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ABSTRACT 
The output  of handwri t ten word recognizers (Wit )  tends to 
be very noisy due to various factors. In order to compensate 
for this behaviour, several choices of the W R  must be ini- 
tially considered. In the case of handwri t ten sentence/phrase 
recognition, linguistic constraints may be applied in order 
to improve the results of the Wit .  This paper discusses two 
stat ist ical  methods of applying linguistic constraints to the 
output  of an W i t  on input  consisting of sentences/phrases. 
The first is based on collocations and can be used to prOmote 
lower ranked word choices or to propose new words. The 
second is a Markov model of syntax and is based on syn- 
tactic categories (tags) associated with words. In each case, 
we show the improvement in the word recognition rate as a 
result of applying these constraints. 

1. I N T R O D U C T I O N  
This paper focuses on the use of human language models 
in performing handwrit ing recognition. Systems that  recog- 
nize handwrit ing are referred to as off-line or on-line sys- 
tems, depending on whether ordinary handwriting on paper 
is scanned and digitized or a special stylus and a pressure- 
sensitive tablet  are used. The central component of a hand- 
writ ten text  recognizer is a word recognizer (Wit)  which takes 
as input, a word signal and a lexicon. Its output  consists of 
an ordered list of the best n words in the lexicon which match 
the word signal. Due to wide variabili ty in writing, WRs of- 
ten do not return the correct word as the top choice and get 
worse as the lexicon size increases. Furthermore, the correct 
word may not even be present in the top n choices. This is 
i l lustrated in Figure 1 which shows the output  of an actual 
word recognizer (offiine) on isolated word images. 

imately 200 words on the average. In the second stage, the 
word-image is segmented into several components; physical 
features of each component lead to a set of character choices 
for each segment thus resulting in a set of candidate words. 
All candidate words which are in the lexicon are returned as 
the direct recognition output of the Wit .  In case none of the 
words are found in the lexicon (,~ 62% of the time), string 
matching (the third stage) is performed. 

Since the training phase (of the language module) requires 
the processing of several thousand sentences, the computa-  
tionally expensive procedure of digitizing followed by recog- 
nition is avoided by employing a program which simulates the 
output of an actual WR. Based on the intermediate results 
of the actual word recognizer, we have computed statist ics 
which model the behavi'our of the second stage 1 . These in- 
clude substitution, spli t t ing and merging statistics. Given 
an input (ASCII) word, and the above statistics,  candidate 
(corrupted) words are generated based on simulating and pro- 
pogating each of the above three types of errors at each char- 
acter position. The string matching algorithm used in the 
simulator is the same as that  used in the actual WR. 

Figure 2 il lustrates the entire model for recognizing handwrit-  
ten text. The ult imate goal of language models is to provide 
feedback to the word recognizer as indicated by the dashed 
lines in Figure 2. There are two types of feedback provided: 
(i) feedback information to the W i t  post-processor in terms 
of eliminating syntactic categories from contention, or (ii) 
feedback to word recognition e.g., if syntactic analysis has 
determined that  a particular token must be alphabetic only 
(as opposed to mixed alphanumeric), this information could 
be incorporated in a second "reading" of the word image. 

This necessitates the use of linguistic constraints (which em- 
ploy phrase and sentence-level context) to achieve a perfor- 
mance level comparable to that  of humans [1, 2]. We present 
two techniques, (i) lexical analysis using collocations, and (ii) 
syntactic (n-gram) analysis using part-of-speech (POS) tags, 
both designed to improve the W R  rate. 

2. ISOLATED H A N D W R I T T E N  
WORD RECOGNITION (WR) 

This research employs both off-line [3] and on-line word rec- 
ognizers [4]. The actual WK is implemented as a three-stage 
procedure. In the first stage, wholistic features of the word 
are used to reduce the lexicon from 21,000 words to approx- 

*This work was supported in part by NSF grant IRI-9315006 

3. TRAINING CORPUS,  LEXICON 
A database of representative text  is crucial for this research. 
We are using an electronic corpus consisting of several thou- 
sand e-mail messages which is best categorized as intra- 
departmental  communication (e.g., meeting notifications, re- 
quests for informa- tion, etc.). The style of language used 
in e-mail reflects that  used in handwriting: informal, un- 
grammatical  at times, relatively short sentences, etc. Such 
a training set has been collected and has being tagged using 
the Xerox POS tagger. We employ a 21,000 word lexicon 
derived from this e-mail corpus which is represented as a t r i e  
to permit  efficient access. 

