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A B S T R A C T  
In this paper, we describe a reversible letter-to-sound/sound- 

to-letter generation system based on an approach which com- 
bines a rule-based formalism with data-driven techniques. We 
adopt a probabilistic parsing strategy to provide a hierarchical 
lexical analysis of a word, including information such as mor- 
phology, stress, syllabification, phonemics and graphemics. 
Long-distance constraints are propagated by enforcing local 
constraints throughout the hierarchy. Our training and test- 
ing corpora are derived from the high-frequency portion of 
the Brown Corpus (10,000 words), augmented with markers 
indicating stress and word morphology. We evaluated our 
performance based on an unseen test set. The percentage 
of nonparsable words for letter-to-sound and sound-to-letter 
generation were 6% and 5% respectively. Of the remaining 
words our system achieved a word accuracy of 71.8~0 and 
a phoneme accuracy of 92.5% for letter-to-sound generation, 
and a word accuracy of 55.8% and letter accuracy of 89.4% 
for sound-to-letter generation. We also compared our hierar- 
chical approach with an alternative, single-layer approach to 
demonstrate how the hierarchy provides a parsimonious de- 
scription for English orthographic-phonological regularities, 
while simultaneously attaining competitive generation accu- 
racy. 

I N T R O D U C T I O N  
This paper describes a trainable probabilistic system 

for reversible let ter-to-sound/sound-to-let ter  generation. 
Sound-to-letter generation is a crucial aspect in the prob- 
lem of automatic  detection/incorporation of new words, 
which is in turn critical for the development of large vo- 
cabulary speech understanding systems. Moreover, letter- 
to-sound generation will continue to be important  for 
speech output ,  especially in applications such as read- 
ing machines. To successfully achieve our goal, several 
important  issues must be addressed. First ,  what should 
be the inventory of linguistic or lexical units for describ- 
ing English orthographic-phonological regularities? Sec- 
ond, how should these units be incorporated into the 
representation of English orthography and phonology? 
Third, what algorithms can be used to synthesize and an- 
alyze the spelling and pronunciation of an English word 

1This research was supported by ARPA under Contract N00014- 
89-J-1332, monitored through the Office of Naval Research, and a 
grant from Apple Computer Inc. 

in terms of these lexical units? These three issues will 
be addressed in detail in the following when we describe 
our approach and report  on our system's performance 
for both letter-to-sound [1] and sound-to-letter genera- 
tion [2]. The novel features of our approach include the 
reversibility of the combined parsing and generative pro- 
cesses, the abili ty to provide multiple output  hypotheses, 
the capability of handling uncertainty in the input, as 
well as our t reatment  of non-parsab!e words. 

PREVIOUS WORK 
L e t t e r - t o - S o u n d  G e n e r a t i o n  

One of the first approaches adopted for letter-to-sound 
generation is typified by MITalk [8]. It follows the theo- 
ries of generative grammar and the transformational cy- 
cle as proposed by Chomsky and Halle [3]. A large set of 
ordered cyclical rules are applied in turn to the word in 
question until a final pronunciation emerges. While the 
process of establishing the appropriate rule set was te- 
dious and time-consuming, the resulting system achieved 
a degree of accuracy that ,  to our knowledge, has not yet 
been matched by other more automatic  techniques. 

Because the generation of cyclical rules is a difficult 
and complicated task, several research groups have at- 
tempted to acquire letter-to-sound generation systems 
through automatic or semi-automatic data-driven tech- 
niques, based on neural nets or on an information theo- 
retic approach. Typically, the goal is to provide as little 
a pr ior i  information as possible, ideally, only a set of 
pairings of letter sequences with corresponding (aligned 
or unaligned) phone sequences. Iterative training algo- 
rithms then produce a probabili ty model that  is applied 
to predict the most likely pronunciation. Probably the 
best known of these systems is NETtalk  [4], which learns 
a pronunciation of the current letter by considering the 
six surrounding letters as input to the neural network. 
Lucassen and Mercer [5] acquired a set of rules automat-  
ically from a large lexicon of phonetically labelled da ta  
by growing decision trees using a criterion based on mu- 
tual information. Although direct comparisons of per- 
formance of different systems is difficult due to the lack 
of standardized phone sets, da ta  sets, or scoring algo- 
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rithms, these systems have reported phone accuracies in 
the low 90's in terms of the percent of letters correctly 
pronounced. 

