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Abstract. Machine transliteration is an automatic method to generate characters 
or words in one alphabetical system for the corresponding characters in another 
alphabetical system. There has been increasing concern on machine translitera-
tion as an assistant of machine translation and information retrieval. Three ma-
chine transliteration models, including “grapheme-based model”, “phoneme-
based model”, and “hybrid model”, have been proposed. However, there are 
few works trying to make use of correspondence between source grapheme and 
phoneme, although the correspondence plays an important role in machine 
transliteration. Furthermore there are few works, which dynamically handle 
source grapheme and phoneme. In this paper, we propose a new transliteration 
model based on an ensemble of grapheme and phoneme. Our model makes use 
of the correspondence and dynamically uses source grapheme and phoneme. 
Our method shows better performance than the previous works about 15~23% 
in English-to-Korean transliteration and about 15~43% in English-to-Japanese 
transliteration. 

1   Introduction 

Machine transliteration is an automatic method to generate characters or words in one 
alphabetical system for the corresponding characters in another alphabetical system. 
For example, English word data is transliterated into Korean ‘deita’ 1 and Japanese 
‘deeta’. Transliteration is used to phonetically translate proper names and technical 
terms especially from languages in Roman alphabets to languages in non-Roman 
alphabets such as from English to Korean, Japanese, and Chinese and so on. There 
has been increasing concern on machine transliteration as an assistant of Machine 
Translation (MT) [2], [10], mono-lingual information retrieval (MLIR) [8], [11] and 
cross-lingual information retrieval (CLIR) [6]. In the area of MLIR and CLIR, ma-
chine transliteration bridges the gap between a transliterated localized form and its 
original form by generating all possible transliterated forms from each original form. 
Especially for CLIR, machine transliteration gives a help to query translation where 
proper names and technical terms frequently appear in source language queries. In the 
area of MT, machine transliteration prevents translation failure when translations of 
                                                           
1  In this paper, target language transliterations are represented with their Romanization form in 

a quotation mark (‘’) .  
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proper names and technical terms are not registered in a translation dictionary. A 
machine transliteration system, therefore, may affect the performance of MT, MLIR, 
and CLIR system. 

Three machine transliteration models have been studied: called “grapheme2-based 
transliteration model (ψG)” [7], [8], [9], [11], [12], [13], “phoneme3-based translit-
eration model (ψP)” [10], [12], and “hybrid transliteration model (ψH)” [2], [4], 
[12]. ψG and ψP are classified in terms of units to be transliterated. ψG is referred to 
the direct model because it directly transforms source language graphemes to target 
language graphemes without any phonetic knowledge of source language words. ψP is 
called the pivot model because it makes use of phonemes as a pivot during a translit-
eration process. Therefore ψP usually needs two steps; the first step is to produce 
phonemes from source language graphemes, and the second step is to produce target 
language graphemes from phonemes. ψH combines ψG and ψP with the linear interpo-
lation style. Hereafter, we will use a source grapheme for a source language grapheme 
and a target grapheme for a target language grapheme. 

Though transliteration is the phonetic process (ψP) rather than the orthographic one 
(ψG) [10], we should consider both source grapheme and phoneme to achieve high 
performance in machine transliteration because the standard transliterations are not 
restricted to phoneme-based transliterations4. However, many previous works make 
use of either source grapheme or phoneme. They simplify a machine transliteration 
problem into either ψG or ψP assuming that one of ψG and ψP is able to cover all trans-
literation behaviors. However, transliteration is a complex process, which does not 
rely on either source grapheme or phoneme. For example, the standard Korean trans-
literations of amylase and data are grapheme-based transliteration ‘amillaaje’ and 
phoneme-based transliteration ‘deiteo’, respectively. A machine transliteration model, 
therefore, should reflect the dynamic transliteration behaviors in order to produce the 
correct transliterations.  
ψH has the limited power for producing the correct transliterations because it just 

combines ψG and ψP with the linear interpolation style. ψH does not consider corre-
spondence between source grapheme and phoneme during the transliteration process. 
However the correspondence plays important roles in machine transliteration. For 
example, phoneme /AH/5 produces high ambiguities since it can be mapped to almost 
every single vowels in source language and target language (the underlined grapheme 
corresponds to /AH/: cinema, hostel, holocaust in English, ‘sinema’, ‘hostel’, ‘hol-
lokoseuteu’ in their Korean counterparts, and ‘sinema’, ‘hoseuteru’, ‘horokoosuto’ in 
                                                           
