, we rely on 
two kinds of inferences: transitivity and equivalence. Also, we do not consider very 
long paths, as they tend to become unreliable due to accumulation of chance of false 
detection of each edge and sense drift in each intermediate node. The set of paths to 
consider was not rigorously motivated. Rather, we aimed to cover some common 
cases. Refining the sets of paths is a possible fruitful direction for future work. 

For the presence of happens-before, a transitive asymmetric relation, we consid-
ered all 11 path types of length 3 or less which imply happens-before between the end 
nodes based on transitivity and equivalence: 

 
“happens-before” “similar, similar, happens-before” 
“happens-before, similar” “happens-before, happens-before, similar” 
“similar, happens-before” “similar, happens-before, happens-before” 
“happens-before, happens-before” “happens-before, similar, happens-before” 
“happens-before, similar, similar” “happens-before, happens-before, happens-before” 
“similar, happens-before, similar”  

3.3   Statistical Model for Combining Evidence 

This section presents a rigorous derivation of the probabilistic model for computing 
and combining probabilities with which indirect paths indicate a given edge. 

3.3.1   Estimating from a Single Path 
We first derive probability of r1,n given single path ψ 1,n: 

 
( )nnrP ,1,1 |ψ

 

If n is 2, i.e. ψ1,n has only one edge R1,2, we have simply the probability that the 
edge actually holds given its presence in the graph: 

 ( ) ( )2,12,12,12,1 || RrPrP =ψ  (1) 

Otherwise, ψ1,n has intermediate nodes, in which case P(r1,n | ψ1,n) can be estimated 
as follows: 

 ( ) ( ) ( ) ( )
( )( ) ( )( )nnnnnnnnn

nnnnnnnnnnnnnn
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...,,|...,,...,,,...,,|...,,||

−−−−

−−−−−

¬¬
+==ψ  

Because r1,n is conditionally independent from Ri,i+1 given ri,i+1 or ¬ri,i+1, we can 
simplify: 

 ( ) ( ) ( )
( )( ) ( )( )nnnnnnn

nnnnnnnnn

RRrrPrrrP

RRrrPrrrPrP

,12,1,12,1,12,1,1
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...,,|...,,...,,|
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−−−

¬¬
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Assuming independence of a given relation ri,i+1 from all edges in ψ1,n except for 
the edge Ri,i+1 yields: 
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 ( ) ( ) ( )
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Let Pmatch denote the probability that there is no significant shift in meaning at a 
given intermediate node.  Then, assume that path r1,2,…, rn-1,n indicates r1,n iff the 
meanings at n – 2 intermediate nodes match: 

 ( ) 2
,12,1,1 ...,,| −

− = n
matchnnn PrrrP  

Also, when one or more of the relations ri,i+1 do not hold, nothing is generally im-
plied1 about r1,n, thus 

 ( )( ) ( )nnnn rPrrrP ,1,12,1,1 ...,,| =¬ −
 

Plugging these in, we have: 

 ( ) ( ) ( ) ( )( )∏∏ −= ++
−

−= ++
− −+=

1..1 1,1,
2

,11..1 1,1,
2

,1,1 |1||
ni iiii
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which can be rewritten as: 

 ( ) ( ) ( )( ) ( )∏ −= ++
−−+=

1..1 1,1,
2

,1,1,1,1 |1|
ni iiii

n
matchnnnn RrPPrPrPrP ψ  (2) 

where the prior P(r1,n) and the conditional P(ri,i+1 | Ri,i+1) can be estimated empirically 
by manually tagging the relations Ri,j in a graph as correct or incorrect: P(r1,n) is the 
probability that an edge will be labeled with relation r by a human judge, and 
P(ri,i+1 | Ri,i+1) is the precision with which the system could identify R. While Pmatch 
can be estimated empirically we have not done so. We experimentally set Pmatch = 0.9. 

