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Abstract. We propose a phrase-based context-dependent joint probability 
model for Named Entity (NE) translation. Our proposed model consists of a 
lexical mapping model and a permutation model. Target phrases are generated 
by the context-dependent lexical mapping model, and word reordering is per-
formed by the permutation model at the phrase level. We also present a two-
step search to decode the best result from the models. Our proposed model is 
evaluated on the LDC Chinese-English NE translation corpus. The experiment 
results show that our proposed model is high effective for NE translation.  

1   Introduction 

A Named Entity (NE) is essentially a proper noun phrase. Automatic NE translation is 
an indispensable component of cross-lingual applications such as machine translation 
and cross-lingual information retrieval and extraction.  

NE is translated by a combination of meaning translation and/or phoneme trans-
literation [1]. NE transliteration has been given much attention in the literature. 
Many attempts, including phoneme and grapheme-based methods, various machine 
learning and rule-based algorithms [2,3] and Joint Source-Channel Model (JSCM) 
[4], have been made recently to tackle the issue of NE transliteration. However, 
only a few works have been reported in NE translation. Chen et al. [1] proposed a 
frequency-based approach to learn formulation and transformation rules for multi-
lingual Named Entities (NEs). Al-Onaizan and Knight [5] investigated the transla-
tion of Arabic NEs to English using monolingual and bilingual resources. Huang et 
al. [6] described an approach to translate rarely occurring NEs by combining pho-
netic and semantic similarities. In this paper, we pay special attention to the issue of 
NE translation.  

Although NE translation is less sophisticated than machine translation (MT) in gen-
eral, to some extent, the issues in NE translation are similar to those in MT. Its chal-
lenges lie in not only the ambiguity in lexical mapping such as <副(Fu),Deputy> and 
<副(Fu),Vice> in Fig.1 in the next page, but also the position permutation and fertility 
of words. Fig.1 illustrates two excerpts of NE translation from the LDC corpus [7]: 
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(a) Regional office of science and technology for Africa 
 

非洲(FeiZhou) 地区(DiQu) 科技(KeJi) 办事处(BanShiChu) 
 

 
(b) Deputy chief of staff to office of the vice president 

 

   副(Fu) 总统(ZongTong) 办公室(BanGongShi)副(Fu)主任(ZhuRen) 

Fig. 1. Example bitexts with alignment 

where the italic word is the Chinese pinyin transcription. 
Inspired by the JSCM model for NE transliteration [4] and the success of statistical 

phrase-based MT research [8-12], in this paper we propose a phrase-based context-
dependent joint probability model for NE translation. It decomposes the NE transla-
tion problem into two cascaded steps: 

1)  Lexical mapping step, using the phrase-based context-dependent joint prob-
ability model, where the appropriate lexical item in the target language is 
chosen for each lexical item in the source language;  

2)  Reordering step, using the phrase-based n-gram permutation model, where 
the chosen lexical items are re-arranged in a meaningful and grammatical 
order of target language.  

A two-step decoding algorithm is also presented to allow for effective search of the 
best result in each of the steps. 

The layout of the paper is as follows. Section 2 introduces the proposed model. In 
Section 3 and 4, the training and decoding algorithms are discussed. Section 5 reports 
the experimental results. In Section 6, we compare our model with the other relevant 
existing models. Finally, we conclude the study in Section 7. 

2   The Proposed Model 

We present our method by starting with a definition of translation unit in Section 2.1, 
followed by the formulation of the lexical mapping model and the permutation model 
in Section 2.2. 

2.1   Defining Translation Unit 

Phrase level translation models in statistical MT have demonstrated significant im-
provement in translation quality by addressing the problem of local re-ordering across 
language boundaries [8-12]. Thus we also adopt the same concept of phrase used in 
statistical phrase-based MT [9,11,12] as the basic NE translation unit to address the 
problems of word fertility and local re-ordering within phrase.  

