
R. Dale et al. (Eds.): IJCNLP 2005, LNAI 3651, pp. 507 – 518, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Exploring Syntactic Relation Patterns
for Question Answering

Dan Shen1,2, Geert-Jan M. Kruijff
1, and Dietrich Klakow2

1 Department of Computational Linguistics, Saarland University,
Building 17, Postfach 15 11 50, 66041 Saarbruecken, Germany

{dshen, gj}@coli.uni-sb.de
2 Lehrstuhl Sprach Signal Verarbeitung,Saarland University,

Building 17, Postfach 15 11 50, 66041 Saarbruecken, Germany
{dietrich.klakow}@lsv.uni-saarland.de

Abstract. In this paper, we explore the syntactic relation patterns for open-
domain factoid question answering. We propose a pattern extraction method to
extract the various relations between the proper answers and different types of
question words, including target words, head words, subject words and verbs,
from syntactic trees. We further propose a QA-specific tree kernel to partially
match the syntactic relation patterns. It makes the more tolerant matching be-
tween two patterns and helps to solve the data sparseness problem. Lastly, we
incorporate the patterns into a Maximum Entropy Model to rank the answer
candidates. The experiment on TREC questions shows that the syntactic rela-
tion patterns help to improve the performance by 6.91 MRR based on the com-
mon features.

1 Introduction

Question answering is to find answers for open-domain natural language questions in
a large document collection. A typical QA system usually consists of three basic
modules: 1. Question Processing (QP) Module, which finds some useful information
from questions, such as expected answer type and key words; 2. Information Retrieval
(IR) Module, which searches a document collection to retrieve a set of relevant sen-
tences using the key words; 3. Answer Extraction (AE) Module, which analyzes the
relevant sentences using the information provided by the QP module and identify the
proper answer. In this paper, we will focus on the AE module.

In order to find the answers, some evidences, such as expected answer types and
surface text patterns, are extracted from answer sentences and incorporated in the AE
module using a pipelined structure, a scoring function or some statistical-based meth-
ods. However, the evidences extracted from plain texts are not sufficient to identify a
proper answer. For examples, for “Q1910: What are pennies made of?”, the expected
answer type is unknown; for “Q21: Who was the first American in space?”, the sur-
face patterns may not detect the long-distance relations between the question key
phrase “the first American in space” and the answer “Alan Shepard” in “… that car-
ried Alan Shepard on a 15 - minute suborbital flight in 1961 , making him the first

508 D. Shen, G.-J.M. Kruijff, and D. Klakow

American in space.” To solve these problems, more evidences need to be extracted
from the more complex data representations, such as parse trees.

In this paper, we explore the syntactic relation patterns (SRP) for the AE module.
An SRP is defined as a kind of relation between a question word and an answer can-
didate in the syntactic tree. Different from the textual patterns, the SRPs capture the
relations based on the sentence syntactic structure rather than the sentence surface.
Therefore, they may get the deeper understanding of the relations and capture the long
range dependency between words regardless of their ordering and distance in the
surface text. Based on the observation of the task, we find that the syntactic relations
between different types of question words and answers vary a lot with each other. We
classify the question words into four classes, including target words, head words,
subject phrases and verbs, and generate the SRPs for them respectively. Firstly, we
generate the SRPs from the training data and score them based on the support and
confidence measures. Next, we propose a QA-specific tree kernel to calculate the
similarity between two SRPs in order to match the patterns from the unseen data into
the pattern set. The tree kernel makes the partial matching between two patterns and
helps to solve the data sparseness problem. Lastly, we incorporate the SRPs into a
Maximum Entropy Model along with some common features to classify the answer
candidates. The experiment on TREC questions shows that the syntactic relation
patterns improve the performance by 6.91 MRR based on the common features.

Although several syntactic relations, such as subject-verb and verb-object, have
been also considered in some other systems, they are basically extracted using a small
number of hand-built rules. As a result, they are limited and costly. In our task, we
automatically extract the various relations between different question words and an-
swers and more tolerantly match the relation patterns using the tree kernel.

2 Related Work

The relations between answers and question words have been explored by many suc-
cessful QA systems based on certain sentence representations, such as word sequence,
logic form, parse tree, etc.