3.3.2   Combining Estimates from Multiple Paths 
In this subsection we derive an estimate of the validity of inferring r1,n given the set 
Ψr of m paths ψ1,n

1, ψ1,n
2, …, ψ1,n

m: 

 ( )m
nnnnrP ,1

2
,1

1
,1,1 ,...,,| ψψψ  (3) 

In the case of zero paths, we use simply P(r1,n)=P(r), the probability of observing r 
between a pair of nodes from a sample set with no additional evidence. The case of 
one path has been treated in the previous section. In the case of multiple paths, we 
derive the expression as follows (omitting for convenience subscripts on paths, and 
distinguishing them by their superscripts). We assume conditional independence of 
any two paths ψk and ψl given r or ¬r. Using Bayes’ rule yields2: 

 ( ) ( ) ( )
( )

( ) ( )
( )m

mk

k

m

m
m

n P

rPrP

P

rPrP
rP

ψψ
ψ

ψψ
ψψψψ

,...,
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,...,

|,...,
,...,|

1
..1

1

1
1
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∏ ===  (4) 

                                                           
1  This is not the case for paths in which the value of one edge, given the other edges, is corre-

lated with the value of the end-to-end relation. The exception does not apply for happens-
before edges if there are other happens-before edges in the path, nor does it ever apply for 
any similar edges. 

2  Here and afterward, the denominators must be non-zero; they are always so when we apply 
this model. 
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The above denominator can be rewritten as: 
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Using Bayes’ rule again, the expressions in the above products can be rewritten as 
follows: 
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Substituting into Eq. 5 the Eqs. 6 and 7 yields: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( )( ) ( )

( )∏∏∏∏
====

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=¬¬+=

mk

kk

mk

kk

mk

k

mk

km

rP

PrP
rP

rP

PrP
rPrPrPrPrPP

..1..1..1..1

1

1

|1
1

|
||,...,

ψψψψψψψψ

 
( )( )

( )
( )( )

( )( )
( )( ) ⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−
+× −

=
−

=
=

∏∏
∏ 1

..1
1

..1

..1 1

|1|

m
mk

k

m
mk

k

mk

k

rP

rP

rP

rP
P

ψψ
ψ

 

Using the above for the denominator of Eq. 4, using Eq. 6 in the numerator of Eq. 
4, and simplifying, we have: 
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which can be rewritten as 
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where P(r | ψk) is as in Eq. 2 and P(r) can be estimated empirically. 

3.3.3   Estimating from Supporting and Opposing Paths 
Recall that q denotes the opposite of r. The previous section has shown how to com-
pute P(r | Ψr) and, similarly, P(q | Ψq). We now derive how to estimate r given both 
Ψr, Ψq: 

 ( )qrrP ΨΨ ,|  (9) 

We assume that r and q are disjoint, P(r,q)= P(r|q)= P(q|r)=0. We also assume that 
q is conditionally independent from Ψr given ¬r, i.e., 
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 ( ) ( )rqPrqP r ¬=Ψ¬ |,|  and ( ) ( )qqr rqPrqP Ψ¬=ΨΨ¬ ,|,,| , and similarly 

 ( ) ( )qrPqrP q ¬=Ψ¬ |,|  and ( ) ( )rqr qrPqrP Ψ¬=ΨΨ¬ ,|,,|  

We proceed by deriving the following, each consequent relying on the previous re-
sult: 

LEMMA 1: P(q | ¬r), in Eq. 10 
LEMMA 2: P(¬q | Ψr), in Eq. 12 
LEMMA 3: P(r | ¬q, Ψr) and P(q | ¬r, Ψq), in Eqs. 13 and 14 
THEOREM 1: P(r | Ψr, Ψq), in Eq. 18. 

