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Abstract. In order to obtain a high precision and high coverage grammar, we 
proposed a model to measure grammar coverage and designed a PCFG parser to 
measure efficiency of the grammar. To generalize grammars, a grammar binari-
zation method was proposed to increase the coverage of a probabilistic context-
free grammar. In the mean time linguistically-motivated feature constraints 
were added into grammar rules to maintain precision of the grammar. The gen-
eralized grammar increases grammar coverage from 93% to 99% and bracket-
ing F-score from 87% to 91% in parsing Chinese sentences. To cope with error 
propagations due to word segmentation and part-of-speech tagging errors, we 
also proposed a grammar blending method to adapt to such errors. The blended 
grammar can reduce about 20~30% of parsing errors due to error assignment of 
pos made by a word segmentation system.  

Keywords: Grammar Coverage, Ambiguity, Sentence Parsing, Grammar  
Extraction. 

1   Introduction 

Treebanks provide instances of phrasal structures and their statistical distributions. 
However none of treebanks provide sufficient amount of samples which cover all types 
of phrasal structures, in particular, for the languages without inflectional markers, such 
as Chinese. It results that grammars directly extracted from treebanks suffer low cover-
age rate and low precision [7]. However arbitrarily generalizing applicable rule patterns 
may cause over-generation and increase ambiguities. It may not improve parsing per-
formance [7]. Therefore a new approach of grammar binarization was proposed in this 
paper. The binarized grammars were derived from probabilistic context-free grammars 
(PCFG) by rule binarization. The approach was motivated by the linguistic fact that 
adjuncts could be arbitrarily occurred or not occurred in a phrase. The binarized gram-
mars have better coverage than the original grammars directly extracted from treebank. 
However they also suffer problems of over-generation and structure-ambiguity. Con-
temporary grammar formalisms, such as GPSG, LFG, HPSG, take phrase structure rules 
as backbone for phrase structure representation and adding feature constraints to elimi-
nate illegal or non-logical structures. In order to achieve higher coverage, the backbone 
grammar rules (syntactic grammar) are allowed to be over-generation and the feature 
constraints (semantic grammar for world knowledge) eliminate superfluous structures 
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and increase the precision of grammar representation. Recently, probabilistic prefer-
ences for grammar rules were incorporated to resolve structure-ambiguities and had 
great improvements on parsing performances [2, 6, 10]. Regarding feature constrains, it 
was shown that contexture information of categories of neighboring nodes, mother 
nodes, or head words are useful for improving grammar precision and parsing perform-
ances [1, 2, 7, 10, 12]. However tradeoffs between grammar coverage and grammar 
precision are always inevitable. Excessive grammatical constraints will reduce grammar 
coverage and hence reduce parsing performances. On the other hand, loosely con-
strained grammars cause structure-ambiguities and also reduce parsing performances. In 
this paper, we consider grammar optimization in particular for Chinese language. Lin-
guistically-motivated feature constraints were added to the grammar rules and evaluated 
to maintain both grammar coverage and precision. In section 2, the experimental envi-
ronments were introduced. Grammar generalization and specialization methods were 
discussed in section 3. Grammars adapting to pos-tagging errors were discussed in sec-
tion 4. Conclusions and future researches were stated in the last section. 

2   Research Environments 

The complete research environment, as shown in the figure 1, comprises of the fol-
lowing five modules and functions. 

a) Word segmentation module: identify words including out-of-vocabulary word 
and provide their syntactic categories. 

b) Grammar construction module: extract and derive (perform rule generalization, 
specialization and adaptation processes) probabilistic grammars from tree-
banks. 

c) PCFG parser: parse input sentences. 
d) Evaluation module: evaluate performances of parsers and grammars. 
e) Semantic role assignment module: resolve semantic relations for constituents. 

 

Fig. 1. The system diagram of CKIP parsing environment 
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2.1   Grammar Extraction Module  

Grammars are extracted from Sinica Treebank [4, 5]. Sinica Treebank version 2.0 
contains 38,944 tree-structures and 230,979 words. It provides instances of phrasal 
structures and their statistical distributions. In Sinica Treebank, each sentence is anno-
tated with its syntactic structure and semantic roles for constituents in a dependency 
framework. Figure 2 is an example. 

e.g. 他 叫 李李 撿 球. 
 Ta  jiao  Li-si  jian  qiu. 
 “He asked Lisi to pick up the ball.” 
Tree-structure:  
S(agent:NP(Head:Nh:他)|Head:VF:叫|goal:NP(Head:Nb:李李)|theme:VP(Head:VC:撿| 
goal:NP(Head:Na:球))) 

Fig. 2. A sample tree-structure 

Since the Treebank cannot provide sufficient amount of samples which cover all 
types of phrasal structures, it results that grammars directly extracted from treebanks 
suffer low coverage rate [5]. Therefore grammar generalization and specialization 
processes are carried out to obtain grammars with better coverage and precision. The 
detail processes will be discussed in section 3. 