2  Graphemes refer to the basic units (or the smallest contrastive units) of written language: for 

example, English has 26 graphemes or letters, Korean has 24, and German has 30. 
3  Phonemes are the simplest significant unit of sound (or the smallest contrastive units of the 

spoken language): for example, the /M/, /AE/, and /TH/ in math. 
4  In an English-to-Korean transliteration test set [14], we find that about 60% are phoneme-

based transliterations, while about 30% are grapheme-based ones. The others are translitera-
tions generated by combining ψG and ψP. 

5  ARPAbet symbol will be used for representing phonemes. ARPAbet is one of the methods 
used for coding phonemes into ASCII characters (www.cs.cmu.edu/~laura/pages/arpabet.ps). 
In this paper, we will denote phonemes and pronunciation with two slashes like so : /AH/.  
Pronunciation represented in this paper is based on The CMU Pronunciation Dictionary and 
The American Heritage(r) Dictionary of the English Language.  
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their Japanese counterparts). If we know the correspondence between source graph-
eme and phoneme in this context, then we can more easily infer the correct translitera-
tion of /AH/, since a target grapheme of /AH/ usually depends on a source grapheme 
corresponding to /AH/. Korean transliterations of source grapheme a is various such 
as ‘a’, ‘ei’, ‘o’, ‘eo’ and so on. Like the previous example, correspondence makes it 
possible to reduce transliteration ambiguities like Table 1. In Table 1, the underlined 
source grapheme a in the example column is pronounced as the phoneme in the pho-
neme column. The correct Korean transliterations of source grapheme a can be more 
easily found, like in the Korean grapheme column, by means of phonemes in the 
phoneme column. 

Table 1. Examples of Korean graphemes derived from source grapheme a and its correspond-
ing phoneme: the underline indicates source graphemes corresponding to each phoneme in the 
phoneme column 

Korean grapheme  Phoneme  Example 
‘a’ /AA/ adagio,  safari, vivace 
‘ae’ /AE/ advantage, alabaster, travertine 
‘ei’ /EY/ chamber, champagne, chaos 
‘i’ /IH/ advantage, average, silage 
‘o’ /AO/ allspice, ball, chalk 

In this paper, we propose a new machine transliteration model based on an ensem-
ble of source grapheme and phoneme, symbolized as ψC (“correspondence-based 
transliteration model”). ψC has two strong points over ψG, ψP, and ψH. First, ψC can 
produce transliterations by considering correspondence between source grapheme and 
phoneme. As described above, correspondence is very useful for reducing translitera-
tion ambiguities. From the viewpoint of reducing the ambiguities, ψC has an advan-
tage over ψG, ψP, and ψH because ψC can more easily reduce the ambiguities by con-
sidering the correspondence. Second, ψC can dynamically handle source grapheme 
and phoneme according to their contexts. Because of this property, ψC can produce 
grapheme-based transliterations as well as phoneme-based transliterations. It can also 
produce a transliteration, where one part is a grapheme-based transliteration and the 
other part is a phoneme-based transliteration. For example, the Korean transliteration 
of neomycin, ‘neomaisin’, where ‘neo’ is a grapheme-based transliteration and 
‘maisin’ is a phoneme-based transliteration. 

2   Correspondence-Based Machine Transliteration Model 

Correspondence-based transliteration model (ψC) is composed of two component 
functions (ψC: δp×δt). In this paper, we refer to δp as a function for “producing pro-
nunciation” and δt as a function for “producing target grapheme”. First, δp pro-
duces pronunciation and then δt produces target graphemes with correspondence be-
tween source grapheme and phoneme produced by δp. The goal of the δp is to produce 
the most probable sequence of phonemes corresponding to source graphemes. For 
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example, δp produces /B/, /AO/, /~/6, /R/, and /D/ for each source grapheme, b, o, a, r, 
and d in board (see “The result of δp” in the right side of Fig 1). In this step, pronun-
ciation is generated through two ways; pronunciation dictionary search and pro-
nunciation estimation. A pronunciation dictionary contains the correct pronunciation 
corresponding to English words. Therefore, English words are first investigated 
whether they are registered in the dictionary otherwise their pronunciation is esti-
mated by pronunciation estimation. The goal of δt is to produce the most probable 
sequence of target graphemes with correspondence between source grapheme and 
phoneme, which is the result of δp. For example, δt produces ‘b’, ‘o’, ‘~’, ‘~’, and 
‘deu’ using the result of δp, b-/B/, o-/AO/, a-/~/, r-/R/, and d-/D/ (see “The result of δt” 
in the right side of Fig 1). Finally, the target language transliteration, such as the Ko-
rean transliteration ‘bodeu’ for board, can be acquired by concatenating the sequence 
of target graphemes in the result of δt. 