LEMMA 1. From P(r | q) = 0, we observe: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )rqPrPrqPrPrqPrPqP ¬¬=¬¬+= |||  

Solving for P(q | ¬r), we obtain: 

 ( ) ( )
( )rP

qP
rqP

¬
=¬|  (10) 

LEMMA 2. Using an approach similar to that of Lemma 1 and noting that P(q | r, Ψr) = 
P(q | r) = 0 yields: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )rrrrrrr rqPrPrqPrPrqPrPqP Ψ¬Ψ¬+=Ψ¬Ψ¬+ΨΨ=Ψ ,||0,||,|||  

Invoking the assumption P(q | ¬r, Ψr) = P(q | ¬r), we can simplify: 

 ( ) ( ) ( )rqPrPqP rr ¬Ψ¬=Ψ |||  

Substituting the result of Lemma 1 (Eq. 10) into the above yields: 
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LEMMA 3. We derive P(r | ¬q, Ψr), using P(¬q | r, Ψr) = 1: 
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Substituting the result of Lemma 2 (Eq. 12) into the above yields: 

 ( ) ( ) ( )
( ) ( ) ( )qPrPrP

rPrP
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r
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,|  (13) 

Similarly, 

 ( ) ( ) ( )
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qPqP
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q
q Ψ¬−¬
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|

|
,|  (14) 
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THEOREM 3 

 ( ) ( ) ( ) ( )
( )( ) ( )( ) ( ) ( )( ) ( ) ( )( )qPqPrPrPqPrP

qPrPrP
rP

qr

qr
qr −Ψ−Ψ−−−

Ψ¬Ψ¬
=ΨΨ

||11

||
,|  

P(r | Ψr, Ψq) can be derived using the above Lemmas, as follows: 

 ( ) ( ) ( ) ( ) ( )qrqrqrqrqr qrPqPqrPqPrP ΨΨ¬ΨΨ¬+ΨΨΨΨ=ΨΨ ,,|,|,,|,|,|  

The assumption P(r | q) = 0 implies P(r | q, Ψr, , Ψq) = 0. Also, since r is condi-
tionally independent of Ψq given ¬q, we have P(r |¬q, Ψr, Ψq) = P(r | ¬q, Ψr).  Thus, 
we can simplify: 

 ( ) ( ) ( ) ( )( ) ( )rqrrqrqr qrPqPqrPqPrP Ψ¬ΨΨ−=Ψ¬ΨΨ¬=ΨΨ ,|,|1,|,|,|  (15) 

Similarly, 

 ( ) ( ) ( ) ( )( ) ( )qqrqqrqr rqPrPrqPrPqP Ψ¬ΨΨ−=Ψ¬ΨΨ¬=ΨΨ ,|,|1,|,|,|  (16) 

Substituting, Eq. 16 into Eq. 15 yields: 

 ( ) ( )( ) ( )( ) ( )
( ) ( )( ) ( ) ( ) ( )rqqrqr
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,|,|,|,|1,|

,|,|,|11,|  

Solving for P(r | Ψr, Ψq), we get: 

 ( ) ( ) ( ) ( )
( ) ( )qr

qrr
qr rqPqrP

rqPqrPqrP
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Ψ¬Ψ¬−
Ψ¬Ψ¬−Ψ¬
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 (17) 

Expanding and simplifying, we establish our Theorem 1: 

 ( ) ( ) ( ) ( )
( )( ) ( )( ) ( ) ( )( ) ( ) ( )( )qPqPrPrPqPrP

qPrPrP
rP

qr

qr
qr −Ψ−Ψ−−−

Ψ¬Ψ¬
=ΨΨ

||11

||
,|

 (18) 

4   Experimental Results 

In this section, we evaluate our refinement framework on the temporal precedence 
relations discovered by VERBOCEAN, and present some observations on applying the 
refinement to other VERBOCEAN relations. 

4.1   Experimental Setup 

Following Chklovski and Pantel [2], we studied 29,165 pairs of verbs obtained from a 
paraphrasing algorithm called DIRT [4]. We applied VERBOCEAN to the 29,165 verb 
pairs, which tagged each pair with the semantic tag happens-before, happens-after 
and no temporal precedence3. 

