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ABSTRACT 
This paper explores use of synergistically-integrated systems 
of microphone arrays and neural networks for robust speech 
recognition in variable acoustic environments, where the user 
must not be encumbered by microphone equipment. Existing 
speech recognizers work best for "high-quality close-talking 
speech." Performance of these recognizers is typically de- 
graded by environmental interference and mismatch in train- 
ing conditions and testing conditions. It is found that use of 
microphone arrays and neural network processors can elevate 
the recognition performance of existing speech recognizers in 
an adverse acoustic environment, thus avoiding the need to 
retrain the recognizer, a complex and tedious task. We also 
present results showing that  a system of microphone arrays 
and neural networks can achieve a higher word recognition 
accuracy in an unmatched training/testing condition than 
that obtained with a retrained speech recognizer using array 
speech for both training and testing, i.e., a matched train- 
ing/testing condition. 

1. INTRODUCTION 
Hidden Markov Models (HMM's) have to date been accepted 
as an effective classification method for large vocabulary con- 
tinuous speech recognition. Existing HMM-based recognition 
systems, e.g., SPHINX and DECIPHER,  work best for "high- 
quality close-talking speech." They require consistency in 
sound capturing equipment and in acoustic environments be- 
tween training and testing sessions. When testing conditions 
differ from training conditions, performance of these recog- 
nizers is typically degraded if they are not retrained to cope 
with new environmental effects. 

Retraining of HMM-based recognizers is complex and time- 
consuming. It requires recollection of a large amount of 
speech data under corresponding conditions and reestimation 
of HMM's parameters. Particularly great time and effort are 
needed to retrain a recognizer which operates in a speaker- 
independent mode, which is the mode of greatest general in- 
terest. 

Room reverberation and ambient noise also degrade per- 
formance of speech recognizers. The degradation becomes 
more prominent as the microphone is positioned more dis- 
rant from the speaker, for instance, in a teleconferenc- 
ing application. Previous work has demonstrated that 
beamforming/matched-filter microphone arrays can provide 
higher signal-to-noise ratios than can conventional micro- 
phones used at distances (see, e.g., [1, 2]). Consequently, 
there is increasing interest in microphone arrays for hands- 

free operation of speech processing systems [3]-[7]. 

In this report, a system of microphone arrays and neural net- 
works is described which expands the power and advantages 
of existing ARPA speech recognizers to practical acoustic en- 
vironments where users need not be encumbered by hand- 
held or body-worn microphone systems. (Examples include 
Combat Information Centers, large group conferences, and 
mobile hands-busy eyes~busy maintenance tasks.) Another 
advantage o f  the system is that  the speech recognizer need 
not be retrained for each particular application environment. 
Through neural network computing, the system learns and 
compensates for environmental interference. The neural net- 
work transforms speech-feature data (such as cepstrum co- 
efflcients) obtained from a distant-talking microphone array 
to those corresponding to a high-quality, close-talking micro- 
phone. The performance of the speech recognizer can thereby 
be elevated in the hostile acoustic environment without re- 
training of the recognizer. 

The remainder of the paper is organized as follows. First, 
a new speech corpus with simultaneous recording from dif- 
ferent microphones is described in Section 2. Next, the 
system of microphone arrays and neural networks is dis- 
cussed in Section 3. The system is evaluated using both the 
SPHINX speech recognizer and a Dynamic-Time-Warping 
(DTW) based recognizer. The results are presented in Sec- 
tions 4 and 5, respectively. In Section 6, performance compar- 
isons are made of different network architectures to identify 
an optimal design for room-acoustic equalization. Finally, we 
summarize the study and discuss our future work in Section 
7. 

2. SPEECH CORPUS 
A speech database has been recently created at the CAIP 
Center for evaluation of the integrated system of microphone 
arrays, neural networks, and ARPA speech recognizers. The 
database consists of 50 male and 30 female speakers. Each 
speaker speaks 20 isolated command-words, 10 digits, and 10 
continuous sentences of the Resource Management task. Of 
the continuous sentences, two are the same for all speakers 
and the remaining 8 sentences are chosen at random. Two 
recording sessions are made for each speaker. One session 
is for simultaneous recording from a head-mounted close- 
talking microphone (HMD 224) and from a 1-D beamforming 
line array microphone (see Section 3.1). The other is for si- 
multaneous recording of the head-mounted close-talking mi- 
crophone and a desk-mounted microphone (PCC 160). The 
recording is done with an Ariel ProPort  with a sampling fre- 
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Figure 1: Speech wavefozms fzom the head-mounted micro- 
phone ( A and O), ~om the 1-D line array microphone (B), 
and from the desk-mounted microphone (D). CA) and (B) 
are simultaneously zecozded in a session and (C) and (D) in 
a following session. The utterance is: "Miczophone arzay," 
spoken by a male speaker !ABF).  
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Figuze 2: Block diagram of the robust speech zecognition 
system. The neural network processor is t rained using si- 
multaneously recorded speech. The trained neural network 
processor is then used to transform spectral  features of array 
input  to those appropriate  to close-talking. The transformed 
spectral featuzes are inputs  to the speech recognition system. 
N o  retraining or modification of the speech recognizer is nee- 
essary. The training of the neural net typically zequires about 
10 seconds of signal. 