In the simplest case, a sentence is represented as a sequence of words. It is as-
sumed that, for certain type of questions, the proper answers always have certain
surface relations with the question words. For example, “Q: When was X born?”, the
proper answers often have such relation “<X> (<Answer>--“ with the question
phrase X . [14] first used a predefined pattern set in QA and achieved a good per-
formance at TREC10. [13] further developed a bootstrapping method to learn the
surface patterns automatically. When testing, most of them make the partial matching
using regular expression. However, such surface patterns strongly depend on the
word ordering and distance in the text and are too specific to the question type.

LCC [9] explored the syntactic relations, such as subject, object, prepositional at-
tachment and adjectival/adverbial adjuncts, based on the logic form transformation.
Furthermore they used a logic prover to justify the answer candidates. The prover is
accurate but costly.

Most of the QA systems explored the syntactic relations on the parse tree. Since
such relations do not depend on the word ordering and distance in the sentence, they
may cope with the various surface expressions of the sentence. ISI [7] extracted the

 Exploring Syntactic Relation Patterns for Question Answering 509

relations, such as “subject-verb” and “verb-object”, in the answer sentence tree and
compared with those in the question tree. IBM’s Maximum Entropy-based model
[10] integrated a rich feature set, including words co-occurrence scores, named entity,
dependency relations, etc. For the dependency relations, they considered some prede-
fined relations in trees by partial matching. BBN [15] also considered the verb-
argument relations.

However, most of the current QA systems only focus on certain relation types,
such as verb-argument relations, and extract them from the syntactic tree using some
heuristic rules. Therefore, extracting such relations is limited in a very local context
of the answer node, such as its parent or sibling nodes, and does not involve long
range dependencies. Furthermore, most of the current systems only concern the rela-
tions to certain type of question words, such as verb. In fact, different types of ques-
tion words may have different indicative relations with the proper answers. In this
paper, we will automatically extract more comprehensive syntactic relation patterns
for all types of question words, partially match them using a QA-specific tree kernel
and evaluate their contributions by integrating them into a Maximum Entropy Model.

3 Syntactic Relation Pattern Generating

In this section, we will discuss how to extract the syntactic relation patterns. Firstly,
we briefly introduce the question processing module which provides some necessary
information to the answer extraction module. Secondly, we generate the dependency
tree of the answer sentence and map the question words into the tree using a Modified
Edit Distance (MED) algorithm. Thirdly, we define and extract the syntactic relation
patterns in the mapped dependency tree. Lastly, we score and filter the patterns.

3.1 Question Processing Module

The key words are extracted from the questions. Considering that different key words
may have different syntactic relations with the answers, we divide the key words into
the following four types:

1. Target Words, which are extracted from what / which questions. Such words indi-
cate the expected answer types, such as “party” in “Q1967: What party led …?”.

2. Head Words, which are extracted from how questions. Such words indicate the
expected answer heads, such as “dog” in the “Q210: How many dogs pull …?”

3. Subject Phrases, which are extracted from all types of questions. They are the base
noun phrases of the questions except the target words and the head words.

4. Verbs, which are the main verbs extracted from non-definition questions.

The key words described above are identified and classified based on the question
parse tree. We employ the Collins Parser [2] to parse the questions and the answer
sentences.

3.2 Question Key Words Mapping

From this section, we start to introduce the AE module. Firstly, the answer sentences
are tagged with named entities and parsed. Secondly, the parse trees are transformed

510 D. Shen, G.-J.M. Kruijff, and D. Klakow

to the dependency trees based on a set of rules. To simplify a dependency tree, some
special rules are used to remove the non-useful nodes and dependency information.
The rules include

1. Since the question key words are always NPs and verbs, only the syntactic rela-
tions between NP and NP / NP and verb are considered.

2. The original form of Base Noun Phrase (BNP) is kept and the dependency relations
within the BNPs are not considered, such as adjective-noun. A base noun phrase is
defined as the smallest noun phrase in which there are no noun phrases embedded.

An example of the dependency tree is shown in Figure 1. We regard all BNP
nodes and leaf nodes as answer candidates.

Fig. 1. Dependency tree and Tagged dependency tree

Next, we map the question key words into the simplified dependency trees. We
propose a weighted edit distance (WED) algorithm, which is to find the similarity
between two phrases by computing the minimal cost of operations needed to transform
one phrase into the other, where an operation is an insertion, deletion, or substitution.

