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Abstract. Biomedical named entity recognition (NER) is a difficult
problem in biomedical information processing due to the widespread am-
biguity of terms out of context and extensive lexical variations. This pa-
per presents a two-phase biomedical NER consisting of term boundary
detection and semantic labeling. By dividing the problem, we can adopt
an effective model for each process. In our study, we use two exponential
models, conditional random fields and maximum entropy, at each phase.
Moreover, results by this machine learning based model are refined by
rule-based postprocessing implemented using a finite state method. Ex-
periments show it achieves the performance of F-score 71.19% on the
JNLPBA 2004 shared task of identifying 5 classes of biomedical NEs.

1 Introduction

Due to dynamic progress in biomedical literature, a vast amount of new infor-
mation and research results have been published and many of them are available
in the electronic form - for example, like the PubMed MedLine database. Thus,
automatic knowledge discovery and efficient information access are strongly de-
manded to curate domain databases, to find out relevant information, and to
integrate/update new information across an increasingly large body of scien-
tific articles. In particular, since most biomedical texts introduce specific no-
tations, acronyms, and innovative names to represent new concepts, relations,
processes, functions, locations, and events, automatic extraction of biomedical
terminologies and mining of their diverse usage are major challenges in biomed-
ical information processing system. In these processes, biomedical named entity
recognition (NER) is the core step to access the higher level of information.

In fact, there has been a wide range of research on NER like the NER task on
the standard newswire domain in the Message Understanding Conference (MUC-
6). In this task, the best system reported 95% accuracy in identifying seven types
of named entities (person, organization, location, time, date, money, and per-
cent). While the performance in the standard domain turned out to be quite good
as shown in the papers, that in the biomedical domain is not still satisfactory,
which is mainly due to the following characteristics of biomedical terminologies:
First, NEs have various naming conventions. For instance, some entities have
descriptive and expanded forms such as “activated B cell lines, 47 kDa sterol
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regulatory element binding factor”, whereas some entities appear in shortened
or abbreviated forms like “EGFR” and “EGF receptor” representing epidermal
growth factor receptor. Second, biomedical NEs have the widespread ambiguity
out of context. For instance, “IL-2” can be doubly classified as “protein” and
“DNA” according to its context. Third, biomedical NEs often comprise a nested
structure, for example “〈DNA〉〈protein〉TNF alpha〈/protein〉gene〈/DNA〉”. Ac-
cording to [13], 16.57% of biomedical terms in GENIA have cascaded construc-
tions. In the case, recognition of the longest terms is the main target in general.
However, in our evaluation task, when the embedded part of a term is regarded
as the meaningful or important class in the context, the term is labeled only with
the class of embedded one. Thus, identification of internal structures of NEs is
helpful to recognize correct NEs. In addition, more than one NE often share the
same head noun with a conjunction/disjunction or enumeration structure, for
instance, “IFN-gamma and GM-CSF mRNA”, “CD33+, CD56+, CD16- acute
leukemia”or “antigen- or cAMP-activated Th2 cell”. Last, there is a lot of inter-
annotator disagreement. [7] reported that the inter-annotator agreement rate of
human experts was just 77.6% when performing gene/protein/mRNA classifica-
tion task manually.

Thus, a lot of term occurrences in real text would not be identified with sim-
ple dictionary look-up, despite the availability of many terminological databases,
as claimed in [12]. That is one of the reasons why machine learning approaches
are more dominant in biomedical NER than rule-based or dictionary-based ap-
proaches [5], even though existence of reliable training resources is very critical.

Accordingly, much work has been done on biomedical NER, based on ma-
chine learning techniques. [3] and [13] have used hidden Markov Model (HMM)
for biomedical NER where state transitions are made by semantic trigger fea-
tures. [4] and [11] have applied maximum entropy plus Markovian sequence based
models such as maximum entropy markov model (MEMM) and conditional ran-
dom fields (CRFs), which present a way for integrating different features such
as internal word spellings and morphological clues within an NE string and con-
textual clues surrounding the string in the sentence.

