
R. Dale et al. (Eds.): IJCNLP 2005, LNAI 3651, pp. 530 – 541, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

A Chunking Strategy Towards Unknown Word Detection 
in Chinese Word Segmentation 

Zhou GuoDong 

Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore 119613 
zhougd@i2r.a-star.edu.sg  

Abstract. This paper proposes a chunking strategy to detect unknown words in 
Chinese word segmentation. First, a raw sentence is pre-segmented into a 
sequence of word atoms 1  using a maximum matching algorithm. Then a 
chunking model is applied to detect unknown words by chunking one or more 
word atoms together according to the word formation patterns of the word 
atoms. In this paper, a discriminative Markov model, named Mutual 
Information Independence Model (MIIM), is adopted in chunking. Besides, a 
maximum entropy model is applied to integrate various types of contexts and 
resolve the data sparseness problem in MIIM. Moreover, an error-driven 
learning approach is proposed to learn useful contexts in the maximum entropy 
model. In this way, the number of contexts in the maximum entropy model can 
be significantly reduced without performance decrease. This makes it possible 
for further improving the performance by considering more various types of 
contexts. Evaluation on the PK and CTB corpora in the First SIGHAN Chinese 
word segmentation bakeoff shows that our chunking approach successfully 
detects about 80% of unknown words on both of the corpora and outperforms 
the best-reported systems by 8.1% and 7.1% in unknown word detection on 
them respectively.  

1   Introduction 

Prior to any linguistic analysis of Chinese text, Chinese word segmentation is the 
necessary first step and one of major bottlenecks in Chinese information processing 
since a Chinese sentence is written in a continuous string of characters without 
obvious separators (such as blanks)  between  the words. During the past two decades, 
this research has been a hot topic in Chinese information processing [1-10]. 

There exist two major problems in Chinese word segmentation: ambiguity 
resolution and unknown word detection. While n-gram modeling and/or word co-
occurrence has been successfully applied to deal with the ambiguity problems [3, 5, 
10, 12, 13], unknown word detection has become the major bottleneck in Chinese 

                                                           
1  In this paper, word atoms refer to basic building units in words. For example, the word “计算
机 ” (computer) consists of two word atoms: “计算 ”(computing) and “机 ”(machine). 
Generally, word atoms can either occur independently, e.g. “计算”(computing), or only 
become a part of a word, e.g. “机”(machine) in the word “计算机” (computer). 
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word segmentation. Currently, almost all Chinese word segmentation systems rely on 
a word dictionary. The problem is that when the words stored in the dictionary are 
insufficient, the system's performance will be greatly deteriorated by the presence of 
words that are unknown to the system. Moreover, manual maintenance of a dictionary 
is very tedious and time consuming. It is therefore important for a Chinese word 
segmentation system to identify unknown words from the text automatically. 

In literature, two categories of competing approaches are widely used to detect 
unknown words 2 : statistical approaches [5, 11, 12, 13, 14, 15] and rule-based 
approaches [5, 11, 14, 15]. Although rule-based approaches have the advantage of 
being simple, the complexity and domain dependency of how the unknown words are 
produced greatly reduce the efficiency of these approaches. On the other hand, 
statistical approaches have the advantage of being domain-independent [16]. It is 
interesting to note that many systems apply a hybrid approach [5, 11, 14, 15]. 
Regardless of the choice of different approaches, finding a way to automatically 
detect unknown words has become a crucial issue in Chinese word segmentation and 
Chinese information processing in general. 

Input raw sentence:     张 杰 毕 业 自 交 通 大 学. 
MMA pre-segmentation:  张   杰          毕业            自           交通          大学         . 
Unknown word detection: 张杰          毕业             自          交通大学            . 
                                         Zhang Jie      graduate    from       JiaoTong  University. 