English word

Training Data 
for PE

Training Data for
�t

Dictionary searchDictionary search

�t�t

Transliterations

Pronunciation 
Dictionary

Pronunciation 
Estimation

Pronunciation 
Estimation

board

/D//R//~//AO//B/

draob

/D//R//~//AO//B/

‘deu’~~‘o’‘b’

draob

�p�p

�p�p

�t�t

Result of �p

The result of �pThe result of �p

The result of �tThe result of �t

‘bodeu’

�p: Producing Pronunciation
�t : Producing Target Grapheme
�p: Producing Pronunciation
�t : Producing Target Grapheme

 

Fig. 1. The overall system architecture 

Table 2. Feature types used for correspondence-based transliteration model: where S is a set of 
source graphemes (e.g. English alphabets), P is a set of phonemes defined in ARPABET, T is a 
set of target graphemes. Note that fS,GS is a symbol for indicating both fS and fGS. fP,GP is a sym-
bol for indicating both fP and fGP. 

Feature Type Description Possible feature values 
fS,GS fS Source graphemes Source grapheme in S; 26 alphabets 

for English  
 fGS Source grapheme type Consonant (C), and Vowel (V) 
fP,GP fP Phonemes  Phonemes in P (/AA/, /AE/, etc.) 
 fGP Phoneme type Consonant (C), Vowel (V), Semi-

vowel (SV) and silence (/~/) 
 fT Target graphemes Target graphemes in T 

Pronunciation estimation in δp and δt are trained by machine learning algorithms. 
To train each component function, we need features that represent training instance 

                                                           
6  In this paper, ‘/~/’ represents silence and ‘~’ represents null target grapheme. 
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and data. Table 2 shows five feature types, fS,  fP, fGS, fGP, and fT that our model uses. 
Depending on component functions, different feature types are used. For example, 
δp(si) uses (fS, fGS, fP) and δt(si, δp(si)) does (fS,  fP, fGS, fGP, fT). 

2.1   Producing Pronunciation (δp) 

Producing pronunciation (δp:S→P) is a function that finds phonemes in a set P for 
each source grapheme, where P is a set of phonemes defined in ARPABET, and S is a 
set of source graphemes (e.g. English alphabets). The results of this step can be repre-
sented as a sequence of correspondences between source grapheme and phoneme. We 
will denote it as GP={gp1,gp2,…,gpn; gpi=(si,δp(si))} where si is the ith source graph-
eme of SW=s1,s2,...,sn. Producing pronunciation is composed of two steps. The first 
step involves a search in the pronunciation dictionary, which contains English words 
and their pronunciation. This paper uses The CMU Pronouncing Dictionary7, which 
contains 120,000 English words and their pronunciation. The second step involves 
pronunciation estimation. If an English word is not registered in the pronunciation 
dictionary, we must estimate its pronunciation.  

Table 3. An example of pronunciation estimation for b in board 

Feature type L3 L2 L1 C0 R1 R2 R3 δp(C0) 
fS $ $ $ b o a r 
fGS $ $ $ C V V C 

/B/ 

fP $ $ $      

Let SW=s1,s2,...,sn be an English word, and PSW= p1,p2,...,pn be SW’s pronunciation, 
where si represents the ith grapheme and pi=δp(si). Pronunciation estimation is a task to 
find the most relevant phoneme among a set of all possible phonemes, which can be 
derived from source grapheme si. Table 3 shows an example of pronunciation estima-
tion for b in board. In Table 3, L1~L3 and R1~R3 represent the left contexts and right 
contexts, respectively. C0 means the current context (or focus). δp(C0) means the esti-
mated phoneme of C0. $ is a symbol for representing the start of words. The result can 
be interpreted as follows. The most relevant phoneme of b, /B/, can be produced with 
the context, fS, fGS, and fP in contexts of L1~L3, C0, and R1~R3. Other phonemes for o, 
a, r, and d in board are produced in the same manner. Thus, we can get the pronuncia-
tion of board as /B AO R D/ by concatenating the phoneme sequence. 