Different from the commonly-used edit distance algorithm [11], the WED defines
the more flexible cost function which incorporates the morphological and semantic
alternations of the words. The morphological alternations indicate the inflections of
noun/verb. For example, for Q2149: How many Olympic gold medals did Carl Lewis
win? We map the verb win to the nominal winner in the answer sentence “Carl
Lewis, winner of nine Olympic gold medals, thinks that …”. The morphological alter-
nations are found based on a stemming algorithm and the “derivationally related
forms” in WordNet [8]. The semantic alternations consider the synonyms of the
words. Some types of the semantic relations in WordNet enable the retrieval of syno-
nyms, such as hypernym, hyponym, etc. For example, for Q212: Who invented the
electric guitar? We may map the verb invent to its direct hypernym create in answer
sentences. Based on the observation of the task, we set the substitution costs of the
alternations as follows: Identical words have cost 0; Words with the same morpho-
logical root have cost 0.2; Words with the hypernym or hyponym relations have cost

tagged dependency tree dependency tree
live

BNP
NER_PER

Ellington

BNP
NER_LOC

BNP

Washington his early NNP 20s

NER_DAT

VER

VER: the verb of the question
SUB: the subject words of the question
TGT_HYP: the hypernym of the target word of the question

live

BNP
NER_PER

SUB

Ellington

BNP
NER_LOC
TGT_HYP

BNP

Washington his early NNP 20s

NER_DAT

Q1916: What city did Duke Ellington live in?
A: Ellington lived in Washington until his early 20s.

 Exploring Syntactic Relation Patterns for Question Answering 511

0.4; Words in the same SynSet have cost 0.6; Words with subsequence relations have
cost 0.8; otherwise, words have cost 1. Figure 1 also shows an example of the tagged
dependency tree.

3.3 Syntactic Relation Pattern Extraction

A syntactic relation pattern is defined as the smallest subtree which covers an answer
candidate node and one question key word node in the dependency tree. To capture
different relations between answer candidates and different types of question words,
we generate four pattern sets, called PSet_target, PSet_head, PSet_subject and
PSet_verb, for the answer candidates. The patterns are extracted from the training
data. Some pattern examples are shown in Table 1. For a question Q, there are a set
of relevant sentences SentSet. The extraction process is as follows:

1. for each question Q in the training data
2. question processing model extract the key words of Q
3. for each sentence s in SentSet

a) parse s
b) map the question key words into the parse tree
c) tag all BNP nodes in the parse tree as answer candidates.
d) for each answer candidate (ac) node

 for each question word (qw) node
 extract the syntactic relation pattern (srp) for ac and qw

 add srp to PSet_target, PSet_head, PSet_subject or
PSet_verb based on the types of qw.

Table 1. Examples of the patterns in the four pattern sets

PatternSet Patterns Sup. Conf.
(NPB~AC~TGT) 0.55 0.22
(NPB~AC~null (NPB~null~TGT)) 0.08 0.06 PSet_target
(NPB~null~null (NPB~AC~null) (NPB~null~TGT)) 0.02 0.09

PSet_head (NPB~null~null (CD~AC~null) (NPB~null~HEAD)) 0.59 0.67
(VP~null~null (NPB~null~SUB) (NPB~null~null
(NPB~AC~null)))

0.04 0.33
PSet_subject

(NPB~null~null (NPB~null~SUB) (NPB~AC~null)) 0.02 0.18

PSet_verb (VP~null~VERB (NPB~AC~null)) 0.18 0.16

3.4 Syntactic Relation Pattern Scoring

The patterns extracted in section 3.3 are scored by support and confidence measures.
Support and confidence measures are most commonly used to evaluate the association
rules in the data mining area. The support of a rule is the proportion of times the rule
applies. The confidence of a rule is the proportion of times the rule is correct. In our
task, we score a pattern by measuring the strength of the association rule from the
pattern to the proper answer (the pattern is matched => the answer is correct). Let pi
be any pattern in the pattern set PSet ,

512 D. Shen, G.-J.M. Kruijff, and D. Klakow

the number of in which is correct
support()

the size of

p acipi PSet
=

the number of in which is correct
confidence()

the number of

p acipi pi
=

We score the patterns in the PSet_target, PSet_head, PSet_subject and PSet_verb

respectively. If the support value is less than the threshold supt or the confidence

value is less than the threshold conft , the pattern is removed from the set. In the ex-

periment, we set supt 0.01 and conft 0.5. Table 1 lists the support and confidence of

the patterns.