Fig. 1. MMA and unknown word detection by chunking: an example 

This paper proposes a chunking strategy to cope with unknown words in Chinese 
word segmentation. First, a raw sentence is pre-segmented into a sequence of word 
atoms (i.e. single-character words and multi-character words) using a maximum 
matching algorithm (MMA)3. Then a chunking model is applied to detect unknown 
words by chunking one or more word atoms together according to the word formation 
patterns of the word atoms. Figure 1 gives an example. Here, the problem of unknown 
word detection is re-cast as chunking one or more word atoms together to form a new 
word and a discriminative Markov model, named Mutual Information Independence 
Model (MIIM), is adopted in chunking. Besides, a maximum entropy model is applied 
to integrate various types of contexts and resolve the data sparseness problem in 
MIIM. Moreover, an error-driven learning approach is proposed to learn useful 

                                                           
2  Some systems [13,14] focus on proper names due to their importance in Chinese information 

processing. 
3  A typical MMA identifies all character sequences which are found in the word dictionary and 

marks them as words. Those character sequences, which can be segmented in more than one 
way, are marked as ambiguous and a word unigram model is applied to choose the most 
likely segmentation sequence. The remaining sequences, i.e. those not found in the 
dictionary, are called fragments and segmented into single characters. In this way, each 
Chinese sentence is pre-segmented into a sequence of single-character words and multi-
character words. For convenience, we call these single-character words and multi-character 
words in the output of the MMA algorithm as word atoms. 
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contexts in the maximum entropy model. In this way, the number of contexts in the 
maximum entropy model can be significantly reduced without performance decrease. 
This makes it possible for further improving the performance by considering more 
various types of contexts in the future. Evaluation on the PK and CTB corpora in the 
First SIGHAN Chinese word segmentation bakeoff shows that our chunking strategy 
performs best in unknown word detection on both of the corpora. 

The rest of the paper is as follows: In Section 2, we will discuss in details about our 
chunking strategy in unknown word detection. Experimental results are given in 
Section 3. Finally, some remarks and conclusions are made in Section 4.  

2   Unknown Word Detection by Chunking 

In this section, we will first describe the chunking strategy in unknown word 
detection of Chinese word segmentation using a discriminative Markov model, called 
Mutual Information Independence Model (MIIM). Then a maximum entropy model is 
applied to integrate various types of contexts and resolve the data sparseness problem 
in MIIM. Finally, an error-driven learning approach is proposed to select useful 
contexts and reduce the context feature vector dimension. 

2.1   Mutual Information Independence Model and Unknown Word Detection 

Mutual Information Independence Model 
In this paper, we use a discriminative Markov model, called Mutual Information 
Independence Model (MIIM) proposed by Zhou et al [17] 4 , in unknown word 
detection by chunking. MIIM is derived from a conditional probability model. Given 

an observation sequence n
n oooO L211 = , the goal of a conditional probability model 

is to find a stochastic optimal state(tag) sequence n
n sssS L211 =  that maximizes: 
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The second term in Equation (1) is the pair-wise mutual information (PMI) 

between nS1  and nO1 . In order to simplify the computation of this term, we assume a 

pair-wise mutual information independence (2): 

   ∑
=

=
n

i

n
i

nn OsPMIOSPMI
1

111 ),(),(      or  

∑
= ⋅

=
⋅

n

i
n

i

n
i

nn

nn

OPsP

OsP

OPSP

OSP

1 1

1

11

11

)()(

),(
log

)()(

),(
log           (2) 

                                                           
4  We have renamed the discriminative Markov model in [17] as the Mutual Information 

Independence Model according to the novel pair-wise mutual information independence 
assumption in the model. Another reason is to distinguish it from the traditional Hidden 
Markov Model [18] and avoid misleading. 
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That is, an individual state is only dependent on the observation sequence nO1  and 

independent on other states in the state sequence nS1 . This assumption is reasonable 

because the dependence among the states in the state sequence nS1  has already been 

captured by the first term in Equation (1).  Applying Equation (2) to Equation (1), we 
have Equation (3)5: 
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We call the above model as shown in Equation (3) the Mutual Information 
Independence Model due to its pair-wise mutual information assumption as shown in 
Equation (2). The above model consists of two sub-models: the state transition model 
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1 )|(log  as the second term in Equation (3). Here, a variant of the Viterbi 

algorithm [19] in decoding the standard Hidden Markov Model (HMM) [18] is 
implemented to find the most likely state sequence by replacing the state transition 
model and the output model of the standard HMM with the state transition model and 
the output model of the MIIM, respectively. 