2.2   PCFG Parser and Grammar Performance Evaluation 

The probabilistic context-free parsing strategies were used as our parsing model [2, 6, 
8]. Calculating probabilities of rules from a treebank is straightforward and we use 
maximum likelihood estimation to estimate the rule probabilities, as in [2]. The parser 
adopts an Earley’s Algorithm [8]. It is a top-down left-to-right algorithm. The results 
of binary structures will be normalized into a regular phrase structures by removing 
intermediate nodes, if used grammars are binarized grammars. Grammar efficiency 
will be evaluated according to its parsing performance. 

2.3   Experiments and Performance Evaluation 

Three sets of testing data were used in our performance evaluation. Their basic statis-
tics are shown in Table 1. Each set of testing data represents easy, hard and moderate 
respectively.  

Table 1. Three sets of testing data were used in our experiments 

Testing data Sources hardness
# of short 
sentence 

(1-5 words) 

# of normal 
sentences 

(6-10 words)

# of long 
sentences 

(>11 words) 

Total 
sentences 

Sinica Balanced corpus moderate 612 385 124 1,121 
Sinorama Magazine harder 428 424 104 956 
Textbook Elementary school easy 1,159 566 25 1,750 
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The following parser and grammar performance evaluation indicators were used in 
our experiments: 

 LP(Labeled Precision) 

parser by the labeled phrases of #

parser by the labeled phrasescorrect  of #
LP =  

 LR(Labeled Recall) 

data  testing thein phrases of #

parser by the labeled phrasescorrect  of #
LR =  

 LF(Labeled F-measure) 

LR  LP

2* LR * LP
LF

+
=  

 BP(Bracketed Precision) 

parser by the made brackets of pairs of #

parser by the madecorrectly  brackets of pairs of #
BP =  

 BR(Bracketed Recall) 

data  testing theof standard gold  thein brackets of pairs of #
parser by the madecorrectly  brackets of pairs of #

BR =  

 BF(Bracketed F-measure) 

BR  BP
2* BR * BP

BF
+

=  

Additional indicators regarding coverage of grammars：  

 RC-Type：type coverage of rules 

data  testingin  typesrule of #

rulesgrammar  anddata   testingboth in  typesrules of #
Type-RC =

 
 RC-Token：token coverage of rules 

data  testingin  tokensrule of #

rulesgrammar  anddata   testingboth in  tokensrules of #
Token-RC =

 

The token coverage of a set of rules is the ceiling of parsing algorithm to achieve. 
Tradeoff effects between grammar coverage and parsing F-score can be examined for 
each set of rules. 

3   Grammar Generalization and Specialization 

By using above mentioned research environment, we intend to find out most effec-
tive grammar generalization method and specialization features for Chinese lan-
guage. To extend an existing or extracted grammar, there are several different ap-
proaches. A naïve approach is to generalize a fine-grained rule to a coarse-grained 
rule. The approach does not generate new patterns. Only the applicable patterns for 
each word were increased. However it was shown that arbitrarily increasing the 
applicable rule patterns does increase the coverage rates of grammars, but degrade 
parsing performance [5]. A better approach is to generalizing and specializing rules 
under linguistically-motivated way. 
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3.1   Binary Grammar Generation, Generalization, and Specialization 

The length of a phrase in Treebank is variable and usually long phrases suffer from 
low probability. Therefore most PCFG approaches adopt the binary equivalence 
grammar, such as Chomsky normal form (CNF). For instance, a grammar rule of S  
NP Pp Adv V can be replaced by the set of equivalent rules of {S Np R0, R0 Pp 
R1, R1 Adv V}. The binarization method proposed in our system is different from 
CNF. It generalizes the original grammar to broader coverage. For instance, the above 
rule after performing right-association binarization 1

 will produce following three 
binary rules {S Np S’, S’ Pp S’, S’ Adv V}. It results that constituents (adjuncts 
and arguments) can be occurred or not occurred at almost any place in the phrase. It 
partially fulfilled the linguistic fact that adjuncts in a phrase are arbitrarily occurred. 
However it also violated the fact that arguments do not arbitrarily occur. Experimental 
results of the Sinica testing data showed that the grammar token coverage increased 
from 92.8% to 99.4%, but the labeling F-score dropped from 82.43% to 82.11% [7]. 
Therefore feature constraints were added into binary rules to limit over-generation 
caused by recursively adding constituents into intermediate-phrase types, such as S’ at 
above example. 