                                                           
3  VERBOCEAN actually produces additional relations such as similarity, antonymy, strength and 

enablement. For our purposes, we only consider the temporal relations. 
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For our experiments, we randomly sampled 1000 of these verb pairs, and presented 
them to two human judges (without revealing the VERBOCEAN tag). The judges were 
asked to classify each pair among the following tags: 

Happens-before with entailment 
Happens-before without entailment 
Happens-after with entailment 
Happens-after without entailment 
Another semantic relation 
No semantic relation 

For the purposes of our evaluation, tags a and b align with VERBOCEAN’s happens-
before tag, tags c and d align with the happens-after tag, and tags e and f align with 
the no temporal relation tag4. The Kappa statistic [7] for the task was κ = 0.78. 

4.2   Refinement Results 

Table 2 shows the overall accuracy of VERBOCEAN tags on the 1000 verb pairs ran-
domly sampled from DIRT. Each row represents a different refinement. The number 
in parentheses is Pmin, the threshold value for the strength of the relation from Section 
3.1. As the threshold is increased, the refinement algorithm requires greater evidence 
(more supporting paths and absence of opposing evidence) to trigger a temporal rela-
tion between a pair of verbs. 

Table 2. Accuracy (95% confidence) of VERBOCEAN on a random sample of 1000 verb pairs 
tagged by two judges 

 Accuracy 

 Judge1 Judge2 Total 

Unrefined 80.7% 74.8% 77.7% ± 2.0% 

Refined (0.5) 66.0% 63.7% 64.8% ± 2.6% 

Refined (0.66) 75.4% 71.7% 73.5% ± 2.4% 

Refined (0.9) 83.1% 77.2% 80.2% ± 2.1% 

Refined (0.95) 84.5% 78.0% 81.3% ± 1.9% 

Refined (Combo)* 86.8% 81.3% 84.0% ± 2.4% 

* Combo combines the no temporal relation from the 0.5 and the happens-before and 
happens-after from the and 0.95 refinements, where the reported accuracy is com-
puted on the subset of 716 verb pairs for which the algorithm is most confident. 

Table 3 shows the reassignments due to refinement. At the 0.5 level, the refinement 
left 76 of 81 relations unchanged, revising 3 to happens-after and 2 to no temporal 
relation. Similarly, only two of the original happens-after relations were changed 
with  refinement.  However,  of  the  849  originally  tagged  no temporal relation, the  
                                                           
4  In future work, we plan to use the judges’ classifications to evaluate the extraction of entail-

ment relations using VERBOCEAN. 
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Fig. 3. Refinement precision on all 1000 verb 
pairs vs. on the 819 verb pairs on which the 
annotators agree on tag 

Overall Precision vs. Precision on Agreed Pairs

60

65

70

75

80

85

90

95

100

Unrefined R 0.5 R 0.66 R 0.9 R 0.95 R Combo

Refinement Algorithm

P
re

ci
si

on
 (

%
)

Overall Agreed Pairs

Table 3. Allocation change between semantic tags due to refinement 

 Happens-Before Happens-After No Temporal Relation 

Unrefined 81 70 849 
Refined (0.5) 190 180 630 
Refined (0.66) 118 124 758 
Refined (0.9) 53 66 881 
Refined (0.95) 40 46 914 

 
refinement moved 113 to happens-before 
and 109 to happens-after. The precision 
of the 0.5 refinement on the no temporal 
relation tag increased by 4%; however, 
the precision on the temporal relations 
decreased by 5.7%. At the 0.95 refine-
ment level, 54 of the 81 relations origi-
nally tagged happens-before and 45 of 
the 70 relations originally tagged hap-
pens-after were changed to no temporal 
relation. Only 34 of the 849 no temporal 
relations were changed. At this level, the 
precision of no temporal relation tag 
decreased by 0.8% and the temporal 
relations’ precision increased by 4%. 