Unknown Word Detection 
For unknown word detection by chunking, a word (known word or unknown word) is 
regarded as a chunk of one or more word atoms and we have: 

• >=< iii wpo , ; iw is the thi −  word atom in the sequence of word 

atoms n
n wwwW L211 = ; ip  is the word formation pattern of the word atom iw . 

Here ip  measures the word formation power of the word atom iw  and consists of: 

o The percentage of iw  occurring as a whole word (round to 10%) 

o The percentage of iw  occurring at the beginning of other words (round to 

10%) 

o The percentage of iw  occurring at the end of other words (round to 10%) 

o The length of iw  

o The occurring frequency feature of iw , which is mapped to 

max(log(Frequency), 9 ). 
• is : the states are used to bracket and differentiate various types of words. In this 

way, Chinese unknown word detection can be regarded as a bracketing process 
while differentiation of different word types can help the bracketing process. is  is 

structural and consists of three parts: 
                                                           
5  Details about the derivation are omitted due to space limitation. Please see [17] for more. 
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o Boundary Category (B): it includes four values: {O, B, M, E}, where O 
means that current word atom is a whOle word and B/M/E means that current 
word atom is at the Beginning/in the Middle/at the End of a word. 

o Word Category (W): It is used to denote the class of the word. In our system, 
words are classified into two types: pure Chinese word type and mixed word 
type (i.e. including English characters and Chinese digits/numbers/symbols).  

o Word Atom Formation Pattern (P): Because of the limited number of 
boundary and word categories, the word atom formation pattern described 
above is added into the structural state to represent a more accurate state 
transition model in MIIM while keeping its output model. 

Problem with Unknown Word Detection Using MIIM 
From Equation (3), we can see that the state transition model of MIIM can be 
computed by using ngram modeling [20, 21, 22], where each tag is assumed to be 
dependent on the N-1 previous tags (e.g. 2). The problem with the above MIIM lies in 

the data sparseness problem raised by its output model: ∑
=

n

i

n
i OsP

1
1 )|(log . Ideally, we 

would have sufficient training data for every event whose conditional probability we 
wish to calculate. Unfortunately, there is rarely enough training data to compute 
accurate probabilities when decoding on new data. Generally, two smoothing 
approaches [21, 22, 23] are applied to resolve this problem: linear interpolation and 
back-off. However, these two approaches only work well when the number of 
different information sources is very limited. When a few features and/or a long 
context are considered, the number of different information sources is exponential. 
This makes smoothing approaches inappropriate in our system. In this paper, the 
maximum entropy model [24] is proposed to integrate various context information 
sources and resolve the data sparseness problem in our system. The reason that we 
choose the maximum entropy model for this purpose is that it represents the state-of–
the-art in  the machine learning research community and there are good 
implementations of the algorithm available.  Here, we use the open NLP maximum 
entropy package6 in our system. 

2.2   Maximum Entropy 

The maximum entropy model is a probability distribution estimation technique widely 
used in recent years for natural language processing tasks. The principle of the 
maximum entropy model in estimating probabilities is to include as much information 
as is known from the data while making no additional assumptions. The maximum 
entropy model returns the probability distribution that satisfies the above property 
with the highest entropy. Formally, the decision function of the maximum entropy 
model can be represented as: 
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6 http://maxent.sourceforge.net 



 A Chunking Strategy Towards Unknown Word Detection 535 

where o is the outcome, h is the history (context feature vector in this paper), Z(h) is a 
normalization function, {f1, f2, ..., fk} are feature functions and {α1, α2, …, αk} are the 
model parameters. Each model parameter corresponds to exactly one feature and can 
be viewed as a "weight" for that feature. All features used in the maximum entropy 
model are binary, e.g. 
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In order to reliably estimate )|( 1
n

i OsP  in the output model of MIIM using the 

maximum entropy model, various context information sources are included in the 
context feature vector: 