Feature attached rules will look like following: 

S’-left:Adv-head:V  Adv V; 
S’-left:Pp-head:V Pp S’-left:Adv-head:V; 

The intermediated node S’-left:Pp-head:V says that it is a partial S structure with left-
most constituent Pp and a phrasal head V. Here the leftmost feature constraints linear 
order of constituents and the head feature implies that the structure patterns are head 
word dependent. Both constraints are linguistically plausible. Another advantage of 
the feature-constraint binary grammar is that in addition to rule probability it is easy 
to implement association strength of modifier word and head word to evaluate plausi-
bility of derived structures. 

3.2   Feature Constraints for Reducing Ambiguities of Generalized Grammars 

Adding feature constraints into grammar rules attempts to increase precision of gram-
mar representation. However the side-effect is that it also reduces grammar coverage. 
Therefore grammar design is balanced between its precision and coverage. We are 
looking for a grammar with highest coverage and precision. The tradeoff depends on 
the ambiguity resolution power of adopted parser. If the ambiguity resolution power 
of adopted parser is strong and robust, the grammar coverage might be more impor-
tant than grammar precision. On the other hand a weak parser had better to use 
grammars with more feature constraints. In our experiments, we consider grammars 
suited for PCFG parsing. The follows are some of the most important linguistically-
motivated features which have been tested. 

                                                           
1 The reason for using right-association binarization instead of left-association or head-first 

association binarization is that our parsing process is from left to right. It turns out that pars-
ing speed of right associated grammars is much faster than left-associated grammars for left-
to-right parsing. 
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Head (Head feature): Pos of phrasal head will propagate to all intermediate nodes 
within the constituent. 
Example:S(NP(Head:Nh:他)|S’-VF(Head:VF:叫|S’-VF(NP(Head:Nb:李四)| 
VP(Head:VC:撿| NP(Head:Na:球))))) 
Linguistic motivations: Constrain sub-categorization frame. 

Left (Leftmost feature): The pos of the leftmost constitute will propagate one–level to 
its intermediate mother-node only. 
Example:S(NP(Head:Nh:他)|S’-Head:VF(Head:VF:叫|S’-NP(NP(Head:Nb:李四)| 
VP(Head:VC:撿| NP(Head:Na:球))))) 
Linguistic motivation: Constraint linear order of constituents. 

Mother (Mother-node): The pos of mother-node assigns to all daughter nodes. 

Example:S(NP-S(Head:Nh:他)|S’(Head:VF:叫|S’(NP-S(Head:Nb:李四)|VP-S(Head:VC:
撿| NP-VP(Head:Na: 球 ))))) 
Linguistic motivation: Constraint syntactic structures for daughter nodes. 

Head0/1 (Existence of phrasal head): If phrasal head exists in intermediate node, the 
nodes will be marked with feature 1; otherwise 0. 
Example:S(NP(Head:Nh:他 )|S’-1(Head:VF:叫 |S’-0(NP(Head:Nb:李四 )|VP(Head:VC:
撿| NP(Head:Na: 球 ))))) 
Linguistic motivation: Enforce unique phrasal head in each phrase. 

Table 2. Performance evaluations for different features 

(a)Binary rules without features (b)Binary+Left 
 

Sinica Snorama Textbook Sinica Sinorama Textbook 
RC-Type 95.632 94.026 94.479 95.074 93.823 94.464 
RC-Token 99.422 99.139 99.417 99.012 98.756 99.179 
LP 81.51 77.45 84.42 86.27 80.28 86.67 
LR 82.73 77.03 85.09 86.18 80.00 87.23 
LF 82.11 77.24 84.75 86.22 80.14 86.94 
BP 87.73 85.31 89.66 90.43 86.71 90.84 
BR 89.16 84.91 90.52 90.46 86.41 91.57 
BF 88.44 85.11 90.09 90.45 86.56 91.20 