1The simulator assumes perfect performance for the wholistic 
lexicon reduction stage; the actual module performs with better 
than 95% accuracy. 
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my alarm code soil rout wake 
drcle raid hot 
shute risk list 
clock visit riot 

mail most 

thtaMs . having up 

running 
this loving 

Figure 1: Isolated Word Recognition Output .  Correct words are shown in bold; italicized lists indicate that  correct word is 
not among top choices 

4. L E X I C A L  ANALYSIS  U S I N G  
C O L L O C A T I O N A L  I N F O R M A T I O N  

This module applies collocational information [5] in order to 
modify word neighbourhoods generated by the WR. These 
modified neighbourhoods are then input  to a statist ical  syn- 
tax analysis module which makes final word choices. Collo- 
cations are word pat terns  that  occur frequently in language; 
intuitively, if word A is present, there is a high probabil- 
i ty that  word B is also present. We use Xtract  to find col- 
locations in a 2.1 million word portion of the Wall Street 
Journal corpus ~. Collocations are categorized based on (i) 
the strength of their association (mutual information score, 
mis) and (ii) the mean and variance of the separation be- 
tween them. At this point we are considering only fixed 
collocations such as compound nouns (e.g., "computer sci- 
entist",  "letter of intent") ,  and lexico-syntactic collocations 
(e.g., "giving u p ' )  which are categorized by low variance in 
their separation. In this training set, "significant" colloca- 
tions occur at the rate of approximately 2.6 per sentence, 
thus making i t  worthwhile to perform collocational analysis. 

Specifically, collocational analysis can result in the follow- 
ing actions (ranked from conservative to aggressive): (i) re- 
rank the word choices thereby promoting more likely words, 
(ii) el iminate word choices thereby reducing word neighbour- 
hoods, or (iii) propose new words (not in the top n choices 
of the WR).  The first two actions are possible only if, for 
each word in the multi-word collocation, the correct word is 
among the top n choices of the WR. The last action does not 
have this restriction and consti tutes a form of error detection 
and correction. 

Based on the (i) the strength of the collocation that  a word 
choice par t ic ipates  in, mis(xy), and (ii) the confidence given 
to this word by the W R  wr_conf(x), a decision is made 
whether to simply promote a word choice (i.e., increase its 
rank) or to promote it to the top choice and eliminate all 
other word choices for each of the word neighbourhoods par- 

2 D u e  to  t h e  c u r r e n t l y  i n a d e q u a t e  size of the  e -mai l  corpus ,  we 
a re  t e m p o r a r i l y  c o n d u c t i n g  our  e x p e r i m e n t s  on  the  W S J  corpus .  

t icipating in the collocation. We compute the lexically ad- 
justed score of the word las(z)  = mis(xy)  + wr_conf(x);  if a 
word does not part icipate in any collocation with an adjacent 
word, its score remains the same. The word choices are then 
re-ranked based on any new scores. There are two special 
actions which are taken: 

1. If one word in a collocation is promoted to top choice, 
the remaining words (if they are one of the top choices) 
are also promoted to the top choice. 

2. If the confidences of word choices fall below a certain 
threshold t (based on the difference between i t  and the 
top choice), then they are ehminated from further con- 
sideration. 

This is i l lustrated in Figure 3. 

Actual words: W a l l  S t r e e t  

BEFORE AFTER 

reca l l  2.31 s t r ee t  3.67 wal l  6.87 s t r ee t  
revo l t  1.79 s t r a i t  3.36 recall P.31 strait 
sma l l  1.75 s t r i c t  3.22 . . . . . .  
overa l l  1.73 s t r e a k  3.14 
enrol l  1.71 s t r a n d  2.58 
wal l  1.43 s t r u c k  2.36 

9.11 
3.36 

Figure 3: Collocational information used to re-rank and 
delete words. The words in italics (and those below) are 
deleted from further consideration. 

Based on a test set of 1025 words from the WSJ,  colloca- 
tional analysis improved the percentage correct in the top 
choice from 67% to 72.5%. We are experimenting with var- 
ious thresholds for deleting word choices which minimizes 
the error. We are in the process of extending collocational 
analysis by using one-sided information score. For example, 
the word 'offended' is frequently followed by the word 'by ' ,  
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but the word 'by '  may be preceded by virtually anything. 
Such analysis extends the util i ty of collocational analysis but 
comes with a risk of promoting incorrect word choices. 