• ip : current word atom formation pattern 

• ii pp 1− : previous word atom formation pattern and current word atom formation 

pattern 
• 1+ii pp : current word atom formation pattern and next word atom formation 

pattern 
• ii wp : current word atom formation pattern and current word atom 

• iii pwp 11 −− : previous word atom formation pattern, previous word atom and 

current word atom formation pattern 
• 11 ++ iii wpp : current word atom formation pattern, next word atom formation 

pattern and next word atom 
• iii wpp 1− : previous word atom formation pattern, current word atom formation 

pattern and current word atom 
• 1+iii pwp : current word atom formation pattern, current word atom and next word 

atom formation pattern 
• iiii wpwp 11 −− : previous word atom formation pattern, previous word atom, current 

word atom formation pattern and current word atom 
• 11 ++ iiii wpwp : current word atom formation pattern, current word atom, next word 

atom formation pattern and next word atom 

However, there exists a problem when we include above various context 
information in the maximum entropy model: the context feature vector dimension 
easily becomes too large for the model to handle. One easy solution to this problem is 
to only keep those frequently occurring contexts in the model. Although this 
frequency filtering approach is simple, many useful contexts may not occur frequently 
and be filtered out while those kept may not be useful. To resolve this problem, we 
propose an alternative error-driven learning approach to only keep useful contexts in 
the model. 

2.3   Context Feature Selection Using Error-Driven Learning 

Here, we propose an error-driven learning approach to examine the effectiveness of 
various contexts and select useful contexts to reduce the size of the context feature 
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vector used in the maximum entropy model for estimating )|( 1
n

i OsP  in the output 

model of MIIM. This makes it possible to further improve the performance by 
incorporating more various types of contexts in the future. 

Assume Φ  is the container for useful contexts. Given a set of existing useful 
contexts Φ  and a set of new contexts ∆Φ , the effectiveness of a new context 

iC ∆Φ∈ , ),( iCE Φ , is measured by the iC -related reduction in errors which results 

from adding the new context set ∆Φ  to the useful context set Φ  :  

),(#),(#),( iii CErrorCErrorCE ∆Φ+Φ−Φ=Φ             (6) 

Here, ),(# iCError Φ  is the number of iC -related chunking errors before ∆Φ  is 

added to Φ  and ),(# iCError ∆Φ+Φ  is the number of iC -related chunking errors 

after ∆Φ  is added to Φ . That is, ),( iCE Φ  is the number of the chunking error 

corrections made on the context iC ∆Φ∈  when ∆Φ  is added to Φ . If 0),( >Φ iCE , 

we declare that the new context iC  is a useful context and should be added to Φ . 

Otherwise, the new context iC  is considered useless and discarded. 

Given the above error-driven learning approach, we initialize }{ ip=Φ (i.e. we 

assume all the current word atom formation patterns are useful contexts) and choose 
one of the other context types as the new context set ∆Φ , e.g. }{ ii wp=Φ . Then, we 

can train two MIIMs with different output models using Φ  and ∆Φ+Φ  
respectively. Moreover, useful contexts are learnt on the training data in a two-fold 
way. For each fold, two MIIMs are trained on 50% of the training data and for each 
new context iC  in ∆Φ , evaluate its effectiveness ),( iCE Φ  on the remaining 50% of 

the training data according to the context effectiveness measure as shown in Equation 
(6). If 0),( >Φ iCE ,  iC  is marked as a useful context and added to Φ . In this way, 

all the useful contexts in ∆Φ are incorporated into the useful context set Φ . Similarly, 
we can include useful contexts of other context types into the useful context set Φ one 
by one. In this paper, various types of contexts are learnt one by one in the exact same 
order as shown in Section 2.2. Finally, since different types of contexts may have 
cross-effects, the above process is iterated with the renewed useful context set Φ  
until very few useful contexts can be found at each loop. Our experiments show that 
iteration converges within four loops. 