(c)Binary+Head (d)Binary+Mother 
 

Sinica Snorama Textbook Sinica Sinorama Textbook 
RC-Type 94.595 93.474 94.480 94.737 94.082 92.985 
RC-Token 98.919 98.740 99.215 98.919 98.628 98.857 
LP 83.68 77.96 85.52 81.87 78.00 83.77 
LR 83.75 77.83 86.10 82.83 76.95 84.58 
LF 83.71 77.90 85.81 82.35 77.47 84.17 
BP 89.49 85.29 90.17 87.85 85.44 88.47 
BR 89.59 85.15 90.91 88.84 84.66 89.57 
BF 89.54 85.22 90.54 88.34 85.05 89.01 
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Each set of feature constraint added grammar is tested and evaluated. Table 2 
shows the experimental results. Since all features have their own linguistic motiva-
tions, the result feature constrained grammars maintain high coverage and have im-
proving grammar precision. Therefore each feature more or less improves the parsing 
performance and the feature of leftmost daughter node, which constrains the linear 
order of constituents, is the most effective feature. The Left-constraint-added gram-
mar reduces grammar token-coverage very little and significantly increases label and 
bracket f-scores. 

It is shown that all linguistically-motivated features are more or less effective. The 
leftmost constitute feature, which constraints linear order of constituents, is the most 
effective feature. The mother-node feature is the least effective feature, since syntactic 
structures do not vary too much for each phrase type while playing different gram-
matical functions in Chinese. 

Table 3. Performances of grammars with different feature combinations 

(a) Binary+Left+Head1/0 (b) Binary+Left+Head 
 

Sinica Sinorama Textbook Sinica Sinorama Textbook 
RC-Type 94.887 93.745 94.381 92.879 91.853 92.324 
RC-Token 98.975 98.740 99.167 98.173 98.022 98.608 
LF 86.54 79.81 87.68 86.00 79.53 86.86 
BF 90.69 86.16 91.39 90.10 86.06 90.91 
LF-1 86.71 79.98 87.73 86.76 79.86 87.16 
BF-1 90.86 86.34 91.45 90.89 86.42 91.22 

Table 4. Performances of the grammar with most feature constraints 

Binary+Left+Head+Mother+Head1/0  
Sinica Sinorama Textbook 

RC-Type 90.709 90.460 90.538 
RC-Token 96.906 96.698 97.643 
LF 86.75 78.38 86.19 
BF 90.54 85.20 90.07 
LF-1 88.56 79.55 87.84 
BF-1 92.44 86.46 91.80 

Since all the above features are effective, we like to see the results of multi-feature 
combinations. Many different feature combinations were tested. The experimental 
results show that none of the feature combinations outperform the binary grammars 
with Left and Head1/0 features, even the grammar combining all features, as shown in 
the Table 3 and 4. Here LF-1 and BF-1 measure the label and bracket f-scores only on 
the sentences with parsing results (i.e. sentences failed of producing parsing results 
are ignored). The results show that grammar with all feature constraints has better LF-
1 and BF-1 scores, since the grammar has higher precision. However the total per-
formances, i.e. Lf and BF scores, are not better than the simpler grammar with feature 
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constraints of Left and Head1/0, since the higher precision grammar losses slight edge 
on the grammar coverage. The result clearly shows that tradeoffs do exist between 
grammar precision and coverage. It also suggests that if a feature constraint can im-
prove grammar precision a lot but also reduce grammar coverage a lot, it is better to 
treat such feature constraints as a soft constraint instead of hard constraint. Probabilis-
tic preference for such feature parameters will be a possible implementation of soft 
constraint.  

3.3   Discussions 

Feature constraints impose additional constraints between constituents for phrase 
structures. However different feature constraints serve for different functions and 
have different feature assignment principles. Some features serve for local constraints, 
such as Left, Head, and Head0/1. Those features are only assigned at local intermedi-
ate nodes. Some features are designed for external effect such as Mother Feature, 
which is assigned to phrase nodes and their daughter intermediate nodes. For in-
stances, NP structures for subject usually are different from NP structures for object 
in English sentences [10]. NP attached with Mother-feature can make the difference. 
NPS rules and NPVP rules will be derived each respectively from subject NP and ob-
ject NP structures. However such difference seems not very significant in Chinese. 
Therefore feature selection and assignment should be linguistically-motivated as 
shown in our experiments. 

In conclusion, linguistically-motivated features have better effects on parsing per-
formances than arbitrarily selected features, since they increase grammar precision, 
but only reduce grammar coverage slightly. The feature of leftmost daughter, which 
constraints linear order of constituents, is the most effective feature for parsing. Other 
sub-categorization related features, such as mother node and head features, do not 
contribute parsing F-scores very much. Such features might be useful for purpose of 
sentence generation instead of parsing. 