These works took an one-phase based approach where boundary detection
of named entities and semantic labeling come together. On the other hand, [9]
proposed a two-phase model in which the biomedical named entity recognition
process is divided into two processes of distinguishing biomedical named entities
from general terms and labeling the named entities with semantic classes that
they belong to. They use support vector machines (SVM) for each phase. How-
ever, the SVM does not provide an easy way for labeling Markov sequence data
like B following O and I following B in named entities. Furthermore, since this
system is tested on the GENIA corpus rather than JNLPBA 2004 shared task, we
cannot confirm the effectiveness of this approach on the ground of experiments
for common resources.

In this paper, we present a two-phase named entity recognition model: (1)
boundary detection for NEs and (2) term classification by semantic labeling.
The advantage of dividing the recognition process into two phase is that we can
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select separately a discriminative feature set for each subtask, and moreover can
measure effectiveness of models at each phase. We use two exponential models
for this work, namely conditional random fields for boundary detection having
Markov sequence, and the maximum entropy model for semantic labeling. In ad-
dition, results from the machine learning based model are refined by a rule-based
postprocessing, which is implemented using a finite state transducer (FST). The
FST is constructed with the GENIA 3.02 corpus. We here focus on identification
of five classes of NEs, i.e. “protein”, “RNA”, “DNA”, “cell line”, and “cell type”
and experiments are conducted on the training and evaluation set provided by
the shared task in COLING 2004 JNLPBA.

2 Training

2.1 Maximum Entropy and Conditional Random Fields

Before we describe the features used in our model, we briefly introduce the ME
and CRF model which we make use of. In the ME framework, the conditional
probability of predicting an outcome o given a history h is defined as follows:

pλ(o|h) =
1

Zλ(h)
exp

(
k∑

i=1

λifi(h, o)

)
(1)

where fi(h, o) is a binary-valued feature function, λi is the weighting parameter
of fi(h, o), k is the number of features, and Zλ(h) is a normalization factor
for Σopλ(o|h)=1. That is, the probability pλ(o|h) is calculated by the weighted
sum of active features. Given an exponential model with k features and a set
of training data, empirical distribution, weights of the k features are trained to
maximize the model’s log-likelihood:

L(p) =
∑
o,h

p̃(h, o)log(o|h) (2)

Although the maximum entropy model above provides a powerful tool for
classification by integrating different features, it is not easy to model the Markov
sequence data. In this case, the CRF is used for a task of assigning label sequences
to a set of observation sequences. Based on the principle of maximum entropy,
a CRF has a single exponential model for the joint probability of the entire
sequence of labels given the observation sequence. The CRF is a special case of
the linear chain that corresponds to conditionally trained finite-state machine
and define conditional probability distributions of a particular label sequence s
given observation sequence o

pλ(s|o) = 1
Z(o)exp(

∑k
j=1 λjFj(s,o))

Fj(s,o) =
∑n

i=1 fj(si−1, si,o, i)
(3)
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where s = s1 . . . sn, and o = o1 . . . on, Z(o) is a normalization factor, and each
feature is a transition function [8]. For example, we can think of the following
feature function.

fj(si−1, si,o, i) =

⎧⎨
⎩

1 if si−1=B and si=I,
and the observation word at position i is “gene′′

0 otherwise
(4)

Our CRFs for term boundary detection have a first-order Markov dependency
between output tags. The label at position i, si is one of B, I and O. In contrast
to the ME model, since B is the beginning of a term, the transition from O to I
is not possible. CRFs constrain results to consider only reasonable paths. Thus,
total 8 combinations are possible for (si−1,si) and the most likely s can be found
with the Viterbi algorithm. The weights are set to maximize the conditional log
likelihood of labeled sequences in the training set using a quasi-Newton method
called L-BFGS [2].

2.2 Features for Term Boundary Detection

Table 1 shows features for the step of finding the boundary of biomedical terms.
Here, we give a supplementary description of a part of the features.