corporating microphone arrays, neural networks, and ARPA 
speech recognizers. 

quency of 16 kHz and 16-bit linear quantization. The record- 
ing environment is a hard-walled laboratory  room of 6 × 6 × 2.7 
meters, having a reverberation time of approximately 0.5 sec- 
ond. Both the desk-mounted microphone and the line axray 
microphone are placed 3 meters from the subjects. Ambient  
noise in the laboratory room is from several workstations, 
fans, and a large-size video display equipment for telecon- 
fereneing. The measured 'A '  scale sound pressure level is 
50 dB. Indicative of the quality differences in outputs f~om 
various sound pickup systems, signal waveforms are given 
in Figure 1. Because of wave propagation from the speaker 
to distant microphones, a delay of approximately 9 msec is 
noticed in outputs of the line array and the desk-mounted 
microphone. Wave propagation between the subject 's  lips 
to the head-mounted close-talking microphone is negligible. 
The reader is referred to [8] for more details. 

3. S Y S T E M  O F  M I C R O P H O N E  
A R R A Y S  A N D  N E U R A L  

N E T W O R K S  
Figure 2 schematically shows the overall system design for ro- 
bust speech recognition in variable acoustic environments, in- 

3 . 1 .  Beamforming Microphone Arrays 
As the distance between microphones and talker increases, 
the effects of room reverberation and ambient noise be- 
come more prominent.  Previous studies have shown that  
beamforming/matched-fl l ter  array microphones are effective 
in counteracting environmental interference. Microphone ar- 
rays can improve sound quality of the captured signal, and 
avoid hand-held, body-worn, or tethered equipment that  
might encumber the talker and restrict  movement. 

The microphone array we use here is a one-dimensional beam- 
forming line array. I t  uses direct-path arrivals to produce a 
slngle-beam delay-and-sum beamformer [1, 2]. (The talker 
typically faces the center of the llne array.) The array con- 
sists of 33 omni-direetlonal sensors, which are nonuniformly 
positioned (nested over three octaves). From Figure 1 i t  is 
seen tha t  the wavefozm of the array resembles that  of the 
close-talking microphone more than the desk-mounted mi- 
crophone. 

3 . 2 .  Neural Network Processors 
One of the neural network processors we have explored, is 
based on multi-layer perceptrons (MLP).  The  MLP has 3 lay- 
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Figure 3: A feedforward delay network for mapping the cep- 
stral coefficients of array speech to those of close-talking 
speech. 

ers. The input layer has 9 nodes, covering the current speech 
frame and four preceding and four following frames, as indi- 
cated in Figure 3. There are 4 sigmoid nodes in the hidden 
layer and 1 linear node in the output layer. 13 such MLP's  
are included, with one for each of the 13 cepstrum coefficients 
used in the SPHINX speech recognizer [14]. (Refer also to 
Figure 2.) The neural network is trained using a modified 
backpropagation method when microphone-array speech and 
close-talking speech are both available (see Figure 3). 

It is found that 10-seconds of continuous speech material are 
sufficient to train the neural networks and allow them to 
"learn" the acoustic environment. In the present study, the 
neural nets are trained in a speaker-dependent mode; That  
is, 13 different neural networks (one for each cepstrum coeffi- 
cient) are dedicated to each subject 1. The trained networks 
are then utilized to transform cepstrum coefficients of array 
speech to those of close-talking speech, which are then used 
as inputs to the SPHINX speech recognizer. 

4. E V A L U A T I O N  R E S U L T S  W I T H  
S P H I N X  R E C O G N I Z E R  

As a baseline evaluation, recognition performance is mea- 
sured on the command-word subset of the CAIP database. 
Performance is assessed for matched and unmatched test- 
ing/training conditions and include both the pretrained and 
retrained SPHINX system. 

The results for the pretrained SPHINX are given in Table 1. 
It includes four processing conditions: (i) close-talking; (ii) 
line array; (ili) line array with mean subtraction (MNSUB) 
[15]; and, (iv) line array with the neural network processor 
(NN). 