2.2   Producing Target Graphemes (δt) 

Producing target graphemes (δt:S×P→T) is a function that finds the target grapheme 
in T for each gpi that is a result of δp. A result of this step, GT, is represented by a 
sequence of gpi and its corresponding target graphemes generated by δt, like GT={gt1, 
gt2 ,…, gtn; gti=(gpi,δt(gpi))}. 

                                                           
7 Available at http://www.speech.cs.cmu.edu/cgi-bin/cmudict 
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Table 4. An example of δt for b in board 

Feature type  L3 L2 L1 C0 R1 R2 R3 δt(C0) 
fS $ $ $ b o a r ‘b’ 
fP $ $ $ /B/ /AO/ /~/ /R/  
fGS $ $ $ C V V C  
fGP $ $ $ C V /~/ C  
fT $ $ $      

Let SW=s1,s2,...,sn be a source language word, PSW= p1,p2,...,pn be SW’s pronuncia-
tion and TSW= t1, t2,...,tn be a target language word of SW, where si, δp(si)=pi and δt(gpi) 

= ti represent the ith source grapheme, phoneme corresponding to si, and target graph-
eme corresponding to gpi, respectively. δt finds the most probable target grapheme 
among a set of all possible target graphemes, which can be derived from gpi. δt pro-
duces target graphemes with source grapheme (fS), phoneme (fP), source grapheme type 
(fGS), phoneme type (fGP) and δt’s previous output (fT) in the context window. Table 4 
shows an example of δt for b in board. δt produces the most probable sequence of tar-
get graphemes (e.g. Korean), like δt(gp1)= ‘b’, δt(gp2)= ‘o’, δt(gp3)=‘~’, δt(gp4)=‘~’, 
and δt(gp5)=‘deu’ for board. Finally, the target language transliteration of board as 
‘bodeu’ can be acquired by concatenating the sequence of produced target graphemes.  

3   Machine Learning Algorithms for Each Component Function 

In this section we will describe a way of modeling component functions using three 
machine learning algorithms (maximum entropy model, decision tree, and memory-
based learning).  

3.1   Maximum Entropy Model 

The maximum entropy model (MEM) is a widely used probability model that can 
incorporate heterogeneous information effectively [3]. In the maximum entropy 
model, an event ev is usually composed of a target event (te) and a history event (he), 
say ev=<te, he>. Event ev is represented by a bundle of feature functions, fei(ev), 
which represent the existence of a certain characteristic in event ev. A feature function 
is a binary valued function. It is activated (fei(ev)=1) when it meets its activating 
condition, otherwise it is deactivated (fei(ev)=0) [3].  

δp and δt based on the maximum entropy model can be represented as formula (1). 
History events in each component function are made from the left, right and current 
context. For example, history events for δt are composed of fS,GS (i-3,i+3), fP,GP (i-3,i+3), and 
fT (i-3,i-1) where i is a index of the current source grapheme and phoneme to be translit-
erated and fX(l,m) represents features of feature type fX located from position l to posi-
tion m. Target events are a set of target graphemes (phonemes) derived from history 
events of δt (δp). Given history events, δt (δp) finds the most probable target grapheme 
(phoneme), which maximizes formula (1). One important thing in designing a model 



456 J.-H. Oh and K.-S. Choi 

based on the maximum entropy model is to determine feature functions which effec-
tively support certain decision of the model. Our basic philosophy of feature function 
design for each component function is that context information collocated with the 
unit of interest is an important factor. With the philosophy, we determined the history 
events (or activating conditions) of the feature functions by combinations of features 
in feature types. Possible feature combinations for history events are between features 
in the same feature type and between features in different feature types. The used 
feature combinations in each component function are listed in Table 5. 

Table 5. Used feature combinations for history events  

δp δt 
Between features in the same feature 
type 
Between features in different feature 
types 

 fS,GS  and fP 

Between features in the same feature 
type 
Between features in different feature 
types  

 fS,GS  and fP,GP  
 fS,GS  and fT 
 fP,GP  and fT 

In formula (1), history events of δp and δt are defined by the conditions described 
in Table 5. Target events of δ t are all possible target graphemes derived from its his-
tory events; while those of δp are all possible phonemes derived from its history 
events. In order to model each component function based on MEM, Zhang’s maxi-
mum entropy modeling tool is used [16].  