Suppose that we have Chinese as the source language 1 1... ...=J
j Jc c c c and Eng-

lish as the target language 1 1... ...I
i Ie e e e=  in an NE translation 1 1( , )J Ic e , where 
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1
J

jc c∈  and 1
I

ie e∈  are Chinese and English words respectively. Given a directed 

word alignment A :{ 1 1→J Ic e , 1 1→I Je c }, the set of the bilingual phrase pairs Λ  is 

defined as follows: 

2 2

1 11 1

1 2 1 2

( , , )={ ( , ) :

                        { ... }, { ... }:

                          }              

j iJ I
j ic e c e

j j j i i i j i

vice versa

Λ

∀ ∈ ∃ ∈ → ∈
∧

A

A                    (1)  

The above definition means that two phrases are considered to be translations of 
each other, if the words are aligned exclusively within the phrase pair, and not to the 
words outside [9,11,12]. The phrases have to be contiguous and a null phrase is not 
allowed. 

Suppose that the NE pair 1 1( , )J Ic e  is segmented into X phrase pairs ( 1
Xc% , 1

Xe% ) ac-

cording to the phrase pair set Λ , where 1
Xe% is reordered so that the phrase alignment 

is in monotone order, i.e., xc% is aligned ↔% %x xc e For simplicity, we denote by 

,λ =< >% %x x xc e  the xth phrase pair in ( 1
Xc% , 1

Xe% ) = 1... ...x Xλ λ λ , λ ∈ Λx . 

2.2   Lexical Mapping Model and Permutation Model 

Given the phrase pair set Λ , an NE pair ( 1
Jc , 1

Ie ) can be rewritten as ( 1
Xc% , 1

Xe% ) = 

1... ...x Xλ λ λ = 1
Xλ . Let us describe a Chinese to English (C2E) bilingual training 

corpus as the output of a generative stochastic process: 
 

 
(1) Initialize queue Qc and  Qe as empty sequences; 

(2) Select a phrase pair ,x x xc eλ =< >% %  according to the probability distribu-

tion 1
1( | )x

xp −λ λ , remove xλ  from Λ ; 

(3) Append the phrase xc%  to Qc and append the phrase xe%  to Qe; 

(4) Repeat steps 2) and 3) until Λ is empty; 
(5) Reorder all phrases in Qe according to the probability distribution of the 

permutation model; 
(6) Output Qe and Qc . 
 

As 1
1( | )x

xp −λ λ  is typically obtained from a source-ordered aligned bilingual 

corpus, reordering is needed only for the target language. According to this generative 

story, the joint probability of the NE pair ( 1
Jc , 1

Ie ) can then be obtained by summing 

the probabilities over all possible ways of generating various sets of Λ and all possi-

ble permutations that can arrive at ( 1
Jc , 1

Ie ).  This joint probability can be formulated 
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in Eq.(2). Here we assume that the generation of the set Λ and the reordering process 
are modeled by n-order Markov models, and the reordering process is independent of 
the source word position. 

1

1 1 1 1 1

1
1

1

( , )= { ( ) * ( | )}

       {( ( | ))* ( | )}

Λ

Λ

−
−

=

λ

λ λ≈

∑

∑ ∏

%

% %X

J I X I X

X
kx X

x x n k
x

p c e p p e e

p p e e
                     (2) 

1

1 1
1

( | ) ( | )xX

x x n

X
kk X

k k k
x

p e e p e e −

−
=

≈ ∏% % % %                                                      (3) 

where 
1
% Xk

ke  stands for one of the permutational sequences of 1%
Xe  that can yield 1

Ie  

by linearly joining all phrases, i.e., 
11 = % XkI

ke e ().  The generative process, as formu-

lated above, does not try to capture how the source NE is mapped into the target NE, 
but rather how the source and target translation units can be generated simultaneously 
in the source order and how the target NE can be constructed by reordering the target 

phrases, 1%
Xe .  

