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Abstract. When acquiring synonyms from large corpora, it is important to deal
not only with such surface information as the context of the words but also their
latent semantics. This paper describes how to utilize a latent semantic model PLSI
to acquire synonyms automatically from large corpora. PLSI has been shown
to achieve a better performance than conventional methods such as tf-idf and
LSI, making it applicable to automatic thesaurus construction. Also, various PLSI
techniques have been shown to be effective including: (1) use of Skew Divergence
as a distance/similarity measure; (2) removal of words with low frequencies, and
(3) multiple executions of PLSI and integration of the results.

1 Introduction

Thesauri, dictionaries in which words are arranged according to meaning, are one of the
most useful linguistic sources, having a broad range of applications, such as information
retrieval and natural language understanding. Various thesauri have been constructed
so far, including WordNet (6] and Bunruigoihyo [14]. Conventional thesauri, however,
have largely been compiled by groups of language experts, making the construction
and maintenance cost very high. It is also difficult to build a domain-specific thesaurus
flexibly. Thus it is necessary to construct thesauri automatically using computers.

Many studies have been done for automatic thesaurus construction. In doing so,
synonym acquisition is one of the most important techniques, although a thesaurus gen-
erally includes other relationships than synonyms (e.g., hypernyms and hyponyms). To
acquire synonyms automatically, contextual features of words, such as co-occurrence
and modification are extracted from large corpora and often used. Hindle [7], for ex-
ample, extracted verb-noun relationships of subjects/objects and their predicates from a
corpus and proposed a method to calculate similarity of two words based on their mu-
tual information. Although methods based on such raw co-occurrences are simple yet
effective, in a naive implementation some problems arise: namely, noises and sparse-
ness. Being a collection of raw linguistic data, a corpus generally contains meaningless
information, i.e., noises. Also, co-occurrence data extracted from corpora are often very
sparse, making them inappropriate for similarity calculation, which is also known as the
“zero frequency problem.” Therefore, not only surface information but also latent se-
mantics should be considered when acquiring synonyms from large corpora.

Several latent semantic models have been proposed so far, mainly for information
retrieval and document indexing. The most commonly used and prominent ones are La-
tent Semantic Indexing (LSI) [S] and Probabilistic LSI (PLSI) [8]. LSI is a geometric
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model based on the vector space model. It utilizes singular value decomposition of the
co-occurrence matrix, an operation similar to principal component analysis, to auto-
matically extract major components that contribute to the indexing of documents. It can
alleviate the noise and sparseness problems by a dimensionality reduction operation,
that is, by removing components with low contributions to the indexing. However, the
model lacks firm, theoretical basis [9] and the optimality of inverse document frequency
(idf) metric, which is commonly used to weight elements, has yet to be shown [[13].

On the contrary, PLSI, proposed by Hofmann [8]], is a probabilistic version of LSI,
where it is formalized that documents and terms co-occur through a latent variable.
PLSI puts no assumptions on distributions of documents or terms, while LSI performs
optimal model fitting, assuming that documents and terms are under Gaussian distribu-
tion [9]. Moreover, ad hoc weighting such as idf is not necessary for PLSI, although it
is for LSI, and it is shown experimentally to outperform the former model [8].

This study applies the PLSI model to the automatic acquisition of synonyms by es-
timating each word’s latent meanings. First, a number of verb-noun pairs were collected
from a large corpus using heuristic rules. This operation is based on the assumption that
semantically similar words share similar contexts, which was also employed in Hindle’s
work [7]] and has been shown to be considerably plausible. Secondly, the co-occurrences
obtained in this way were fit into the PLSI model, and the probability distribution of
latent classes was calculated for each noun. Finally, similarity for each pair of nouns
can be calculated by measuring the distances or the similarity between two probability
distributions using an appropriate distance/similarity measure. We then evaluated and
discussed the results using two evaluation criteria, discrimination rates and scores.

This paper also discusses basic techniques when applying PLSI to the automatic
acquisition of synonyms. In particular, the following are discussed from methodological
and experimental views: (1) choice of distance/similarity measures between probability
distributions; (2) filtering words according to their frequencies of occurrence; and (3)
multiple executions of PLSI and integration of the results.