Action (iii), namely proposing new words, is based on the 
visually similar neighbourhood (VSN) of a word choice. The 
VSN of a word is computed by the same process that  is used 
by the W R  to reduce a lexicon based on wholistic properties 
of a word. In cases where the reduced lexicon is still too 
large (over 200 words), more stringent constraints (such as 
word length) are applied in order to reduce the size even 
further. The VSN is computed automatical ly from the ASCII  
representation of a word. For example, if the correct words 
axe "nuclear power" and the set of word choices result in 
"nucleus power" and "mucus power", collocational analysis 
results in the addit ional word choice "nuclear". This is based 
on the fact that  (i) "nuclear" is in the VSN of "nucleus" and 
(ii) the words "nuclear power" consti tute a strong collocation. 
This method is currently being a t tempted  for only a small set 
of strong collocations. 

5. S Y N T A C T I C  M O D E L S :  U S I N G  P O S  
T A G S  T O  R E D U C E  W O R D  

N E I G H B O U R H O O D S  
The performance of a W R  system can be improved by 
incorporating stat is t ical  information at the word sequence 
level. The performance improvement derives from selection 
of lower-rank words from the W R  output  when the surround- 
ing context indicates such selection makes the entire sentence 
more probable. Given a set of output  words .X which emanate 
from a noisy channel (such as an WR),  N-gram word mod- 
els [6] seek to determine the string of words VV which most 
probably gave rise to it. This amounts to finding the string 
ITV for which the a posteriori probabili ty 

P(W [ .X) = P(VV) • P(.~ I 17¢) 
P(X) 

is maximum, where P ( X  ] W)  is the probabili ty of observing 
X when W is the true word sequence, P(VV) is the a pri- 
ori probabili ty of W and P(X) is the probabili ty of string 
X. The values for each of the P(Xi [ Wi) are known as the 
channel (or confusion) probabilities and can be est imated em- 
pirically. If we assume that  words are generated by an nth 
order Maxkov source, then the a priori probabili ty P ( W )  can 
be est imated as 

P(W) = P(W~+i I W,~+l- , ) . . .  P(W1 ] Wo) * P(Wo) 

where P(Wn I Wh . . . . .  Wk-z)  is called the nth-order tran- 
sitional probability. The Viterbi algorithm [7] is a dynamic 
method of finding optimal solutions to the above quantity. 

The problem with such approaches is that  as the number 
of words grow in the vocabulary, est imating the parameters 
reliably becomes difficult. More specifically, the number of 
low or zero-valued entries in the transit ion matr ix  s tar ts  to 
rise exponentially. [8] reports that  of the 6.799 X 10 l° 2- 
grams that  could possibly occur in a 365,893,263 word corpus 
(consisting of 260,740 unique words), only 14,494,217 actually 
occured, and of these, 8,045,024 occured only once. 

In n-gram class models, words axe mapped into syntactic [9] 
classes. In this situation, p(wt I wt-1) becomes: 

p(w, I w,_l) = p(~,, I C(w,)) p(C(w,) I C(w,_,))  

where p(C(wt) I C(wt-1))  is the probabili ty to get to the 
class C(wt) following the class C(wt-1) and p(wt I C(wt)) is 
the probabili ty to get the word wt among the words of the 
class C(wt). 

The research described here uses n-gram class models where 
paxt-of-speech (POS) tags are used to classify words. We use 
the notation A : B to indicate the case where word A has 
been assigned the tag B. For each sentence analyzed, we 
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form a word:tag lat t ice representing all possible sentences for 
the set of word choices output  by string matching (see figure 
4) 3. The problem is to find the best path(s) through this 
lattice. Computat ion of the best path requires the follow- 
ing information: (i) tag transit ion statistics, and (ii) word 
probabilities. 

Transit ion probabil i t ies  describe the likelihood of a tag fol- 
lowing some preceding (sequence of) tag(s). These statist ics 
are calculated during training as: 

e(tagBitagA) = #(tagA ~ tagB) 
#(tagA) 

Beginning- and end- of-sentence markers axe incorporated as 
tags themselves to obtain necessary sentence-level informa- 
tion. 