In essence, our proposed model consists of two sub-models: a lexical mapping 

model (LMM), characterized by
1( | )x

x x np −
−λ λ , that models the monotonic genera-

tive process of phrase pairs; and a permutation model (PM), characterized by 
1( | )x

x x n

k
k kp e e −

−
% % , that models the permutation process for reordering of the target 

language. The LMM in this paper is among the first attempts to introduce context-
dependent lexical mapping into statistical MT (Och et al., 2003). The PM here is also 
different from the widely used position-based distortion model in that it models 
phrase connectivity instead of position distortion. Although PM functions as an n-
gram language model, it only models the ordering connectivity between target lan-
guage phrases, i.e., it is not in charge of target word selection. 

Since the proposed model is phrase-based and we use conditional joint probability 
in LMM and use context-dependent n-gram in PM, we call the proposed model a 
phrase-based context-dependent joint probability model. 

3   Training 

Following the modeling strategy discussed above, the training process consists of 
three steps: phrase alignment, reordering of corpus, and learning statistical parameters 
for lexical mapping and permutation models. 

3.1   Acquiring Phrase Pairs 

To reduce vocabulary size and avoid sparseness, we constrain the phrase length to up 
to three words and the lower-frequency phrase pairs are pruned out for accurate 
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phrase-alignment1. Given a word alignment corpus which can be obtained by means 
of the publicly available GIZA++ toolkit [15], it is very straightforward to construct 
the phrase-alignment corpus by incrementally traversing the word-aligned NE from 
left to right2. The set of resulting phrase pairs forms a lexical mapping table.  

3.2   Reordering Corpus 

The context-dependent lexical mapping model assumes monotonic alignment in the 
bilingual training corpus. Thus, the phrase aligned corpus needs to be reordered so 
that it is in either source-ordered or target-ordered alignment. We choose to reorder 
the target phrases to follow the source order. Only in this way can we use the lexical 
mapping model to describe the monotonic generative process and leave the reordering 
of target translation units to the permutation model.  

3.3   Training LMM and PM  

According to Eq. (2), the lexical mapping model (LMM) and the permutation 
model (PM) can be interpreted as a kind of n-gram Markov model. The phrase pair is 
the basic token of LMM and the target phrase is the basic token of PM. A bilingual 
corpus aligned in the source language order is used to train LMM, and a target lan-
guage corpus with phrase segmentation in their original word order is used to train 
PM. Given the two corpora, we use the SRILM Toolkit [13] to train the two n-gram 
models. 

4   Decoding 

The proposed modeling framework allows LMM and PM decoding to cascade as in 
Fig.2.  

 

Fig. 2. A cascaded decoding strategy 

The two-step operation is formulated by Eq.(4) and Eq.(5). Here, the probability 
summation as in Eq.(2) is replaced with maximization to reduce the computational 
complexity: 

1
1

1

ˆ arg max{ ( | )}
X

X x
x x n

x

e p −
−

Λ =

= λ λ∏%                                                 (4) 

                                                           
1  Koehn et. al. [12] found that that in MT learning phrases longer than three words and learning 

phrases from high-accuracy word-alignment does not have strong impact on performance. 
2  For the details of the algorithm to acquire phrase alignment from word alignment, please refer 

to the section 2.2 & 3.2 in [9] and the section 3.1 in [12].  

%1̂
Xe

LMM 
Decoder

PM 
Decoder

1
Jc 1

Ie
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1
1

1

ˆ arg max{ ( | )}x

x x n

X
kI

k k
x

e p e e −

−
Ω =

= ∏ % %                                                 (5) 

LMM decoding: Given the input 1
Jc , the LMM decoder searches for the most prob-

able phrase pair set Λ in the source order using Eq.(4). Since this is a monotone 
search problem, we use a stack decoder [14,18] to arrive at the n-best results. 

PM decoding: Given the translation phrase sequence 1̂
Xe% from the LMM decoder, 

the PM decoder searches for the best phrase order that gives the highest n-gram score 
by using Eq.(5) in the search space Ω , which is all the !X  permutations of the all 

phrases in 1̂
Xe% . This is a non-monotone search problem. 