Table 1. Feature set for boundary detection (+:conjunction)

Model Feature Description
CRF, MEmarkov Word wi−1, wi−2, wi, wi+1, wi+2

CRF, MEmarkov Word Normalization normalization forms of the 5 words
CRF, MEmarkov POS POSwi−1 , POSwi , POSwi+1

CRF, MEmarkov Word Construction form WFwi

CRF, MEmarkov Word Characteristics WCwi−1 , WCwi , WCwi+1

CRF, MEmarkov Contextual Bigrams wi−1 + wi

wi + wi+1

wi+1 + wi+2

CRF, MEmarkov Contextual Trigrams wi−1 + wi + wi+1

CRF, MEmarkov Bigram POS POSwi−1 + POSwi

POSwi + POSwi+1

CRF, MEmarkov Trigram POS POSwi−1 + POSwi + POSwi+1

CRF, MEmarkov Modifier MODI(wi)
CRF, MEmarkov Header HEAD(wi)
CRF, MEmarkov SUFFIX SUFFIX(wi)
CRF, MEmarkov Chunk Type CTypewi

CRF, MEmarkov Chunk Type + Pre POS CTypewi + POSwi−1

MEmarkov Pre label labelwi−1

MEmarkov Pre label + Cur Word labelwi−1 + wi

– word and POS: 5 words(target word(wi), left two words, and right two
words) and three POS(POSwi−1 , POSwi , POSwi+1) are considered.
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– word normalization: This feature contributes to word normalization. We
attempt to reduce a word to its stem or root form with a simple algorithm
which has rules for words containing plural, hyphen, and alphanumeric let-
ters. Specifically, the following patterns are considered.

(1) “lymphocytes”, “cells” → “lymphocyte”, “cell”
(2) “il-2”, “il-2a”, “il2a” → “il”
(3) “5-lipoxygenase”, “v-Abl” → “lipoxygenase”, “abl”
(4) “peri-kappa”or “t-cell” has two normalization forms of “peri”and“kappa”

and “t” and “cell” respectively.
(5) “Ca2+-independent” has two roots of “ca” and “independent”.
(6) The root of digits is “D”.

– informative suffix: This feature appears if a target word has a salient suffix
for boundary detection. The list of salient suffixes is obtained by relative
entropy [10].

– word construction form: This feature indicates how a target word is or-
thographically constructed. Word shapes refer to a mapping of each word
on equivalence classes that encodes with dashes, numerals, capitalizations,
lower letters, symbols, and so on. All spellings are represented with combina-
tions of the attributes1. For instance, the word construction form of “IL-2”
would become “IDASH-ALPNUM”.

– word characteristics: This feature appears if a word represents a DNA
sequence of “A”,“C”,“G”,“T” or Greek letter such as beta or alpha, ordinal
index such as I, II or unit such as BU/ml, micron/mL. It is encoded with
“ACGT”, “GREEK”, “INDEX”, “UNIT”.

– head/modifying information: If a word prefers the rightmost position
of terminologies, we regard it has the property of a head noun. On the
other hand, if a word frequently occurs in other positions, we regard it has
the property of a modifying noun. It can help to establish the beginning
and ending point of multi-word entities. We automatically extract 4,382
head nouns and 7,072 modifying nouns from the training data as shown in
Table 2.

– chunk-type information: This feature is also effective in determining the
position of a word in NEs, “B”, “I”, “O” which means “begin chunk”, “in
chunk” and “others”, respectively. We consider the chunk type of a target
word and the conjunction of the current chunk type and the POS of the
previous word to represent the structure of an NE.

We also tested an ME-based model for boundary detection. For this, we add
two special features : previous state (label) and conjunction of previous label

1 “IDASH” (inter dash), “EDASH” (end dash), “SDASH” (start dash),
“CAP”(capitalization), “LOW”(lowercase), “MIX”(lowercase and capitaliza-
tion letters), “NUM”(digit), “ALPNUM”(alpha-numeric), “SYM”(symbol),
“PUNC”(punctuation),and “COMMA”(comma)
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Table 2. Examples of Head/Modifying Nouns

Modifying Nouns Head Nouns
nf-kappa cytokines
nuclear elements
activated assays
normal complexes
phorbol macrophages
viral molecules
inflammatory pathways
murine extracts
electrophoretic glucocorticoids
acute levels
intracellular responses
epstein-barr clones
cytoplasmic motifs

and current word to consider state transition. That is, a previous label can be
represented as a feature function in our model as follows:

fi(h, o) =
{

1 if pre label+tw=B+gene,o=I
0 otherwise

(5)

It means that the target word is likely to be inside a term (I), when the word
is “gene” and the previous label is “B”. In our model, the current label is de-
terministically assigned to the target word with considering the previous state
with the highest probability.