4 Syntactic Relation Pattern Matching

Since we build the pattern sets based on the training data in the current experiment,
the pattern sets may not be large enough to cover all of the unseen cases. If we make
the exact match between two patterns, we will suffer from the data sparseness prob-
lem. So a partial matching method is required. In this section, we will propose a QA-
specific tree kernel to match the patterns.

A kernel function 1 2(,) : [0,]K x x × →X X R , is a similarity measure between

two objects 1x and 2x with some constraints. It is the most important component of

kernel methods [16]. Tree kernels are the structure-driven kernels used to calculate
the similarity between two trees. They have been successfully accepted in the natural
language processing applications, such as parsing [4], part of speech tagging and
named entity extraction [3], and information extraction [5, 17]. To our knowledge,
tree kernels have not been explored in answer extraction.

Suppose that a pattern is defined as a tree T with nodes 0 1{ , , ..., }nt t t and each node

it is attached with a set of attributes 0 1{ , , ..., }ma a a , which represent the local charac-

teristics of ti . In our task, the set of the attributes include Type attributes, Ortho-

graphic attributes and Relation Role attributes, as shown in Table 2. Figure 2 shows
an example of the pattern tree T_ac#target.

The core idea of the tree kernel (,)1 2K T T is that the similarity between two trees

T1 and T2 is the sum of the similarity between their subtrees. It can be calculated by
dynamic programming and can capture the long-range relations between two nodes.
The kernel we use is similar to [17] except that we define a task-specific matching
function and similarity function, which are two primitive functions to calculate the
similarity between two nodes in terms of their attributes.

Matching function
1 if . . and . .

(,)
0 otherwise

i j i j

i j

t type t type t role t role
m t t

= =
=
⎧
⎨
⎩

 Exploring Syntactic Relation Patterns for Question Answering 513

Similarity function
0{ ,..., }

(,) (. , .)
i j i j

ma a a

s t t f t a t a
∈

= ∑

where, (. , .)
i j

f t a t a is a compatibility function between two feature values

. .
(. , .)

1 if

0 otherwise

i j

i j

t a t a
f t a t a =

=⎧
⎨
⎩

Table 2. Attributes of the nodes

Attributes Examples

POS tag CD, NNP, NN… Type

syntactic tag NP, VP, …
Is Digit? DIG, DIGALL

Is Capitalized? CAP, CAPALL

Orthographic

length of phrase LNG1, LNG2#3, LNGgt3
Role1 Is answer candidate? true, false

Role2 Is question key words? true, false

Fig. 2. An example of the pattern tree T_ac#target

5 ME-Based Answer Extraction

In addition to the syntactic relation patterns, many other evidences, such as named
entity tags, may help to detect the proper answers. Therefore, we use maximum en-
tropy to integrate the syntactic relation patterns and the common features.

5.1 Maximum Entropy Model

[1] gave a good description of the core idea of maximum entropy model. In our task,
we use the maximum entropy model to rank the answer candidates for a question,

T_ac#target

Q1897: What is the name of the airport in Dallas Ft. Worth?
S: Wednesday morning, the low temperature at the Dallas-Fort Worth Inter-
national Airport was 81 degrees.

t4 t3 t2

T: BNP
O: null
R1: true
R2: false

t1

Dallas-Fort
T: NNP
O: CAPALL
R1: false
R2: false

International
T: JJ
O: CAPALL
R1: false
R2: false

Airport
T: NNP
O: CAPALL
R1: false
R2: true

t0

Worth
T: NNP
O: CAPALL
R1: false
R2: false

514 D. Shen, G.-J.M. Kruijff, and D. Klakow

which is similar to [12]. Given a question q and a set of possible answer candi-

dates 1 2{ , ... }nac ac ac , the model outputs the answer 1 2{ , ... }nac ac ac ac∈ with the

maximal probability from the answer candidate set. We define M feature func-

tions 1 2(,{ , ... },), m=1,...,Mm nf ac ac ac ac q . The probability is modeled as

1 2
1

1 2

1 2
' 1

exp[(,{ , ... },))]
(| { , ... },)

exp[(',{ , ... },)]

M

m m n
m

n M

m m n
ac m

f ac ac ac ac q
P ac ac ac ac q

f ac ac ac ac q

λ

λ
=

=

∑
=
∑ ∑

where, (m=1,...,M)mλ are the model parameters, which are trained with General-

ized Iterative Scaling [6]. A Gaussian Prior is used to smooth the ME model.