Word probabil i t ies are defined (and calculated during train- 
ing) as: 

#(Word : Tag) 
P(Word [ Tag) = #(AnyWord : Tag) 

The above stat ist ics have been computed for the e-mail cor- 
pus. The Xerox POS tagger [10] has been employed to tag 
the corpus; the tagset used is the Penn treebank tagset. The 
advantage of the Xerox tagger is the abili ty to train i t  on an 
untagged corpus. 

The Viterbi algorithm is used to find the best Word:Tag se- 
quence through the latt ice,  i.e., the maximal value of the 
following quantity: 

n 

H P(Word, ] Tag,)P(Tag, I Tag,-1) 
i = 1  

over all possible tag sequences T = Tago, Taga . . . .  Tag,+1 
where Tago and Tag,b+1 are the beginning-of-sentence and 
end-of-sentence tags respectively. The Viterbi  algorithm al- 
lows the best path to be selected without explicitly enumer- 
ating all possible tag sequences. A modification to this algo- 
r i thm produces the best n sequences. 

The lat t ice of Figure 4 demonstrates  this procedure being 
used to derive the correct tag sequence even when the correct 
word ( ' the ' )  was not output  by the WR. The chosen path is 
i l lustrated in boldface. The values on the edges represent tag 
transit ion probabil i t ies and the node values represent word 
probabilities. Analysis showed that  the correct tag most fre- 
quently missing from the lat t ice was the DT (determiner) 
tag. Thus, the DT tag is automatical ly  included in the lat-  
tice in all cases of short words (< 4 characters) where i t  was 
not otherwise a candidate.  

A test set of 140 sentences from the e-mail corpus produced 
the results shown in Figure 5. The percentage of words cor- 
rectly recognized as the top choice increased from 51% to 
61% using this method; ceiling is 70% due to correct word 
choice being absent in W R  output .  Furthermore, by elim- 
inat ing all word choices that  were not part  of the top 20 

3the presence of the DT tag in the trellis is explained below 

sequences output  by the Viterbi, a reduction in the average 
word neighbourhood of 56% (from 4.4 to 1.64 choices/word) 
was obtained with an error rate of only 3%. The la t ter  is 
useful if a further language model is to be applied (e.g., se- 
mantic analysis) since fewer word choices, and therefore fax 
fewer sen- tence possibilities remain. 

While this method is effective in reducing word neighbour- 
hood sizes, it  does not seem to be effective in determining the 
correct /best  4 sentence (the ul t imate objective) or in provid- 
ing feedback. We are investigating hybrid models (combining 
syntax and semantics) for achieving this. 
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WORD LATTICE 

Actual sentence: 
he/PP 

ItWR word choices: 
ha 
he 

Word/Tag lattice: 

Selected sentence: 
he/PP 

wiWMD slgn/VB the/DT letter/NN 

sign tie letter 
wider 

,h 

_ r- : - -ZT:Li  - - ' l  I [ 
" ~ ~ _ ~ ' _ ~ l m _ . _ _  - I  s ,gn~ , ,F -  ~.1..~ ~ I 

""  II IIt, 

will/MD sign/VB ....jDT letter/NN 

Figure  4: Sample  Word :Tag  La t t i ce  For Analys is  of W R  choices 

./. 

Test set: 140 sentences from e-mall Corpus 
W R  results: top choice 51.89% top 5 choices 69,45% 

CRITERIA 

% correct tags 
% correct words 

% correct Sentence 
% best  sentence 

% reduct ion in word / tag  nbd:  
e r r o r  

Correct Word Added 
No.' of Sequence ~hoices ' ,  

1 5 10 20 
91.34 95,79' 96.80 95:3"8 
89.0 94.10 95.31 95.86 

32:14 51,43 i 55.71 58,57 
32.14 51.43 55.71 58.57 

-78.26 69.83 63.77 58.50 
10.0 5.90 4.69 4.14 

Correct Word Not Added 
No. of Seq.uence Choices 

I 5 I0 20 
65.19 70.II  71.35 72.75 
61.13 64,85 66,25 67.16 
4.29 5.71 5.7i 5.71 
40.0 57.14 63.57' 70,0 
76.37 67.34 61.16 55.89 
11.87 6.63 4.61 3.30 

Average word / tag  nbd.  size (correct words not  added) before Method 1 : 4.40 
Avg. word / tag  nbd.  size if top 20 sequence choices axe taken: 1,64 
10 word sentence: 4.40 TM > 10 million sentences 1.64 l° -- 140 sentences 

F igure  5: Resul ts  f rom Syntac t i c  Class  Markov Model  
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