3   Experimental Results 

All of our experiments are evaluated on the PK and CTB benchmark corpora used in 
the First SIGHAN Chinese word segmentation bakeoff7 with the closed configuration. 
That is, only the training data from the particular corpus is used during training. For 
unknown word detection, the chunking training data is derived by using the same 
Maximum Matching Algorithm (MMA) to segment each word in the original training 
data as a chunk of word atoms. This is done in a two-fold way. For each fold, the 

                                                           
7 http://www.sighan.org/bakeoff2003/  
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MMA is trained on 50% of the original training data and then used to segment the 
remaining 50% of the original training data. Then the MIIM is used to train a 
chunking model for unknown word detection on the chunking training data. Table 1 
shows the details of the two corpora. Here, OOV is defined as the percentage of 
words in the test corpus not occurring in the training corpus and indicates the out-of-
vocabulary rate in the test corpus. 

Table 1. Statistics of the corpora used in our evaluation 

Corpus Abbreviation OOV Training Data Test Data 
Beijing University PK 6.9% 1100K words 17K words 
UPENN Chinese Treebank CTB 18.1% 250K words 40K words 

Table 2 shows the detailed performance of our system in unknown word detection 
and Chinese word segmentation as a whole using the standard scoring script8 on the 
test data. In this and subsequent tables, various evaluation measures are provided: 
precision (P), recall (R), F-measure, recall on out-of-vocabulary words ( OOVR ) and 

recall on in-vocabulary words ( IVR ). It shows that our system achieves 

precision/recall/F-measure of 93.5%/96.1%/94.8 and 90.5%/90.1%/90.3 on the PK 
and CTB corpora respectively. Especially, our chunking approach can successfully 
detect 80.5% and 77.6% of unknown words on the PK and CTB corpora respectively.  

Table 2. Detailed performance of our system on the 1st SIGHAN Chinese word segmentation 
benchmark data 

Corpus P R F 
OOVR  IVR  

PK 93.5 96.1 94.8 80.5 97.3 

CTB 90.5 90.1 90.3 77.6 92.9 

Table 3 and Table 4 compare our system with other best-reported systems on the 
PK and CTB corpora respectively. Table 3 shows that our chunking approach in 
unknown word detection outperforms others by more than 8% on the PK corpus. It 
also shows that our system performs comparably with the best reported systems on 
the PK corpus when the out-of-vocabulary rate is moderate(6.9%). Our performance 
in Chinese word segmentation as a whole is somewhat pulled down by the lower 
performance in recalling in-vocabulary words. This may be due to the preference of 
our chunking strategy in detecting unknown words by wrongly combining some of in-
vocabulary words into unknown words. Such preference may cause negative effect in 
Chinese word segmentation as a whole when the gain in unknown word detection 
fails to compensate the loss in wrongly combining some of in-vocabulary words into 
unknown words. This happens when the out-of-vocabulary rate is not high, e.g. on the 

                                                           
8 http://www.sighan.org/bakeoff2003/score  
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PK corpus. Table 4 shows that our chunking approach in unknown word detection 
outperforms others by more than 7% on the CTB corpus. It also shows that our 
system outperforms the other best-reported systems by more than 2% in Chinese word 
segmentation as a whole on the CTB corpus. This is largely due to the huge gain in 
unknown word detection when the out-of-vocabulary rate is high (e.g. 18.1% in the 
CTB corpus), even though our system performs worse on recalling in-vocabulary 
words than others. Evaluation on both the PK and CTB corpora shows that our 
chunking approach can successfully detect about 80% of unknown words on corpora 
with a large range of the out-of-vocabulary rates. This suggests the powerfulness of 
using various word formation patterns of word atoms in detecting unknown words. 
This also demonstrates the effectiveness and robustness of our chunking approach in 
unknown word detection of Chinese word segmentation and its portability to different 
genres. 