Table 3. Examples of the common features

Features Examples Explanation

NE#DAT_QT_DAT ac is NE (DATE) and qtarget is DATE NE

NE#PER_QW_WHO ac is NE (PERSON) and qword is WHO
SSEQ_Q ac is a subsequence of question

CAP_QT_LOC ac is capitalized and qtarget is LOCATION

Ortho-
graphic

LNGlt3_QT_PER the length of ac ≤ 3 and qtarget is PERSON
CD_QT_NUM syn. tag of ac is CD and qtarget is NUM Syntactic

Tag NNP_QT_PER syn. tag of ac is NNP and qtarget is PERSON

Triggers TRG_HOW_DIST ac matches the trigger words for HOW questions which
ask for distance

5.2 Features

For the baseline maximum entropy model, we use four types of common features:

1. Named Entity Features: For certain question target, if the answer candidate is
tagged as certain type of named entity, one feature fires.

2. Orthographic Features: They capture the surface format of the answer candi-
dates, such as capitalizations, digits and lengths, etc.

3. Syntactic Tag Features: For certain question target, if the word in the answer
candidate belongs to a certain syntactic / POS type, one feature fires.

4. Triggers: For some how questions, there are always some trigger words which are
indicative for the answers. For example, for “Q2156: How fast does Randy John-
son throw?”, the word “mph” may help to identify the answer “98-mph” in “John-
son throws a 98-mph fastball.”

Table 3 shows some examples of the common features. All of the features are the
binary features. In addition, many other features, such as the answer candidate fre-
quency, can be extracted based on the IR output and are thought as the indicative
evidences for the answer extraction [10]. However, in this paper, we are to evaluate
the answer extraction module independently, so we do not incorporate such features
in the current model.

 Exploring Syntactic Relation Patterns for Question Answering 515

In order to evaluate the effectiveness of the automatically generated syntactic rela-
tion patterns, we also manually build some heuristic rules to extract the relation fea-
tures from the trees and incorporate them into the baseline model. The baseline
model uses 20 rules. Some examples of the hand-extracted relation features are
listed as follows,

 If the ac node is the same of the qtarget node, one feature fires.
 If the ac node is the sibling of the qtarget node, one feature fires.
 If the ac node is the child of the qsubject node, one feature fires.
 …

Next, we will discuss the use of the syntactic relation features. Firstly, for each
answer candidate, we extract the syntactic relations between it and all mapped ques-
tion key words in the sentence tree. Then for each extracted relation, we match it in
the pattern set PSet_target, PSet_head, PSet_subject or PSet_verb. A tree kernel
discussed in Section 4 is used to calculate the similarity between two patterns. Fi-
nally, if the maximal similarity is above a threshold λ , the pattern with the maximal
similarity is chosen and the corresponding feature fires. The experiments will evalu-
ate the performance and the coverage of the pattern sets based on different λ values.

6 Experiment

We apply the AE module to the TREC QA task. Since this paper focuses on the AE
module alone, we only present those sentences containing the proper answers to the
AE module based on the assumption that the IR module has got 100% precision. The
AE module is to identify the proper answers from the given sentence collection.

We use the questions of TREC8, 9, 2001 and 2002 for training and the questions of
TREC2003 for testing. The following steps are used to generate the data:

1. Retrieve the relevant documents for each question based on the TREC judgments.
2. Extract the sentences, which match both the proper answer and at least one ques-

tion key word, from these documents.
3. Tag the proper answer in the sentences based on the TREC answer patterns.

In TREC 2003, there are 413 factoid questions in which 51 questions (NIL ques-
tions) are not returned with the proper answers by TREC. According to our data
generation process, we cannot provide data for those NIL questions because we can-
not get the sentence collections. Therefore, the AE module will fail on all of the NIL
questions and the number of the valid questions should be 362 (413 – 51). In the
experiment, we still test the module on the whole question set (413 questions) to keep
consistent with the other’s work. The training set contains 1252 questions. The per-
formance of our system is evaluated using the mean reciprocal rank (MRR). Fur-
thermore, we also list the percentages of the correct answers respectively in terms of
the top 5 answers and the top 1 answer returned. No post-processes are used to adjust
the answers in the experiments.