),|(maxarg)(

),,|(maxarg))(,(

3,3,1,3

3,3,3,3,1,3

+−−−

+−+−−−

=

=

iiGSSiiPiip

iiGPPiiGSSiiTiipit

ffpps

ffftpss

δ

δδ
 

(1) 

3.2   Decision Tree 

Decision tree learning is one of the most widely used and well-known methods for 
inductive inference [15]. ID3, which is a greedy algorithm and constructs decision 
trees in a top-down manner, adopts a statistical measure called information gain that 
measures how well a given feature (or attribute) separates training examples accord-
ing to their target class [15]. We use C4.5 [15], which is a well-known tool for deci-
sion tree learning and implementation of Quinlan’s ID3 algorithm.  

Training data for each component function is represented by features of feature 
types in the context of L3~L1, C0, and R1~R3 as described in Table 3. Fig. 2 shows a 
fraction of our decision trees for δp and δt in English-to-Korean transliteration (note 
that the left side represents the decision tree for δp and the right side represents the 
decision tree for δt). A set of the target classes in the decision tree for δp will be a set 
of phonemes and that for δt will be a set of target graphemes. In Fig. 2, rectangles 
indicate a leaf node and circles indicate a decision node. In order to simplify our  
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examples, we just use fS and fP in Fig. 2. Intuitively, the most effective feature for δp 

and δt may be located in C0 among L3~L1, C0, and R1~R3 because the correct out-
puts of δp and δt strongly depend on source grapheme or phoneme in the C0 position. 
As we expected, the most effective feature in the decision trees is located in the C0 
position like C0(fS) for δp and C0(fP) for δt (Note that the first feature to be tested is 
the most effective feature). In Fig. 2, the decision tree for δp outputs phoneme /AO/ 
for the instance x(SP) by retrieving the decision nodes C(fS)=o, R1(fS)=a, and R2(fS)=r 
represented with ‘*’.  With the similar manner, the decision tree for δt produces target 
grapheme (Korean grapheme) ‘o’ for the instance x(SPT) by retrieving the decision 
nodes from C0(fP)=/AO/ to R1(fP)=/~/ represented with ‘*’.  

C0(fS):o(*)C0(C0(ffSS):o(*)):o(*)

R1(fS): yR1(fS): yR1(fS): e or qR1(fS): e or q R1(fS): a(*)R1(R1(ffSS): a(*)): a(*)

/OW//OW/ /OY//OY/ /AA//AA/

R1(fS): xR1(fS): x……

R2(fS): dR2(fS): d R2(fS): r(*)R2(R2(ffSS): r(*)): r(*) R2(fS): othersR2(fS): othersR2(fS): $R2(fS): $

/OW//OW/ /OW//OW//AO/(*)/AO/(*)/AO/(*)

R1(fS): bR1(fS): b

L2(fS): aL2(fS): a L2(fS): rL2(fS): rL2(fS): $L2(fS): $ ……

fS

Feature typex(SP)

→ /AO/draob$$

δpR3R2R1C0L1L2L3

Decision tree for δpDecision tree for δp

C0(fP): /AO/ (*)C0(C0(ffPP): /AO/ (*)): /AO/ (*)

C0(fS): aC0(fS): aC0(fS): eC0(fS): e C0(fS): o(*)C0(C0(ffSS): o(*)): o(*)

‘o’‘o’ ‘a’‘a’ ‘eu’‘eu’

C0(fS): othersC0(fS): others……

R1(fP): /R/R1(fP): /R/ R1(fS): /~/(*)R1(R1(ffSS): /~/(*)): /~/(*) R1(fP): othersR1(fP): others

‘o’‘o’‘o’ (*)‘‘oo’’ (*)(*)

C0(fS): iC0(fS): i

L2(fS): aL2(fS): a L2(fS): rL2(fS): rL2(fS): $L2(fS): $ ……

‘o’→draob$$fS

x(SPT)

fP

Feature type

/D//R//~//AO//B/$$

δtR3R2R1C0L1L2L3

Decision tree for δtDecision tree for δt

 