The PM decoder conducts a time-synchronized search from left to right, where time 
clocking is synchronized over the number of phrases covered by the current partial 
path. To reduce the search space, we prune the partial paths along the way.  Two par-
tial paths are considered identical if they satisfy the following both conditions: 

1) They cover the same set of phrases regardless of the phrase order; 
2) The last n-1 phrases and their ordering are identical, where n is the order 

of the n-gram permutation model. 

For any two identical partial paths, only the path with higher n-gram score is retained. 
According to Eq. (5), the above pruning strategy is risk-free because the two partial 
paths cover the exact same portion of input phrases and the n-gram histories for the 
next input phrases in the two partial paths are also identical. 

It is also noteworthy that the decoder only needs to perform / 2X  expansions as 
after / 2X  expansions, all combinations of / 2X  phrases would have been explored 
already. Therefore, after / 2X  expansions, we only need to combine the correspond-
ing two partial paths to make up the entire input phrases, then select the path with 
highest n-gram score as the best translation output. 

Let us examine the number of paths that the PM decoder has to traverse. The prun-

ing reduces the search space by a factor of !Z , from 
!

( )!
Z

XP
X

X Z
=

−
 

to
!

! ( )!
Z
XC

X

Z X Z
=

• −
, where Z is the number of phrases in a partial path. 

Since X Z

X

Z
XC C −= , the maximum number of paths that we have to traverse is / 2X

XC . 

For instance, when 10X = , the permutation decoder traverses 5

10 252C =  paths 

instead of the 5

10 30, 240P = in an exhausted search. 

By cascading the translation and permutation steps, we greatly reduce the search 
space. In LMM decoding, the traditional stack decoder for monotone search is very 
fast. In PM decoding, since most of NE is less than 10 phrases, the permutation de-

coder only needs to explore at most 5

10 252C =  living paths due to our risk-free prun-

ing strategy. 
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5   Experiments 

5.1   Experimental Setting and Modeling 

All the experiments are conducted on the LDC Chinese-English NE translation corpus 
[7]. The LDC corpus consists of a large number of Chinese-Latin language NE en-
tries. Table 1 reports the statistics of the entire corpus. Because person and place 
names in this corpus are translated via transliteration, we only extract the categories 
of organization, industry, press, international organization, and others to form a cor-
pus subset for our NE translation experiment, as indicated in bold in Table 1. As the 
corpus is in its beta release, there are still many undesired entries in it. We performed 
a quick proofreading to correct some errors and remove the following types of entries:  

1) The duplicate entry; 
2) The entry of single Chinese or English word;  
3) The entries whose English translation contains two or more non-English words. 

We also segment the Chinese translation into a word sequence. Finally, we obtain a 
corpus of 74,606 unique bilingual entries, which are randomly partitioned into 10 
equal parts for 10-fold cross validation.  

Table 1.  Statistics of the LDC Corpus 

# of Entries  
Category 

C2E E2C 

Person 486,212 572,213 

Place 276,382 298,993 
Who-is-Who 30,028 36,881 

Organization 30,800 37,145 

Industry 54,747 58,468 

Press 29,757 32,922 

Int’l Org 7,040 7,040 

Others 13,007 14,066 

As indicated in Section 1, although MT is more difficult than NE translation, they 
both have many properties in common, such as lexical mapping ambiguity and permu-
tation/distortion. Therefore, to establish a comparison, we use the publicly available 
statistical MT training and decoding tools, which can represent the state-of-the-art of 
statistical phrase-based MT research, to carry out the same NE translation experiments 
as reference cases. All the experiments conducted in this paper are listed as follow: 

1) IBM method C: word-based IBM Model 4 trained by GIZA++3 [15] and ISI 
Decoder4 [14,16]; 

                                                           
3 http://www.fjoch.com/ 
4 http://www.isi.edu/natural-language/software/decoder/manual.html 
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2) IBM method D:   phrase-based IBM Model 4 trained by GIZA++ on phrase-
aligned corpus and ISI Decoder working on phrase-segmented testing corpus. 