In order to evaluate the effectiveness of the syntactic relation patterns in the answer
extraction, we compare the modules based on different feature sets. The first ME
module ME1 uses the common features including NE features, Orthographic features,

516 D. Shen, G.-J.M. Kruijff, and D. Klakow

Syntactic Tag features and Triggers. The second ME module ME2 uses the common
features and some hand-extracted relation features, described in Section 5.2. The
third module ME3 uses the common features and the syntactic relation patterns which
are automatically extracted and partial matched with the methods proposed in Section
3 and 4. Table 4 shows the overall performance of the modules. Both ME2 and ME3
outperform ME1 by 3.15 MRR and 6.91 MRR respectively. This may indicate that
the syntactic relations between the question words and the answers are useful for the
answer extraction. Furthermore, ME3 got the higher performance (+3.76 MRR) than
ME2. The probable reason may be that the relations extracted by some heuristic rules
in ME2 are limited in the very local contexts of the nodes and they may not be suffi-
cient. On the contrary, the pattern extraction methods we proposed can explore the
larger relation space in the dependency trees.

Table 4. Overall performance

 ME1 ME2 ME3
Top1 44.06 47.70 51.81
Top5 53.27 55.45 58.85
MRR 47.75 50.90 54.66

Table 5. Performances for two pattern matching methods

PartialMatch ExactMatch
(λ =1) λ =0.8 λ =0.6 λ =0.4 λ =0.2 λ =0

Top1 50.12 51.33 51.81 51.57 50.12 50.12
Top5 57.87 58.37 58.85 58.60 57.16 57.16
MRR 53.18 54.18 54.66 54.41 52.97 52.97

Furthermore, we evaluate the effectiveness of the pattern matching method in Sec-
tion 4. We compare two pattern matching methods: the exact matching (ExactMatch)
and the partial matching (PartialMatch) using the tree kernel. Table 5 shows the
performances for the two pattern matching methods. For PartialMatch, we also
evaluate the effect of the parameter λ (described in Section 5.2) on the performance.
In Table 5, the best PartialMatch (λ = 0.6) outperforms ExactMatch by 1.48 MRR.
Since the pattern sets extracted from the training data is not large enough to cover the
unseen cases, ExactMatch may have too low coverage and suffer with the data sparse-
ness problem when testing, especially for PSet_subject (24.32% coverage using Ex-
actMatch vs. 49.94% coverage using PartialMatch). In addition, even the model with
ExactMatch is better than ME2 (common features + hand-extracted relations) by 2.28
MRR. It indicates that the relation patterns explored with the method proposed in
Section 3 are more effective than the relations extracted by the heuristic rules.

Table 6 shows the size of the pattern sets PSet_target, PSet_head, PSet_subject
and PSet_verb and their coverage for the test data based on different λ values.
PSet_verb gets the low coverage (<5% coverage). The probable reason is that the
verbs in the answer sentences are often different from those in the questions, therefore
only a few question verbs can be matched in the answer sentences. PSet_head also
gets the relatively low coverage since the head words are only exacted from how
questions and there are only 49/413 how questions with head words in the test data.

 Exploring Syntactic Relation Patterns for Question Answering 517

Table 6. Size and coverage of the pattern sets

coverage (*%) size
λ =1 λ =0.8 λ =0.6 λ =0.4 λ =0.2 λ =0

PSet_target 45 49.85 53.73 57.01 58.14 58.46 58.46
PSet_head 42 5.82 6.48 6.69 6.80 6.80 6.80
PSet_subject 123 24.32 44.82 49.94 51.29 51.84 51.84
PSet_verb 125 2.21 3.49 3.58 3.58 3.58 3.58

We further evaluate the contributions of different types of patterns. We respec-
tively combine the pattern features in different pattern set and the common features.
Some findings can be concluded from Table 7: All of the patterns have the positive
effects based on the common features, which indicates that all of the four types of the
relations are helpful for answer extraction. Furthermore, P_target (+4.21 MRR) and
P_subject (+2.47 MRR) are more beneficial than P_head (+1.25 MRR) and P_verb
(+0.19 MRR). This may be explained that the target and subject patterns may have
the effect on the more test data than the head and verb patterns since PSet_target and
PSet_subject have the higher coverage for the test data than PSet_head and
PSet_verb, as shown in Table 6.