4   Adapt to Pos Errors Due to Automatic Pos Tagging 

Perfect testing data was used for the above experiments without considering word 
segmentation and pos tagging errors. However in real life word segmentation and pos 
tagging errors will degenerate parsing performances. The real parsing performances 
of accepting input from automatic word segmentation and pos tagging system are 
shown in the Table 5. 

Table 5. Parsing performances of inputs produced by the automatic word segmentation and  
pos tagging 

Binary+Left+Head1/0  
Sinica Sinorama Textbook 

LF 76.18 64.53 73.61 
BF 84.01 75.95 84.28 
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The naïve approach to overcome the pos tagging errors was to delay some of the 
ambiguous pos resolution for words with lower confidence tagging scores and leave 
parser to resolve the ambiguous pos until parsing stage. The tagging confidence of 
each word is measured by the following value. 

Confidence value= 
)c(P)c(P

)c(P

w,2w,1

w,1

+
, where P(c1,w) and P(c2,w) are probabilities  

assigned by the tagging model for the best candidate c1,w and the second best candi-
date c2,w. 

The experimental results, Table 6, show that delaying ambiguous pos resolution 
does not improve parsing performances, since pos ambiguities increase structure am-
biguities and the parser is not robust enough to select the best tagging sequence.  The 
higher confidence values mean that more words with lower confidence tagging will 
leave ambiguous pos tags and the results show the worse performances. Charniak et al 
[3] experimented with using multiple tags per word as input to a treebank parser, and 
came to a similar conclusion. 

Table 6. Parsing performances for different confidence level of pos ambiguities 

Confidence value=0.5  
Sinica Sinorama Textbook 

LF 75.92 64.14 74.66 
BF 83.48 75.22 83.65 

Confidence value=0.8  
Sinica Sinorama Textbook 

LF 75.37 63.17 73.76 
BF 83.32 74.50 83.33 

Confidence value=1.0  
Sinica Sinorama Textbook 

LF 74.12 61.25 69.44 
BF 82.57 73.17 81.17 

4.1   Blending Grammars 

A new approach of grammar blending method was proposed to cope with pos tagging 
errors. The idea is to blend the original grammar with a newly extracted grammar 
derived from the Treebank in which pos categories are tagged by the automatic pos 
tagger. The blended grammars contain the original rules and the extended rules due to 
pos tagging errors. A 5-fold cross-validation was applied on the testing data to tune 
the blending weight between the original grammar and the error-adapted grammar. 
The experimental results show that the blended grammar of weights 8:2 between the 
original grammar and error-adapted grammar achieves the best results. It reduces 
about 20%~30% parsing errors due to pos tagging errors, shown in the Table 7. The 
pure error-adapted grammar, i.e. 0:10 blending weight, does not improve the parsing 
performance very much 
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Table 7. Performances of the blended grammars 

Error-adapted grammar i.e. 
blending weight (0:10) 

Blending weight 8:2  

Sinica Sinirama Textbook Sinica Sinirama Textbook 
LF 75.99 66.16 71.92 78.04 66.49 74.69 
BF 85.65 77.89 85.04 86.06 77.82 85.91 

5   Conclusion and Future Researches 

In order to obtain a high precision and high coverage grammar, we proposed a model 
to measure grammar coverage and designed a PCFG parser to measure efficiency of 
the grammar. Grammar binarization method was proposed to generalize rules and to 
increase the coverage of context-free grammars. Linguistically-motivated feature 
constraints were added into grammar rules to maintain grammar rule precision. It is 
shown that the feature of leftmost daughter, which constraints linear order of constitu-
ents, is the most effective feature. Other sub-categorization related features, such as 
mother node and head features, do not contribute parsing F-scores very much. Such 
features might be very useful for purpose of sentence generation instead of parsing. 
The best performed feature constraint binarized grammar increases the grammar cov-
erage of the original grammar from 93% to 99% and bracketing F-score from 87% to 
91% in parsing moderate hard testing data. To cope with error propagations due to 
word segmentation and part-of-speech tagging errors, a grammar blending method 
was proposed to adapt to such errors. The blended grammar can reduce about 20~30% 
of parsing errors due to error assignment of a pos tagging system.  

In the future, we will study more effective way to resolve structure ambiguities. In 
particular, consider the tradeoff effect between grammar coverage and precision. The 
balance between soft constraints and hard constraints will be focus of our future re-
searches. In addition to rule probability, word association probability will be another 
preference measure to resolve structure ambiguity, in particular for conjunctive  
structures.  
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