Fig. 2. Decision tree for δp andδt 

3.3   Memory-Based Learning 

Memory-based learning (MBL) is an example-based learning method. It is also called 
instance-based learning and case-based learning method.  It is based on a k-nearest 
neighborhood algorithm [1], [5]. MBL represents a training data as a vector. In the train-
ing phase, MBL puts all training data as examples in memory, and clusters some exam-
ples with a k-nearest neighborhood principle. It then outputs a target class using similar-
ity-based reasoning between test data and examples in the memory. Let test data be x 
and a set of examples in a memory be Y, the similarity between x and Y is estimated by a 
distance function, ∆(x,Y). MBL selects an example yi or a cluster of examples that are 
most similar to x, then assign a target class of the example to x’s class. We use a mem-
ory-based learning tool called TiMBL (Tilburg memory-based learner) version 5.0 [5].  

Training data for each component function is represented by features of feature 
types in the context of L3~L1, C0, and R1~R3 as described in Table 4. Fig. 3 shows 
examples of δp and δt based on MBL in English-to-Korean transliteration. In order to 
simplify our examples, we just use fS and fP in Fig. 3. All training data are represented 
with their features in the context of L3~L1, C0, and R1~R3 and their target classes for 
δp and δt. They are stored in the memory through a training phase. Feature weighting 
for dealing with features of differing importance is also performed in the training 
phase. In Fig. 3, δp based on MBL outputs the phoneme /AO/ for x(SP) by comparing 
the similarities between x(SP) and Y using distance metric ∆(x(SP),Y). With the simi-
lar manner, δt based on MBL outputs the target grapheme ‘o’. 



458 J.-H. Oh and K.-S. Choi 

x(SP)

/AO/→draob$$fS

Feature type δpR3R2R1C0L1L2L3

Training instances in a memory (δp)Training instances in a memory (δp)

0.51/UW/$tuobaefS8

0.16/AO/$$waskcfS7

0.75/W/draode$fS6

0.73/AO/sraoc$$fS5
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0.81/OW/tsaob$$fS3

0.38/OW/$$$obahfS2

0.93/AO/draoba$fS1*

yi Feature 
type

δp(C0) Δ(x(SP),yi)R3R2R1C0L1L2L3

/D//R//~//W//D//~/$fP

/S//R//~//OW//K/$$fP

0.31‘u’$tuobaefS4

$/T//~//UW//B//~//IY/fP

3

2

1*
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fS
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fS
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0.55‘u’draode$

0.63‘o’sraoc$$
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/D//R//~//AO//B//AH/$

0.89draoba$

Δ (x(SPT),yi)R3R2R1C0L1L2L3

x(SPT)

‘o’→draob$$fS
fP

Feature type

/D//R//~//AO//B/$$

δtR3R2R1C0L1L2L3

Training instances in a memory (δt)Training instances in a memory (δt)

 

Fig. 3. Memory-based learning for δp and δt 

4   Experiments 

We perform experiments for English-to-Korean and English-to-Japanese translitera-
tion. English-to-Korean test set (EKSet) [14] consists of 7,185 English-Korean pairs – 
the number of training data is 6,185 and that of test data is 1,000. EKSet contains no 
transliteration variations. English-to-Japanese test set (EJSet), which is an English-
katakana pair in EDICT8, consists of 10,398 – 1,000 for test and the rest for training. 
EJSet contains transliteration variations, like (micro, ‘maikuro’) and (micro, ‘mi-
kuro’); the average number of Japanese transliterations for an English word is 1.15. 
Evaluation is performed by word accuracy (W. A.) in formula (2).  

wordsgeneratedof

wordscorrectof
AW

  #

  #
.. =  (2) 

We perform two experiments called “Comparison test” and “Context window 
size test”. In the “Comparison test”, we compare our ψC with the previous works. In 
“Context window size test”, we evaluate the performance of our transliteration model 
depending on context window size. 