2.3 Features for Semantic Labeling

Table 3 shows features for semantic labeling with respect to recognized NEs.

– word contextual feature: We make use of three kinds of internal and ex-
ternal contextual features: words within identified NEs, their word normal-
ization forms, and words surrounding the NEs. In Table 3, NEw0 denotes
the rightmost word in an identified NE region. Moreover, the presence of
specific head nouns acting as functional words takes precedence when de-
termining the term class, even though many terms do not contain explicit
term category information. For example, functional words, such as “factor”,
“receptor”, and “protein” are very useful in determining protein class, and
“gene”, “promoter”, and “motif ” are clues for classifying DNA [5]. In gen-
eral, such functional words are often the last word of an entity. This is the
reason we consider the position where a word occurs in NEs along with the
word. For inside context features, we use non-positional word features as
well. As non-positional features, all words inside NEs are used.

– internal bigrams and trigrams: We consider the rightmost bigrams/
trigrams inside identified NEs and the normalized bigrams/trigrams.
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Table 3. Feature Set for Semantic Classification

Feature description
Word Features (positional) NEwothers , NEw−3 , NEw−2 , NEw−1 , NEw0

Word Features (non-positional) AllNEw

Word Normalization (positional) WFNEw−3
, WFNEw−2

, WFNEw−1
, WFNEw0

Left Context(Words Surrounding an NE) LCW−2, LCW−1

Right Context RCW+1, RCW+2

Internal Bigrams NEw−1 + NEw0

Internal Trigrams NEw−2 + NEw−1 + NEw0

Normalized Internal Bigrams WFNEw−1
+ WFNEw0

Normalized Internal Trigrams NEw−2 + NEw−1 + NEw0

IDASH-word related Bigrams/Trigrams
Keyword KEYWORD(NEi)

– IDASH-word related bigrams/trigrams: This feature appears if NEw0

or NEw−1 contains dash characters. In this case, the bigram/trigram are
additionally formed by removing all dashes from the spelling. It is useful to
deal with lexical variants.

– keywords: This feature appears if the identified NE is informative key-
word with respect to a specific class. The keywords set comprises terms
obtained by the relative entropy between general and biomedical domain
corpora.

3 Rule-Based Postprocessing

A rule-based method can be used to correct errors by NER based on machine
learning. For example, the CRFs tag “IL-2 receptor expression” as “B I I”,
since the NEs ended with “receptor expression” in training data almost belong
to “other name” class even if the NEs ended with “receptor” belong to “pro-
tein” class. It should be actually tagged as “B I O”. That kind of errors is
caused mainly by the cascaded phenomenon in biomedical names. Since our sys-
tem considers all NEs belonging to other classes in the recognition phase, it
tends to recognize the longest ones. That is, in the term classification phase,
such NEs are classified as “other” class and are ignored. Thus, the system
losts embedded NEs although the training and evaluation set in fact tends to
consider only the embedded NE when the embedded one is more meaningful
or important.

This error correction is conducted by the rule-based method, i.e. If condi-
tion THEN action. For example, the rule ‘IF wi−2=IL-2, wi−1=receptor and
wi=expression THEN replace the tag of wi with O’ can be applied for the above
case. We use a finite state transducer for this rule-based transformation, which
is easy to understand with given lexical rules, and very efficient. Rules used for
the FST are acquired from the GENIA corpus. We first retrieved all NEs in-
cluding embedded NEs and longest NEs from GENIA 3.02 corpus and change
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IL-2/B gene/I

IL-2/O gene/O expression/O

Fig. 1. Non-Deterministic FST

IL-2/εεεε gene/ εεεε

expression/OOO

εεεε /BI

Fig. 2. Deterministic FST

the outputs of all other classes except the target 5 classes to O. That is, the
input of FST is a sequence of words in a sentence and the output is categories
corresponding to the words.