3) Koehn method: Koehn et al.’s phrase-based model [12] and PHARAOH5 de-
coder6; 

4) Our method: phrase-based bi-gram LMM and bi-gram PM, and our two-step 
decoder. 

To make an accurate comparison, all the above three phrase-based models are 
trained on the same phrase-segmented and aligned corpus, and tested on the same 
phrase-segmented corpus. ISI Decoder carries out a greedy search, and PHARAOH is 
a beam-search stack decoder. To optimize their performances, the two decoders are 
allowed to do unlimited reordering without penalty. We train trigram language mod-
els in the first three experiments and bi-gram models in the forth experiment. 

5.2   NE Translation 

Table 2 and Table 3 report the performance of the four methods on the LDC NE 
translation corpus. The results are interpreted in different scoring measures, which 
allow us to compare the performances from different viewpoints.   

• ACC reports the accuracy of the exact;  
• WER reports the word error rate;  
• PER is the position-independent, or “bag-of-words” word error rate;  
• BLEU score measures n-gram precision [19] 
• NIST score [20] is a weighted n-gram precision.  

Please note that WER and PER are error rates, the lower numbers represent better 
results. For others, the higher numbers represents the better results. 

Table 2.  E2C NE translation performance (%) 

 IBM 
  method C 

IBM 
  method D 

Koehn  
method 

Our  
method 

ACC 24.5 36.3 47.1 51.5 
WER 51.0 38.5 32.5 26.6 
PER 48.5 36.2 26.8 16.3 
BLEU 29.9 41.8 51.2 56.1 O

pe
n 

te
st

 

NIST 7.2 8.6 9.3 10.2 
ACC 51.1 78.9 88.2 90.9 
WER 34.1 12.8 6.3 4.3 
PER 31.5 9.5 4.1 2.7 
BLEU 54.7 80.9 89.1 91.9 

E
2C

 

C
lo

se
d 

te
st

 

NIST 11.1 14.2 14.7 14.8 

                                                           
5 http://www.isi.edu/licensed-sw/pharaoh/ 
6 http://www.isi.edu/licensed-sw/pharaoh/manual-v1.2.ps 
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Table 3.  C2E NE translation performance (%) 

 IBM 
  method C 

IBM 
  method D 

Koehn  
method 

Our  
method 

ACC 13.4 21.8 31.2 36.1 
WER 60.8 45.8 41.3 38.9 
PER 49.6 38.2 32.6 26.6 
BLEU 25.1 49.8 52.9 54.1 op

en
 te

st
 

NIST 5.94 8.21 8.91 9.25 
ACC 34.3 69.5 79.2 81.3 
WER 48.2 23.6 11.3 9.2 
PER 35.7 14.7 8.7 6.2 
BLEU 42.5 76.2 85.7 88.0 

C
2E

 

cl
os

ed
 te

st
 

NIST 8.7 12.7 13.8 14.4 

Table 2 & 3 show that our method outperforms the other three methods consis-
tently in all cases and by all scores. IBM method D gives better performance than 
IBM method C, simply because it uses phrase as the translation unit instead of single 
word. Koehn et al.’s phrase-based model [12] and IBM phrase-based Model 4 used in 
IBM method D are very similar in modeling. They both use context-independent 
lexical mapping model, distortion model and trigram target language model. The 
reason why Koehn method outperforms IBM method D may be due to the different 
decoding strategy. However, we still need further investigation to understand why 
Koehn method outperforms IBM method D significantly. It may also be due to the 
different LM training toolkits used in the two experiments. 

Our method tops the performance among the four experiments. The significant po-
sition-independent word error rate (PER) reduction shows that our context-dependent 
joint probability lexical mapping model is quite effective in target word selection 
compared with the other context-free conditional probability lexical model together 
with target word n-gram language model. 