Table 2 gives the results for the retrained SPHINX under 
five processing conditions: (i) close-talking; (fi) line array; 

1 The learning rate is 0.01 and the momentum term is 0.5. The 
tr,~i~i~.g terminates at I000 epocch~s. 

Testing Microphone 

Line-Array 
Line-Array +MNSUB 

~ 3  

Word Accuracy 
88% 
16% 
24% 
82% 

Table 1: Baseline evaluation of recognition performance (% 
correct), using the pretrained SPHINX speech recognizer. 

(iii) desk-mounted microphone; (iv) line array with mean 
subtraction (MNSUB); and, (v) line array with the neural 
network processor (NN). The SPHINX speech recognizer is 
retrained using the CAIP speech corpus to eliminate system 
conditions in coUection of the Resource Management task (on 
which the original SPHINX system has been trained) and the 
CAIP speech database. 

As shown in Tables 1 and 2, the array-neural net system is 
capable of elevating word accuracy of the speech recognizer. 
For the retrained SPHINX, the microphone array and neural 
network system improves word accuracy from 21% to 85% for 
distant talking under reverberant conditions. On the other 
hand, the mean subtraction method under these conditions 
improves the performance only marginally. 

It is also seen from Table 2 that if the SPHINX system has 
been retrained with array speech at a distance of 3 meters, the 
performance is as high as 82%. The figure, obtained under a 
matched training/testing condition, is, however, lower than 
that obtained under an unmatched training/testing condition 
with microphone array and neural network. Similar results 
have been achieved for speaker identification [9, 10]. 

5. E V A L U A T I O N  R E S U L T S  W I T H  
D T W  R E C O G N I Z E R  

To more effectively and efficiently assess the capability of 
microphone arrays and neural network equalizers, a DTW- 
based speech recognizer is implemented [12]. The back end 
of DTW classification is simple, and hence, the results do not 
tend to be influenced by the complex back end of an HMM- 
based recognizer, including language models and word-pair 
grammars. 

Testing Training Training 
Close-Talking Line-Array 

Close-Talking 
Line-Array 

Desk-mounted 
Line-Array + MNSUB 

Line-Array + NN 

95% 
21% 
13% 
27% 
85% 

82% 

Table 2: Baseline evaluation of recognition performance (% 
correct), using a retrained SPHINX recognizer based on the 
CAIP speech database. 
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Figure 4: Word recognition accuracy on the testing set as a 
function of the number of i terations when training the neural 
network processor. 

The D T W  recognizer is applied to recognition of the com- 
mand words. End-points of close-talking speech are automat-  
ically determined by the two-level approach [11] 2. At tempts  
have also been made to automatical ly detect end-points of ar- 
ray speech [13], but  in the present paper,  the s tar t ing/ending 
points are inferred from the simultaneously recorded close- 
talking speech, with an addit ional  delay resulting from wave 
propagation. The D T W  recognizer is speaker dependent,  
and is trained using close-talking speech. The measured fea- 
tures are 12th-order LPC-derived cepstral coefficients over a 
frame of 16 msec. The frame is Hamming-windowed and the 
consecutive windows overlap by 8 msec. The D T W  recog- 
nizer is tested on array speech (with the originally computed 
and neural-network corrected cepstral coefficients) and on the 
other set of the close-talking recording. The Euclidean dis- 
tance is utilized as the distort ion measure. 

The recognition results, pooled over 10 male speakers, are 
presented in Table 3. The configuration of MLP used in this 
D T W  based evaluation differs from that  in Section 4. A single 
MLP with no window-sliding is now used to collectively trans- 
form all of 12 cepstral coefficients from array speech to cclose- 
talking. The MLP has 40 hidden nodes and 12 output  nodes. 
The network is again speaker-dependently trained with stan- 
dard backpropagation algorithms. The learning rate is set to 
0.1 and the momentum term to 0.5. The backpropagation 
procedure terminates after 5000 i terat ions (epochs). 

I t  can be seen that  the results in Table 3 are similar to those 
in Tables 2 and 1. The use of microphone arrays and neural 
networks elevates the D T W  word accuracy from 34% to 94% 
under reverberant conditions. The elevated accuracy is close 
to that  obtained for close-talking speech (98~0). 

2The automatic results conform well with manual editing. 

Close-Talking 
Line-Array 

Line-Array + NN 

Word Accuracy 
98% 
34% 
94% 

Table 3: Baseline evaluation of recognition performance using 
D T W  classification algorithms. 

Figure 4 i l lustrates the relationship between the number of 
training i terat ions of the neural networks and the word recog- 
nition accuracies. I t  is seen tha t  as the i terat ion number in- 
creases from 100 to 1000, the recognition accuracy qnickiy 
rises from 32% to 87%. It  can also be seen that  after 5000 
i terations the network is not overtralned, since recognition 
accuracy on the testing set is still improving. 