Then, we removed the rules in conflict with NE information from the training
corpus. These rules are non-deterministic (Figure 1), and we can change it to
the deterministic FST (Figure 2) since the lengths of NEs are finite. The deter-
ministic FST is made by defining the final output function for the deterministic
behavior of the transducer, delaying the output. The deterministic FST is de-
fined as follows: (Σ1, Σ2, Q, i, F, ⊗, ∗, ρ), where Σ1 is a finite input alphabet; Σ2
is a finite output alphabet; Q is a finite set of states or vertices; i ∈ Q is the
initial state; F ⊆ Q is the set of final states; ⊗ is the deterministic state transi-
tion function that maps Q × Σ1 on Q; ∗ is the deterministic emission function
that maps Q × Σ1 on Σ∗

2 and ρ : F → Σ∗
2 is the final output function for the

deterministic behavior of the transducer.

4 Evaluation

4.1 Experimental Environments

In the shared task, only biomedical named entities which belong to 5 specific
classes are annotated in the given training data. That is, terms belonging to
other classes in GENIA are excluded from the recognition target. However, we
consider all NEs in the boundary detection step since we separate the NER
task into two phases. Thus, in order to utilize other class terms, we additionally
annotated “O” class words in the training data where they corresponds to other
classes such as other organic compound, lipid, and multi cell in GENIA 3.02p
version corpus. During the annotation, we only consider the longest NEs on
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Table 4. Number of training examples

RNA DNA cell line cell type protein other
472 5,370 2,236 2,084 16,042 11,475

GENIA. As a consequence, we find all biomedical named entities in text at the
term detection phase. Then, biomedical NEs classified as other class are changed
to O at the semantic labeling phase. The total words that belong to other class
turned out to be 25,987. Table 4 shows the number of NEs with respect to each
class on the training data. In our experiments, a quasi-Newton method called the
L-BFGS with Gaussian Prior smoothing is applied for parameter estimation [2].

4.2 Experimental Results

Table 5 shows the overall performance on the evaluation data. Our system
achieves an F-score of 71.19%. As shown in the table, the performance of NER
for cell line class was not good, because its boundary recognition is not so good
as other classes. Also, Table 6 shows the results of semantic classification. In par-
ticular, the system often confuses protein with DNA, and cell line with cell type.
Among the correctly identified 7,093 terms, 790 terms were misclassified.

Table 7 shows the performance of each phase. Our system obtains 76.88%
F-score in the boundary detection task and, using 100% correctly recognized
terms from annotated test data, 90.54% F-score in the semantic classification
task. Currently, since we cannot directly assess the accuracy of the term detection
process on the evaluation set because of other class words, the 75% of the training
data were used for training and the rest for testing.

Table 5. Overall performance on the evaluation data

Fully Correct Left Correct Right Correct
Class Recall Precision F-score F-score F-score
protein 76.30 69.71 72.85 77.60 79.15
DNA 67.80 64.91 66.33 68.36 74.57
RNA 73.73 63.04 67.97 71.09 74.22
cell line 57.40 54.88 56.11 59.04 65.69
cell type 70.12 77.64 73.69 74.89 81.51
overall 72.77 69.68 71.19 74.75 78.23

Table 6. Confusion matrix over evaluation data

gold/sys protein DNA RNA cell line cell type other
protein 0 72 3 1 4 267
DNA 97 0 0 0 0 49
RNA 11 0 0 0 0 0
cell line 10 1 0 0 63 37
cell type 21 0 0 92 0 57
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Table 7. Performance of term detection and semantic classification

Recall Precision F-score
term detection (MEMarkov) 74.03 75.31 74.67
term detection (CRF) 76.14 77.64 76.88
semantic classification 87.50 93.81 90.54
overall NER 72.77 69.68 71.19

Table 8. Performance of NE recognition methods (one-phase vs. two-phase)

method Recall Precision F-score
one-phase 64.23 63.13 63.68
two-phase(baseline2) 66.24 64.54 65.38
(only 5 classes)
two-phase(baseline2) 68.51 67.58 68.04
(5 classes+other class)

Also, we compared our model with the one-phase model. The detailed results
are presented in Table 8. Both of them have pros and cons. The best-reported
system presented by [13] uses one-phase strategy. In our evaluation, the two-
phase method shows a better result than the one-phase method, although direct
comparison is not possible since we tested with a maximum entropy based expo-
nential models in all cases. The features for one-phase method are identical with
the recognition features except that the local context of a word is extended as
previous 4 words and next 4 words. In addition, we investigate whether the con-
sideration of “other” class words is helpful in the recognition performance. Table
8 shows explicit annotations of other NE classes much improve the performance
of existing entity types.