This paper is organized as follows: in Sect. 2 a brief explanation of the PLSI model
and calculation is provided, and Sect. 3 outlines our approach. Sect. 4 shows the results
of comparative experiments and basic techniques. Sect. 5 concludes this paper.

2 The PLSI Model

This section provides a brief explanation of the PLSI model in information retrieval
settings. The PLSI model, which is based on the aspect model, assumes that document
d and term w co-occur through latent class z, as shown in Fig.[Il(a).

The co-occurrence probability of documents and terms is given by:

P(d,w) = P(d)Y_ P(z|d)P(w|z). (1)

Note that this model can be equivalently rewritten as

P(d,w) =) P(2)P(d|2)P(w]2), 2
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Fig. 1. PLSI model asymmetric (a) and symmetric (b) parameterization
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Fig. 2. Outline of our approach

whose graphical model representation is shown in Fig. [l (b). This is a symmetric pa-
rameterization with respect to documents and terms. The latter parameterization is used
in the experiment section because of its simple implementation.

Theoretically, probabilities P(d), P(z|d), P(w|z) are determined by maximum
likelihood estimation, that is, by maximizing the likelihood of document term
co-occurrence:

L= N(d,w)log P(d,w), 3)

d,w

where N (d, w) is the frequency document d and term w co-occur.

While the co-occurrence of document d and term w in the corpora can be observed
directly, the contribution of latent class z cannot be directly seen in this model. For
the maximum likelihood estimation of this model, the EM algorithm [[1]], which is used
for the estimation of systems with unobserved (latent) data, is used. The EM algorithm
performs the estimation iteratively, similar to the steepest descent method.

3 Approach

The original PLSI model, as described above, deals with co-occurrences of documents
and terms, but it can also be applied to verbs and nouns in the corpora. In this way, latent
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(a) Original sentence (d) Co-occurrence extraction from dependencies
John gave presents to his colleagues. NP S VP
(b) Parsing result John gave |:’|> (“give”, subj, “John”)
S
VBDVP NP
VP l |::> (“give”, obj, “present”)
gave presents
VBD VP PP TO PP NP
NP PP [ — |:> (“give”, “to”, “colleague”)
NP NP gave to his colleagues

/\ (e) Rules for co-occurrence identification
NNP VBD NNS TO PRP$ NNS Rulel: NP S VP

John gave presents to his colleagues. n v |::> (v, subj, n)
(c) Dependency structure but (v, obj, n) when the verb is “be” + past participle.
NP S VP VBD VP PP TO PP NP Rule 2
ule2: NP VP baseVP
VBDVP NP
‘ Hl H ‘ n vl |:> (v, obj, n)

[John] gave [presents] to [his colleagues]

- NP PP
Rule 3: % PP VP baseVP C (V, prep, n)
n prep v

Fig. 3. Co-occurrence extraction

class distribution, which can be interpreted as latent “meaning” corresponding to each
noun, is obtained. Semantically similar words are then obtained accordingly, because
words with similar meaning have similar distributions. Fig. 2] outlines our approach,
and the following subsections provide the details.

3.1 Extraction of Co-occurrence

We adopt triples (v, ¢, n) extracted from the corpora as co-occurrences fit into the PLSI
model, where v, ¢, and n represent a verb, case/preposition, and a noun, respectively.
The relationships between nouns and verbs, expressed by c, include case relation (sub-
ject and object) as well as what we call here “prepositional relation,” that is, a co-
occurrence through a preposition. Take the following sentence for example:

John gave presents to his colleagues.

First, the phrase structure (Fig. Blb)) is obtained by parsing the original sentence
(Fig.[Bla)). The resulting tree is then used to derive the dependency structure (Fig.[3l(c)),
using Collins’ method [4]. Note that dependencies in baseNPs (i.e., noun phrases that
do not contain NPs as their child constituents, shown as the groups of words enclosed
by square brackets in Fig. B(c)), are ignored. Also, we introduced baseVPs, that is,
sequences of verbs , modals (MD), or adverbs (RB), of which the last word must be
a verb. BaseVPs simplify the handling of sequences of verbs such as “might not be”

! Ones expressed as VB, VBD, VBG, VBN, VBP, and VBZ by the Penn Treebank POS tag set
[15].
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and “is always complaining.” The last word of a baseVP represents the entire baseVP
to which it belongs. That is, all the dependencies directed to words in a baseVP are
redirected to the last verb of the baseVP.