Table 3. Comparison of our system with other best-reported systems on the PK corpus 

Corpus P R F 
OOVR  IVR  

Ours 93.5 96.1 94.8 80.5 97.3 

Zhang et al [25] 94.0 96.2 95.1 72.4 97.9 

Wu [26] 93.8 95.5 94.7 68.0 97.6 

Chen [27] 93.8 95.5 94.6 64.7 97.7 

Table 4. Comparison of our system with other best-reported systems on the CTB corpus 

Corpus P R F 
OOVR  IVR  

Ours 90.5 90.1 90.3 77.6 92.9 

Zhang et al [25] 87.5 88.6 88.1 70.5 92.7 

Duan et al [28] 85.6 89.2 87.4 64.4 94.7 

Finally, Table 5 and Table 6 compare our error-driven learning approach with the 
frequency filtering approach in learning useful contexts for the output model of MIIM 
on the PK and CTB corpora respectively. Due to memory limitation, at most 400K 
useful contexts are considered in the frequency filtering approach. First, they show 
that the error-driven learning approach is much more effective than the simple 
frequency filtering approach. With the same number of useful contexts, the error-
driven learning approach outperforms the frequency filtering approach by 7.8%/0.6% 
and 5.5%/0.8% in OOVR (unknown word detection)/F-measure(Chinese word 

segmentation as a whole) on the PK and CTB corpora respectively. Moreover, the 
error-driven learning approach slightly outperforms the frequency filtering approach 
with the best configuration of 2.5 and 3.5 times of useful contexts. Second, they show 
that increasing the number of frequently occurring contexts using the frequency 
filtering approach may not increase the performance. This may be due to that some of 
frequently occurring contexts are noisy or useless and including them may have 
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negative effect. Third, they show that the error-driven learning approach is effective 
in learning useful contexts by reducing 96-98% of possible contexts. Finally, the 
figures inside parentheses show the number of useful patterns shared between the 
error-driven learning approach and the frequency filtering approach. They show that 
about 40-50% of useful contexts selected using the error-driven learning approach do 
not occur frequently in the useful contexts selected using the frequency filtering 
approach. 

Table 5. Comparison of the error-driven learning approach with the frequency filtering 
approach in learning useful contexts for the output model of MIIM on the PK corpus (Total 
number of possible contexts: 4836K) 

Approach #useful contexts F 
OOVR  IVR  

Error-Driven Learning 98K 94.8 80.5 97.3 

Frequency Filtering 98K (63K) 94.2 72.7 97.4 

Frequency Filtering (best performance) 250K (90K) 94.7 80.2 97.3 

Frequency Filtering 400K (94K) 94.6 79.1 97.1 

Table 6. Comparison of the error-driven learning approach with the frequency filtering 
approach in learning useful contexts for the output model of MIIM on the CTB corpus (Total 
number of possible contexts: 1038K) 

Approach #useful contexts F 
OOVR  IVR  

Error-Driven Learning 43K 90.3 77.6 92.9 

Frequency Filtering 43K (21K) 89.5 72.1 92.8 

Frequency Filtering (best performance) 150K 90.1 76.1 93.0 

Frequency Filtering 400K (40K) 89.9 75.8 92.9 

4   Conclusion 

In this paper, a chunking strategy is presented to detect unknown words in Chinese 
word segmentation by chunking one or more word atoms together according to the 
various word formation patterns of the word atoms. Besides, a maximum entropy 
model is applied to integrate various types of contexts and resolve the data sparseness 
problem in our strategy. Finally, an error-driven learning approach is proposed to 
learn useful contexts in the maximum entropy model. In this way, the number of 
contexts in the maximum entropy model can be significantly reduced without 
performance decrease. This makes it possible for further improving the performance 
by considering more various types of contexts. Evaluation on the PK and CTB 
corpora in the First SIGHAN Chinese word segmentation bakeoff shows that our 
chunking strategy can detect about 80% of unknown words on both of the corpora and 
outperforms the best-reported systems by 8.1% and 7.1% in unknown word detection 
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on them respectively. While our Chinese word segmentation system with chunking-
based unknown word detection performs comparably with the best systems on the PK 
corpus when the out-of-vocabulary rate is moderate(6.9%), our system significantly 
outperforms others by more than 2% when the out-of-vocabulary rate is high(18.1%). 
This demonstrates the effectiveness and robustness of our chunking strategy in 
unknown word detection of Chinese word segmentation and its portability to different 
genres. 
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