Table 7. Performance on feature combination

Combination of features MRR
common features 47.75
common features + P_target 51.96
common features + P_head 49.00
common features + P_subject 50.22
common features + P_verb 47.94

7 Conclusion

In this paper, we study the syntactic relation patterns for question answering. We
extract the various syntactic relations between the answers and different types of
question words, including target words, head words, subject words and verbs and
score the extracted relations based on support and confidence measures. We further
propose a QA-specific tree kernel to partially match the relation patterns from the
unseen data to the pattern sets. Lastly, we incorporate the patterns and some com-
mon features into a Maximum Entropy Model to rank the answer candidates. The
experiment shows that the syntactic relation patterns improve the performance by
6.91 MRR based on the common features. Moreover, the contributions of the pat-
tern matching methods are evaluated. The results show that the tree kernel-based
partial matching outperforms the exact matching by 1.48 MRR. In the future, we
are to further explore the syntactic relations using the web data rather than the
training data.

518 D. Shen, G.-J.M. Kruijff, and D. Klakow

References

1. Berger, A., Della Pietra, S., Della Pietra, V.: A maximum entropy approach to natural lan-
guage processing. Computational Linguistics (1996), vol. 22, no. 1, pp. 39-71

2. Collins, M.: A New Statistical Parser Based on Bigram Lexical Dependencies. In: Pro-
ceedings of ACL-96 (1996) 184-191

3. Collins, M.: New Ranking Algorithms for Parsing and Tagging: Kernel over Discrete
Structures, and the Voted Perceptron. In: Proceeings of ACL-2002 (2002).

4. Collins, M., Duffy, N.: Convolution Kernels for Natural Language. Advances in Neural
Information Processing Systems 14, Cambridge, MA. MIT Press (2002)

5. Culotta, A., Sorensen, J.: Dependency Tree Kernels for Relation Extraction. In: Proceed-
ings of ACL-2004 (2004)

6. Darroch, J., Ratcliff, D.: Generalized iterative scaling for log-linear models. The annuals
of Mathematical Statistics (1972), vol. 43, pp. 1470-1480

7. Echihabi, A., Hermjakob, U., Hovy, E., Marcu, D., Melz, E., Ravichandran, D.: Multiple-
Engine Question Answering in TextMap. In: Proceedings of the TREC-2003 Conference,
NIST (2003)

8. Fellbaum, C.: WordNet - An Electronic Lexical Database. MIT Press, Cambridge, MA
(1998)

9. Harabagiu, S., Moldovan, D., Clark, C., Bowden, M., Williams, J., Bensley, J.: Answer
Mining by Combining Extraction Techniques with Abductive Reasoning. In: Proceedings
of the TREC-2003 Conference, NIST (2003)

10. Ittycheriah, A., Roukos, S.: IBM's Statistical Question Answering System - TREC 11. In:
Proceedings of the TREC-2002 Conference, NIST (2002)

11. Levenshtein, V. I.: Binary Codes Capable of Correcting Deletions, Insertions and Rever-
sals. Doklady Akademii Nauk SSSR 163(4) (1965) 845-848

12. Ravichandran, D., Hovy, E., Och, F. J.: Statistical QA - Classifier vs. Re-ranker: What's
the difference? In: Proceedings of Workshop on Multilingual Summarization and Question
Answering, ACL (2003)

13. Ravichandran, D., Hovy, E.: Learning Surface Text Patterns for a Question Answering
System. In: Proceedings of ACL-2002 (2002) 41-47

14. Soubbotin, M. M., Soubbotin, S. M.: Patterns of Potential Answer Expressions as Clues to
the Right Answer. In: Proceedings of the TREC-10 Conference, NIST (2001)

15. Xu, J., Licuanan, A., May, J., Miller, S., Weischedel, R.: TREC 2002 QA at BBN: Answer
Selection and Confidence Estimation. In: Proceedings of the TREC-2002 Conference,
NIST (2002)

16. Vapnik, V.: Statistical Learning Theory, John Wiley, NY, (1998) 732.
17. Zelenko, D., Aone, C., Richardella, A.: Kernel Methods for Relation Extraction. Journal of

Machine Learning Research (2003) 1083-1106.

	Introduction
	Related Work
	Syntactic Relation Pattern Generating
	Question Processing Module
	Question Key Words Mapping
	Syntactic Relation Pattern Extraction
	Syntactic Relation Pattern Scoring

	Syntactic Relation Pattern Matching
	ME-Based Answer Extraction
	Maximum Entropy Model
	Features

	Experiment
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