Finally, co-occurrences are extracted and identified by matching the dependency
patterns and the heuristic rules for extraction, which are all listed in Fig. 3] (e). For
example, since the label of the dependency “John” —*“gave” is “NP S VP”, the noun
“John” is identified as the subject of the verb “gave” (Fig. B(d)). Likewise, the de-
pendencies “presents”—“‘gave” and “his colleagues”—*“to”—*“gave” are identified as a
verb-object relation and prepositional relation through “to”.

A simple experiment was conducted to test the effectiveness of this extraction
method, using the corpus and the parser mentioned in the experiment section. Co-
occurrence extraction was performed for the 50 sentences randomly extracted from
the corpus, and precision and recall turned out to be 88.6% and 78.1%, respectively. In
this context, precision is more important than recall because of the substantial size of
the corpus, and some of the extraction errors result from parsing error caused by the
parser, whose precision is claimed to be around 90% [2]. Therefore, we conclude that
this method and its performance are sufficient for our purpose.

3.2 Applying PLSI to Extracted Co-occurence Data

While the PLSI model deals with dyadic data (d, w) of document d and term w, the co-
occurrences obtained by our method are triples (v, ¢, n) of a verb v, a case/preposition
¢, and a noun n. To convert these triples into dyadic data (pairs), verb v and case/
preposition ¢ are paired as (v, ¢) and considered a new “virtual” verb v. This enables it
to handle the triples as the co-occurrence (v, n) of verb v and noun n to which the PLSI
model becomes applicable. Pairing verb v and case/preposition c also has a benefit that
such phrasal verbs as “look for” or “get to” can be naturally treated as a single verb.

After the application of PLSI, we obtain probabilities P(z), P(v|z), and P(n|z).
Using Bayes theorem, we then obtain P(z|n), which corresponds to the latent class
distribution for each noun. In other words, distribution P(z|n) represents the features
of meaning possessed by noun n. Therefore, we can calculate the similarity between
nouns n; and ng by measuring the distance or similarity between the two correspond-
ing distribution, P(z|n;) and P(z|nz), using an appropriate measure. The choice of
measure affects the synonym acquisition results and experiments on comparison of dis-
tance/similarity measures are detailed in Sect. 4.3.

4 Experiments

This section includes the results of comparison experiments and those on the basic PLSI
techniques.
4.1 Conditions

The automatic acquisition of synonyms was conducted according to the method de-
scribed in Sect. 3, using WordBank (190,000 sentences, 5 million words) [3] as a cor-
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pus. Charniak’s parser [2] was used for parsing and TreeTagger [[16] for stemming. A
total of 702,879 co-occurrences was extracted by the method described in Sect. 3.1.

When using EM algorithm to implement PLSI, overfitting, which aggravates the
performance of the resultant language model, occasionally occurs. We employed the
tempered EM (TEM) [8] algorithm, instead of a naive one, to avoid this problem. TEM
algorithm is closely related to the deterministic annealing EM (DAEM) algorithm [[17],
and helps avoid local extrema by introducing inverse temperature 3. The parameter was
set to 8 = 0.86, considering the results of the preliminary experiments.

As the similarity/distance measure and frequency threshold ¢y, Skew Divergence
(a=0.99) and ty = 15 were employed in the following experiments in response to the
results from the experiments described in Sects. 4.3 and 4.5. Also, because estimation
by EM algorithm is started from the random parameters and consequently the PLSI
results change every time it is executed, the average performance of the three executions
was recorded, except in Sect. 4.6.

4.2 Measures for Performance

The following two measures, discrimination rate and scores, were employed for the
evaluation of automated synonym acquisition.