Hence, at the 0.5 level, pairs classified as no temporal relation were improved 
while at the 0.95 level, pairs classified as a temporal relation were improved. To lev-
erage benefits of the two, we applied both the 0.5 and 0.95 level refinements and kept 
happens-before and happens-after classifications from the 0.95 level, and kept the no 
temporal relation classification from the 0.5 level.5 284 verb pairs were left unclassi-
fied. On the 716 classified verb pairs, refinement improved accuracy by 6.3%.  
                                                           
5  This combination is guaranteed to be free of conflicts in classification because it is impossi-

ble for a relation to be classified as temporal at the 0.95 threshold level while being classified 
as non-temporal at the 0.5 level. 

Fig. 1. Refinement precision on each semantic 
tag 
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Fig. 2. Refinement recall on each semantic tag 
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Figures 1 and 2 illustrate the refinement precision and recall for each semantic tag. 
Both annotators have agreed on 819 verb pairs, and we examined performance on 
these. Figure 3 shows a higher precision on these pairs as compared to the overall set, 
illustrating that what is easier for the annotators is easier for the system. 

4.3   Observations on Refining Other Relations 

We have briefly investigated refining other semantic relations in VERBOCEAN. The 
extent of the evaluation was limited by availability of human judgments. We ran-
domly sampled 100 pairs from DIRT and presented the classifications to three human 
judges for evaluation [2]. 

Of the 100 pairs, 66 were identified to have a relation. We applied our refinement 
algorithm to VERBOCEAN and inspected the output. On the 37 relations that 
VERBOCEAN got wrong, our system identified six of them. On the remaining 29 that 
VERBOCEAN got correct, only one was identified as incorrect (false positive). Hence, 
on the task of identifying incorrect relations in VERBOCEAN, our system has a preci-
sion of 85.7%, where precision is defined as the percentage of correctly identified 
erroneous relations. However, it only achieved a recall of 16.2%, where recall is the 
percentage of erroneous relations that our system identified. Table 4 presents the 
relations that were refined by our system. The first two columns show the verb pair 
while the next two columns show the original relation in VERBOCEAN. 

Table 4. Seven relations in VERBOCEAN refined by a small test run on other relations 

Verb 1 Verb 2 
VERBOCEAN 

Relation 

Refinement 

Relation 
Judge 1 Relation Judge 2 Relation Judge 3 Relation 

attach use 
happens-before 

similar 
similar none none none 

bounce get weaker than  stronger than none none none 

dispatch defeat opposite none none none happens-before 

doom complicate opposite similar* none stronger-than stronger-than 

flatten level stronger than no relation* similar similar similar 

outlaw codify similar opposite none none opposition 

privatize improve happens-before none happens-before happens-before happens-before 

* only revision of relation to its opposite or “none” was attempted here 

4.4   Discussion 

Our evaluation focused on the presence or absence of relations after refinement, with-
out exploiting the fact that our framework also updates confidences in a given rela-
tion. The additional information about confidence can benefit probabilistic inference 
approaches (e.g., [3]). 

Possible extensions to the algorithm include a more elaborate inference from graph 
structure, for example treating the absence of certain paths as counter-evidence. Sup-
pose that relations A happens-before B and A similar A' were detected, but the rela-
tion A' happens-before B was not. Then, the absence of a path 
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A similar A' happens-before B 
suggests the absence of A happens-before B. 
Other important avenues of future work include applying our framework to other 

relations (e.g., strength in VERBOCEAN) and to better characterize the refinement 
thresholds. 

5   Conclusions 

We presented a method for refining edges in graphs by leveraging the semantics of 
multiple noisy paths. We re-estimated the presence of an edge between a pair of nodes 
from the evidence provided by multiple indirect paths between the nodes. Our ap-
proach applies to a variety of relation types: transitive symmetric, transitive asymmet-
ric, and relations inducing equivalence classes. We applied our model to refining 
temporal verb relations in a semantic resource called VERBOCEAN. Experiments 
showed a 16.1% error reduction after refinement. On the 72% refinement decisions 
that it was most confident, the error reduction was 28.3%. 

The usefulness of a semantic resource is highly dependent on its quality, which is 
often poor in automatically mined resources. With graph refinement frameworks such 
as the one presented here, many of these resources may be improved automatically. 
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