4.1   Experimental Results 

Table 6 shows results of “Comparison test”. MEM, DT, and MBL represent ψC 
based on maximum entropy model, decision tree, and memory-based learning, respec-
tively. GDT [8], GPC [9], GMEM [7] and HWFST [4], which are one of the best 
machine transliteration methods in English-to-Korean transliteration and English-to-
Japanese transliteration, are compared with ψC. Table 7 shows the key feature of each 
method in the viewpoint of information type (SG, PH, COR) and information usage 
(Context size, POut). Information type indicates that each transliteration method be-
longs to which transliteration model. For example, GDT, GPC, and GMEM will be-
long to ψG because they use only the source grapheme; while HWFST belongs to ψH. 
Information usage gives information about what kinds of information each translitera-
tion method can deal with. From the viewpoint of information type, phoneme and 
correspondence, which most previous works do not consider, is the key point of the 
performance gap between our method and the previous works.  
                                                           
8 http://www.csse.monash.edu.au/~jwb/j_edict.html 
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Table 6. Evaluation results of “Comparison test” 

Method EKSet  EJSet  
  W.A Chg % W.A Chg % 
GDT 51.4% 23.2% 50.3% 43.5% 
GPC  55.1% 17.6% 53.2% 35.7% 
GMEM  55.9% 16.4% 56.2% 28.5% 
HWFST 58.3% 14.7% 62.5% 15.5% 
DT  62.0% 7.3% 66.8% 8.1% 
MEM  63.3% 5.4% 67.0% 7.8% 
MBL  66.9% 0% 72.2% 0% 

Table 7. Key features of our machine transliteration model and the previous works: SG, PH, 
COR and POut represent source grapheme, phoneme, correspondence and previous output, 
respectively 

Method  SG PH COR Context size POut  
GDT  O X X <-3, +3> X 
GPC  O X X Unbounded O 
GMEM  O X X <-3, +3> O 
HWFST O O X - - 
Ours  O O O <-3, +3> O 

From the viewpoint of information usage, if a transliteration model adopts wide 
context window and considers previous outputs, it tends to show better performance. 
For example, GMEM that satisfies the conditions gives more accurate results  
than GDT which does not satisfy one of them. Because machine transliteration is 
sensitive to context, wider contexts give more powerful transliteration ability to 
machine transliteration systems. Note that the previous works, however, limit their 
context window size to 3, because the context window size over 3 degrades the  
performance [8] or does not change the performance of their transliteration model 
[9]. Determining reasonable context window size, therefore, is very important for 
machine transliteration.  

For “Context window size test”, we use ψC based on MBL, which shows the best 
performance among three machine learning algorithms in Table 6. Experiments are 
performed by changing the context window size from 1 to 5. Table 8 shows results of 
context window size test. The results indicate that the best performance is shown 
when the context window size is 3. When the context window size is 1, there are 
many cases where the correct transliterations are not produced due to lack of informa-
tion. For example, in order to produce the correct target grapheme of t in -tion, we 
need the right three graphemes of t, -ion. When the context window size is over 3, it is 
difficult to generalize the training data because of increase of variety of the training 
data. With the two reasons, our system shows the best performance when the context 
window size is 3. Table 8 also shows that context size should be at least 2 to avoid 
significant decrease of performance due to lack of contextual information. 
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Table 8.  Evaluation results of “Context window size test” 

Context Size EKSet EJSet 
1 54.5% 62.7% 
2 63.3% 70.0% 
3 66.9% 72.2% 
4 63.9% 70.7% 
5 63.8% 69.3% 

In summary, our method shows significant performance improvement, about 
15%~23%, in English-to-Korean transliteration, and about 15%~ 43% in English-to-
Japanese transliteration. Experiments show that a good transliteration system should 
consider; 1) source grapheme and phoneme along with their correspondence simulta-
neously and 2) reasonable context size and previous output. Our transliteration model 
satisfies the two conditions, thus it shows higher performance than the previous works.  

5   Conclusion  

This paper has described a correspondence-based machine transliteration model (ψC). 
Unlike the previous transliteration models, ψC uses correspondence between source 
grapheme and phoneme. The correspondence makes it possible for ψC to effectively 
produce both grapheme-based transliterations and phoneme-based transliterations. 
Moreover, the correspondence helps ψC to reduce transliteration ambiguities more 
easily. Experiments show that ψC is more powerful transliteration model than the 
previous transliteration models (ψC shows significant performance improvement, 
about 15%~23%, in English-to-Korean transliteration, and about 15%~ 43% in Eng-
lish-to-Japanese transliteration).  

In future work, we will apply our transliteration model to English-to-Chinese trans-
literation model. In order to prove usefulness of our method in NLP applications, we 
need to apply our system to applications such as automatic bi-lingual dictionary con-
struction, information retrieval, machine translation, speech recognition and so on. 
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