Table 4. Step by step top-1 performance (%) 

 
 

LMM decoder  
 

LMM+PM decoder  

 

E2C 
 

59.9 
 

51.5 

C2E 40.5 36.1 

Table 4 studies the performance of the decoder by steps. The LMM decoder col-
umn reports the top-1 “bag-of-words” accuracy of the LMM decoder regardless of 
word order. This is the upper bound of accuracy that the PM decoder can achieve. The 
LMM+PM decoder column shows the combined performance of two steps, where we 
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measure the top-1 LMM+PM accuracy by taking top-1 LMM decoding results as 
input. It is found that the PM decoder is surprisingly effective in that it perfectly reor-
ders 85.9% (51.5/59.9) and 89.1% (36.1 /40.5) target languages in E2C and C2E 
translation respectively. 

All the experiments above recommend that our method is an effective solution for 
NE translation. 

6   Related Work 

Since our method has benefited from the JSCM of Li et al. [4] and statistical MT 
research [8-12], let us compare our study with the previous related work. 

The n-gram JSCM was proposed for machine transliteration by Li et al. [4]. It cou-
ples the source and channel constraints into a generative model to directly estimate 
the joint probability of source and target alignment using n-gram statistics. It was 
shown that JSCM captures rich contextual information that is present in a bilingual 
corpus to model the monotonic generative process of sequential data. In this point, our 
LMM model is the same as JSCM. The only difference is that in machine translitera-
tion Li et al. [4] use phoneme unit as the basic modeling unit and our LMM is phrase-
based.  

In our study, we enhance the LMM with the PM to account for the word reorder-
ing issue in NE translation, so our model is capable of modeling the non-monotone 
problem. In contrast, JSCM only models the monotone problem. 

Both rule-based [1] and statistical model-based [5,6] methods have been proposed 
to address the NE translation problem. The model-based methods mostly are based on 
conditional probability under the noisy-channel framework [8]. Now let’s review the 
different modeling methods: 

1) As far as lexical choice issue is concerned, the noisy-channel model, repre-
sented by IBM Model 1-5 [8], models lexical dependency using a context-free 
conditional probability. Marcu and Wong [10] proposed a phrase-based con-
text-free joint probability model for lexical mapping. In contrast, our LMM 
models lexical dependency using n-order bilingual contextual information.  

2) Another characteristic of our method lies in its modeling and search strat-
egy.  NE translation and MT are usually viewed as a non-monotone search 
problem and it is well-known that a non-monotone search is exponentially 
more complex than a monotone search. Thus, we propose the two separated 
models and the two-step search, so that the lexical mapping issue can be re-
solved by monotone search. This results in a large improvement on transla-
tion selection. 

3) In addition, instead of the position-based distortion model [8-12], we use the 
n-gram permutation model to account for word reordering. A risk-free de-
coder is also proposed for the permutation model.  

One may argue that our proposed model bears a strong resemblance to IBM Model 
1: a position-independent translation model and a language model on target sentence 
without explicit distortion modeling. Let us discuss the major differences between 
them: 
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1) Our LMM models the lexical mapping and target word selection using a con-
text-dependent joint probability while IBM Model 1 using a context-
independent conditional probability and a target n-gram language model. 

2) Our LMM carries out the target word selection and our PM only models the 
target word connectivity while the language model in IBM Model 1 performs 
the function of target word selection. 

Alternatively, finite-state automata (FSA) for statistical MT were previous sug-
gested for decoding using contextual information [21,22]. Bangalore and Riccardi 
[21] proposed a phrase-based variable length n-gram model followed by a reordering 
scheme for spoken language translation. However, their re-ordering scheme was not 
evaluated by empirical experiments.  

7   Conclusions 

In this paper, we propose a new model for NE translation. We present the training and 
decoding methods for the proposed model. We also compare the proposed method 
with related work. Empirical experiments show that our method outperforms the pre-
vious methods significantly in all test cases. We conclude that our method works 
more effectively and efficiently in NE translation than previous work does.  

Our method does well in NE translation, which is relatively less sophisticated in 
terms of word distortion. We expect to improve its permutation model by integrating 
a distortion model to account for larger sentence structure and apply to machine trans-
lation study. 
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