6. P E R F O R M A N C E  C O M P A R I S O N  
O F  D I F F E R E N T  N E T W O R K  

A R C H I T E C T U R E S  

We also perform comparative experiments with respect to 
different network architectures. I t  has been suggested in the 
communications l i terature that  recurrent non-linear neural 
networks may outperform feedforward networks as equaliz- 
ers. Since our problem can be interpreted as a room acous- 
tics equalization task, we decide to evaluate the performance 
of recurrent nets. For the experiments reported here, we 
only train on da ta  from the 3rd eepstral coefficient (out of 
13 bands). The input  to the neural net is the cepstral da ta  
from the microphone array; the target  cepstral coefficient is 
taken from the close-talking microphone. The squared error 
between the target  da t a  and the neural net output  is used as 
the cost function. The neural nets are trained by gradient de- 
scent. The following three different architectures have been 
evaluated: (i) a linear feedforward net (adaline) [16], (i.i) a 
non-linear feedforward net, (iii) and a non-linear recurrent 
network. The input  layer of all nets consisted of a tapped de- 
lay line. The network configurations are depicted in Figures 
5 and 6. 

Experimental  results are summarized in Table 4, where the 
entry "nflops/epoch" stands for the number of (floating 
point) operations required during training per epoch. The 
entry "#paramete r s"  holds the number of adaptive weights 
in the network. 

I t  is clear that ,  for this dataset ,  the non-linear networks per- 
form bet ter  than the linear nets, but  at the expense of consid- 
erably more computations during adaptat ion.  This is not a 
problem if  we assume that  the transfer function from speaker 
to microphone is constant,  but  in a changing environment 
(moving speaker, doors opening, changing background noise) 
this is a problem, as the neural net needs to track the change 
in real-time. I t  should be noted that  the used cost function, 
the squared error, is in all likelihood not a monotonic func- 
tion of the recognizer performance. Currently experiments 
are underway that  evaluate the performance of various net- 
work architectures in terms of word recognition accuracy. 
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Figure 5: The feedforward net. The hidden units are non- 
linear (tanh). 

recto'rent 
I ~ ~ I hidden layer 

0 

Figure 6: The recurrent network has a similar structure as 
the 2-layer feedforward. 

architecture flnalsqe nflops/epoch #parameters adaptation rule 

no processing .12 

adaliine (I tap) .0952 ', 14,000 1 delta rule 

adaline (5) .0844 - 40,000 (1) 5 delta 

adaline (11) .0825 ', 80,000 (2) 11 delta 
i 

~dnet(5~,l) .0707 "1924,000(48) I 15 backprop 

recnet (5,2r,1) .0782 - 2478500 (62) 19 bptt 

.0775 '. 3772°000 f94) i ffwdnet ($,4,1) -37n,ooo(94) 29 backprop 

Figure 7: Experimental results of different neural network 
configurations. The various runs are ordered by increasing 
performance. Final sqe (squared error) is the mean sqe per 
time step on the test database. The ops/epoch denotes the 
number of floating point operations per epoch during train- 
ing. The number in brackets is the number of flops per epoch 
divided by flops/epoch for adaline (5 taps). ~ parameters 
denotes the number of adaptive parameters in the network. 

7.  C O N C L U S I O N  A N D  
D I S C U S S I O N  

The above evaluation results suggest that the system of mi- 
crophone array and neural network processors can 

• effectively mitigate environmental acoustic interference 

• without retraining the recognizer, elevate word recog- 
nition accuracies of HMM-based and/or DTW-based 
speech recognizers in variable acoustic environments to 
levels comparable to those obtained for close-talking, 
high-quality speech 

• achieve word recognition accuracies, under unmatched 
training and testing conditions, that exceed those ob- 
tained with a retrained speech recognizer using array 
speech for both retraining and testing, i.e., under em 
matched training and testing conditions 

Similar results have also been achieved for studies on speaker 
recognition [9, 10]. 

In future work, we expect to extend the comparative eval- 
uations of different neural network architectures, so that 
the performance of neural network equalization can be ad- 
dressed in terms of word recognition accuracy. We also want 
to extend the evaluation experiments to continuous speech. 
For comparison, the DECIPHER system will be included, 
and possibly other advanced ARPA speech recognizers. The 
CAIP Center has concomitant NSF projects on developing 
2-D and 3-D microphone arrays. These new array micro- 
phones have better spatial volume selectivity and can pro- 
vide a high signal-to-noise ratio. They will be incorporated 
into this study. Further work will compare the system of mi- 
crophone array and neural network with other existing noise 
compensation algorithms, such as Codebook Dependent Cep- 
strum Normalization (CDCN) [17] and Parallel Model Com- 
bination (PMC) [18]. 
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