Discrimination rate Discrimination rate, originally proposed by Kojima et al. [10], is
the rate (percentage) of pairs (wy, w2) whose degree of association between two words
wy, wy 1S successfully discriminated by the similarity derived by a method. Kojima
et al. dealt with three-level discrimination of a pair of words, that is, highly related
(synonyms or nearly synonymous), moderately related (a certain degree of association),
and unrelated (irrelevant). However, we omitted the moderately related level and limited
the discrimination to two-level: high or none, because of the high cost of preparing a
test set that consists of moderately related pairs.

The calculation of discrimination rate follows these steps: first, two test sets, one
of which consists of highly related word pairs and the other of unrelated ones, were
prepared, as shown in Fig. Ml The similarity between w; and ws is then calculated for
each pair (wy,ws) in both test sets via the method under evaluation, and the pair is
labeled highly related when similarity exceeds a given threshold ¢ and unrelated when
the similarity is lower than ¢. The number of pairs labeled highly related in the highly
related test set and unrelated in the unrelated test set are denoted n, and n;, respectively.
The discrimination rate is then given by:

1/ n, np

5 ( Nt Nb) ; “4)
where N, and N, are the numbers of pairs in highly related and unrelated test sets,
respectively. Since the discrimination rate changes depending on threshold £, maximum
value is adopted by varying ¢.

We created a highly related test set using the synonyms in WordNet [6]]. Pairs in a
unrelated test set were prepared by first choosing two words randomly and then con-
firmed by hand whether the consisting two words are truly irrelevant. The numbers of
pairs in the highly and unrelated test sets are 383 and 1,124, respectively.
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Table 5. Procedure for score calculation

highly related unrelated

(answer, reply) (animal, coffee) base word: computer
(phone, telephone) (him, technology) rank synonym sim sim™ rel.(p) p - sim”™
(sign, signal) (track, vote) 1 equipment 0.6 0.3 B(0.5) 0.15
(concern, worry) (path, youth) 2 machine 04 02A(1.0) 020
: : 3Internet 04 02 B(0.5)  0.10
tFl‘:)gn 4. Test-sets for discrimination rate calcula- g IS)pCr ay 8; 8? 22?8; 8(1)8
total 20 1.0 0.55

Scores We propose a score which is similar to precision used for information retrieval
evaluation, but different in that it considers the similarity of words. This extension is
based on the notion that the more accurately the degrees of similarity are assigned to
the results of synonym acquisition, the higher the score values should be.

Described in the following, along with Table[S] is the procedure for score calcula-
tion. Table[3]shows the obtained synonyms and their similarity with respect to the base
word “computer.” Results are obtained by calculating the similarity between the base
word and each noun, and ranking all the nouns in descending order of similarity sim.
The highest five are used for calculations in this example.

The range of similarity varies based on such factors as the employed distance/
similarity measure, which unfavorably affects the score value. To avoid this, the val-
ues of similarity are normalized such that their sum equals one, as shown in the column
sim™ in Fig. I3l Next, the relevance of each synonym to the base word is checked and
evaluated manually, giving them three-level grades: highly related (A), moderately re-
lated (B), and unrelated (C), and relevance scores p = 1.0,0.5,0.0 are assigned for
each grade, respectively (“rel.(p)” column in Fig.[3). Finally, each relevance score p is
multiplied by corresponding similarity sim* , and the products (the p - sim* column
in Fig.[3)) are totaled and then multiplied by 100 to obtain a score, which is 55 in this
case. In actual experiments, thirty words chosen randomly were adopted as base words,
and the average of the scores of all base words was employed. Although this example
considers only the top five words for simplicity, the top twenty words were used for
evaluation in the following experiments.

4.3 Distance/Similarity Measures of Probability Distribution

The choice of distance measure between two latent class distributions P(z|n;), P(z|n;)
affects the performance of synonym acquisition. Here we focus on the following seven
distance/similarity measures and compare their performance.