In the next experiment, we test how individual methods have an effect on the
performance in the term detection step. Table 9 shows the results obtained by com-
bining different methods in the NER process. At the semantic labeling phase, all
methods employed the ME model using the features described in 2.3. Baseline1
is the two-phase ME model which restrict the inspection of NE candidates to the
NPs which include at least one biomedical salient word. Baseline2 is the two-phase
ME model considering all words. In order to retrieve domain salient words, we
utilized a relative frequency ratio of word distribution in the domain corpus and
that in the general corpus [10]. We used the Penn II raw corpus as out-of-domain
corpus. Both models do not use the features related to previous labels. As a re-
sult, usage of salient words decrease the performance and it only speeds up the
training process. Baseline2+FST indicates boundary extension/contraction using
FST are applied as postprocessing step in baseline2 recognition. In addition, we
compared use of CRFs and ME with Markov process features. For this, we added
features of previous labels to the feature set for ME. Baseline2+MEMarkov is the
two-phase ME model considering all features including previous label related fea-
tures. Baseline2+CRF is a model exploiting CRFs and baseline2+CRF+FST is a
model using CRF and FST as postprocessing.As shown in Table 9, the CRFs based
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Table 9. F-score for different methods

Method Recall Precision F-score
baseline1(salientNP ) 66.21 66.34 66.27
baseline2(all) 68.51 67.58 68.04
baseline2 + FST 68.89 68.53 68.71
baseline2 + MEMarkov 70.30 67.65 68.95
baseline2 + MEMarkov + FST 70.61 68.40 69.49
baseline2 + CRF 72.44 68.77 70.56
baseline2 + CRF + FST 72.77 69.68 71.19

Table 10. Comparisons with other systems

System Precision Recall F-score
Zhou et. al (2004) 69.42 75.99 72.55
Our system 72.77 69.68 71.19
Finkel et. al (2004) 71.62 68.56 70.06
Settles (2004) 70.0 69.0 69.5

model outperforms the ME based model. Our system reached F-score 71.19% on
the baseline2 + CRF + FST model.

Table 10 shows the comparison with top-ranked systems in JNLPBA 2004
shared task. The top-ranked systems made use of external knowledge from
gazetteers and abbreviation handling routines, which were reported to be ef-
fective. Zhou et. al reported the usage of gazetteers and abbreviation handling
improves the performance of the NER system by 4.8% in F-score [13]. Finkel
et. al made use of a number of external resources, including gazetteers, web-
querying, use of the surrounding abstract, abbreviation handling, and frequency
counts from BNC corpus [4]. Settles utilized semantic domain knowledge of 17
kinds of lexicons [11]. Although the performance of our system is a bit lower than
the best system, the results are very promising since most systems use external
gazetteers, and abbreviation and conjunction/disjunction handling scheme. This
suggests areas for further work.

5 Conclusion and Discussion

We presented a two-phase biomedical NE recognition model, term boundary
detection and semantic labeling. We proposed two exponential models for each
phase. That is, CRFs are used for term detection phase including Markov process
and ME is used for semantic labeling. The benefit of dividing the whole process
into two processes is that, by separating the processes with different characteris-
tics, we can select separately the discriminative feature set for each subtask, and
moreover measure effectiveness of models at each phase. Furthermore, we use
the rule-based method as postprocessing to refine the result. The rules are ex-
tracted from the GENIA corpus, which is represented by the deterministic FST.
The rule-based approach is effective to correct errors by cascading structures
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of biomedical NEs. The experimental results are quite promising. The system
achieved 71.19% F-score without Gazetteers or abbreviation handling process.
The performance could be improved by utilizing lexical database and testing
various classification models.
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