Kullback-Leibler (KL) divergence [12]: K L(p || ¢) = >_, p(z) log(p(x)/q(x))
Jensen-Shannon (JS) divergence [12]: JS(p,q) = {KL(p|| m)+KL(q||m)}/2,
m = (p+q)/2

Skew Divergence [11]]: so(p || ¢) = KL(p || aq + (1 — a)p)

Euclidean distance: euc(p, q) = ||p — q||

L, distance: L1(p,q) = >, |p(x) — q(x)]
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— Inner product: p - ¢ = >~ p(x)q(x)
— Cosine: cos(p, q) = (p- a)/lIpll - |lal|

KL divergence is widely used for measuring the distance between two probabil-
ity distributions. However, it has such disadvantages as asymmetricity and zero fre-
quency problem, that is, if there exists = such that p(z) # 0, ¢(z) = 0, the distance is
not defined. JS divergence, in contrast, is considered the symmetrized KL divergence
and has some favorable properties: it is bounded [[12] and does not cause the zero fre-
quency problem. Skew Divergence, which has recently been receiving attention, has
also solved the zero frequency problem by introducing parameter o and mixing the
two distributions. It has shown that Skew Divergence achieves better performance than
the other measures [11]. The other measures commonly used for calculation of the
similarity/distance of two vectors, namely Euclidean distance, L; distance (also called
Manhattan Distance), inner product, and cosine, are also included for comparison.

Notice that the first five measures are of distance (the more similar p and ¢, the lower
value), whereas the others, inner product and cosine, are of similarity (the more similar
p and g, the higher value). We converted distance measure D to a similarity measure
stm by the following expression:

sim(p, q) = exp{—=AD(p,q)}, 5)

inspired by Mochihashi and Matsumoto [[13]. Parameter A\ was determined in such a
way that the average of sim doesn’t change with respect to D. Because KL divergence
and Skew Divergence are asymmetric, the average of both directions (e.g. for KL diver-
gence, (K L(pl|q) + KL(q||p))) is employed for the evaluation.

Figure[6] shows the performance (discrimination rate and score) for each measure. It
can be seen that Skew Divergence with parameter a = 0.99 shows the highest perfor-
mance of the seven, with a slight difference to JS divergence. These results, along with
several studies, also show the superiority of Skew Divergence. In contrast, measures for
vectors such as Euclidean distance achieved relatively poor performance compared to
those for probability distributions.

4.4 Word Filtering by Frequencies

It may be difficult to estimate the latent class distributions for words with low frequen-
cies because of a lack of sufficient data. These words can be noises that may degregate
the results of synonym acquisition. Therefore, we consider removing such words with
low frequencies before the execution of PLSI improves the performance. More specif-
ically, we introduced threshold ¢; on the frequency, and removed nouns n; such that
Z tf; <ty and verbs v; such that ) _; tfl < ty from the extracted co-occurrences.

The discrimination rate change on Varymg threshold ¢; was measured and shown
in Fig. [ for d = 100, 200, and 300. In every case, the rate increases with a moderate
increase of ¢y, which shows the effectiveness of the removal of low frequency words.
We consequently fixed ¢ty = 15 in other experiments, although this value may depend
on the corpus size in use.
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4.5 Comparison Experiments with Conventional Methods

Here the performances of PLSI and the following conventional methods are compared.
In the following, NV and M denote the numbers of nouns and verbs, respectively.

— tf: The number of co-occurrence tf; of noun n; and verb v; is used directly for
similarity calculation. The corresponding vector 12; to noun n; is given by:

n; = '[tf] ) ... tf},]. (6)

— tf-idf: The vectors given by tf method are weighted by idf. That is,

n} = '[tf] -idfy tf] - idfy ... tf}, - idfay], (7
where idf; is given by
. log(N/df;)
df; = 8
T axy, log(N/dfy)’ ®

using df;, the number of distinct nouns that co-occur with verb v;.
— tf+LSI: A co-occurrence matrix X is created using vectors n; defined by tf:

X =[ngny ... ny|, 9)

to which LSI is applied.

— tfidf+LSI : A co-occurrence matrix X ™ is created using vectors n; defined by
tf-idf:

X" =[n]ni..nyl, (10)

to which LSI is applied.

— Hindle’s method: The method described in [7] is used. Whereas he deals only
with subjects and objects as verb-noun co-occurrence, we used all the kinds of
co-occurrence mentioned in Sect. 3.1, including prepositional relations.
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Fig. 8. Performances of PLSI and conventional methods

The values of discrimination rate and scores are calculated for PLSI as well as the
methods described above, and the results are shown in Fig. [8l Because the number of
latent classes d must be given beforehand for PLSI and LSI, the performances of the
latent semantic models are measured varying d from 50 to 1,000 with a step of 50. The
cosine measure is used for the similarity calculation of tf, tf-idf, tf+LSI, and tf-idf+LSI.

The results reveal that the highest discrimination rate is achieved by PLSI, with the
latent class number of approximately 100, although LSI overtakes with an increase of
d. As for the scores, the performance of PLSI stays on top for almost all the values of
d, strongly suggesting the superiority of PLSI over the conventional method, especially
when d is small, which is often.

The performances of tf and tf+LSI, which are not weighted by idf, are consistently
low regardless of the value of d. PLSI and LSI distinctly behave with respect to d,
especially in the discrimination rate, whose cause require examination and discussion.

4.6 Integration of PLSI Results

In maximum likelihood estimation by EM algorithm, the initial parameters are set to
values chosen randomly, and likelihood is increased by an iterative process. Therefore,
the results are generally local extrema, not global, and they vary every execution, which
is unfavorable. To solve this problem, we propose to execute PLSI several times and
integrate the results to obtain a single one.

To achieve this, PLSI is executed several times for the same co-occurrence data
obtained via the method described in Sect. 3.1. This yields N values of similarity
sitma(ni,mj), ..., simn(n;, n;) for each noun pair (n;, n;). These values are integrated
using one of the following four schemes to obtain a single value of similarity sim(n;, n;).

arithmetic mean: sim(n;,n;) = + ij 1 Simy(ng, ny)

geometric mean:sim(n;, n;) \/Hk 1 Stmy(ng, ny)

maximum: sim(n;, n;) = maxy simy(n;, n;)
minimum: sim(n;,n;) = ming simg(n;, n;)
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Integration results are shown in Fig. [9] where the three sets of performance on the
left are the results of single PLSI executions, i.e., before integration. On the right are
the results after integration by the four schemes. It can be observed that integration
improves the performance. More specifically, the results after integration are as good or
better than any of the previous ones, except when using the minimum as a scheme.

An additional experiment was conducted that varied N from 1 to 10 to confirm that
such performance improvement is always achieved by integration. Results are shown in
Fig.[10| which includes the average and maximum of the N PLSI results (unintegrated)
as well as the performance after integration using arithmetic average as the scheme.
The results show that the integration consistently improves the performance for all 2 <
N < 10. An increase of the integration performance was observed for N < 5, whereas
increases in the average and maximum of the unintegrated results were relatively low.
It is also seen that using /N > 5 has less effect for integration.

5 Conclusion

In this study, automatic synonym acquisition was performed using a latent semantic
model PLSI by estimating the latent class distribution for each noun. For this purpose,
co-occurrences of verbs and nouns extracted from a large corpus were utilized. Discrim-
ination rates and scores were used to evaluate the current method, and it was found that
PLSI outperformed such conventional methods as tf-idf and LSI. These results make
PLSI applicable for automatic thesaurus construction. Moreover, the following tech-
niques were found effective: (1) employing Skew Divergence as the distance/similarity
measure between probability distributions; (2) removal of words with low frequencies,
and (3) multiple executions of PLSI and integration of the results.

As future work, the automatic extraction of the hierarchical relationship of words
also plays an important role in constructing thesauri, although only synonym relation-
ships were extracted this time. Many studies have been conducted for this purpose, but
extracted hyponymy/hypernymy relations must be integrated in the synonym relations
to construct a single thesaurus based on tree structure. The characteristics of the latent
class distributions obtained by the current method may also be used for this purpose.
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In this study, similarity was calculated only for nouns, but one for verbs can be

obtained using an identical method. This can be achieved by pairing noun 7 and case /
preposition ¢ of co-occurrence (v, ¢, n), not v and ¢ as previously done, and executing
PLSI for the dyadic data (v, (¢, n)). By doing this, the latent class distributions for each
verb v, and consequently the similarity between them, are obtained.

Moreover, although this study only deals with verb-noun co-occurrences, other in-

formation such as adjective-noun modifications or descriptions in dictionaries may be
used and integrated. This will be an effective way to improve the performance of auto-
matically constructed thesauri.
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