S o u n d - t o - L e t t e r  G e n e r a t i o n  

To our knowledge, there has been very little previous 
work reported in the literature addressing the problem 
of sound-to-letter generation. We are aware of only two 
prior research efforts in this area. 

Lucas and Damper [6] developed a system for bi- 
directional text-phonetics translation using two neural 
networks to perform statistical string translation. This 
system does not require pre-aligned text-phonetic pairs 
for training, but instead tries to infer appropriate seg- 
mentations and alignments. In a phonetics-to-text trans- 
lation task using two disjoint 2,000-word corpora for train- 
ing mad testing, they reported a 71.3% letter and a 22.8% 
word accuracy. 

Another related effort was conducted by Alleva and 
Lee [7], who used HMMs to model the acoustics of train- 
ing sentences based on the orthographic transcriptions. 
Context-dependent quad-letter acoustic models were train- 
ed with 15,000 sentences, and used in conjunction with a 
5-gram letter language model. Testing on a disjoint cor- 
pus of 30 embedded and end-point detected words (place 
and ship names) gave a 39.3% letter error rate and 21.1% 
word accuracy. However, this result is not directly com- 
parable to our work because the phonemic/phonetic rep- 
resentation is bypassed. 

A H I E R A R C H I C A L  L E X I C A L  
R E P R E S E N T A T I O N  

It has long been realized from research in speech syn- 
thesis that  a variety of linguistic knowledge sources play 
an important role in determining English letter/sound 
correspondences [8]. For example, part-of-speech causes 
the noun and verb forms of "record" to be pronounced 
differently. A morphological boundary causes the letter 
sequence "sch" in "discharge" to be realized differently 
from that in "school" or "scheme". Stress changes the 
identity of vowels in a word, e.g. "define" vs. "defini- 
tion". Also, syllabic constraints are expressible in terms 
of the sequential ordering of distinctive features - sonor- 
ity sequencing in manner features, and phonotactic con- 
straints in place and voicing features. Furthermore, there 
are graphemic constraints for letter to letter transitions. 
A novel feature Of our system is that  multiple layers of 
representation are incorporated to capture short and long 
distance constraints. These include word class, morphs, 
syllables, manner classes, phonemes and graphemes. 

We created a framework which describes the spelling 
and pronunciation of English words using only a small 
inventory of labels associated with the aforementioned 

WORD 1. Top-level 

PRE ROOT SUF ISUF 2. Morphology 

I i J I 
SSYL1 RSYL RSYL 3. Syl. Stress 

o. o.oc  r oloc co r, .oc  coo, 
STOP VOW STOP VOW STOP VOW STOP VOW STOP 5. Broadclesses 

i I I I I I i ] i 
d d 0 k d 6. Phonemes 

i l l  I i i i l  
d • d I ¢ a te * d 7. Graphemes 

Figure 1: Parse tree for "dedicated" with different linguistic 
layers indicated numerically. 

morphological and phonological units. These units are 
organized as a hierarchical tree structure, where the var- 
ious levels of linguistic knowledge are collectively used to 
describe orthographic-phonological regularities. Figure 1 
illustrates the description of the word "dedicated". 

The higher levels encode longer distance constraints, 
while the lower levels carry more local constraints. By 
allowing the terminal nodes to be dual in nature (i.e., 
representing either phones or letters), we can create di- 
rect symmetry between the letter-to-sound and sound- 
to-letter generation tasks simply by swapping the in- 
put /output  specification. 

One should note in Figure 1 that [*] is a graphemic 
"place-holder" introduced to maintain consistency be- 
tween the representations of the words "dedicate" and 
"dedicated", where an inflexional suffix [ISUF] has been 
attached to the latter word. Another noteworthy detail 
is the special [M-ONSET] category, which signifies that  
the letter 'c '  should belong to the root "-dic-",2 but has. 
become a moved onset of the next syllable due to syllab- 
ification principles such as the Maximal Onset Principle 
and the Stress Resyllabification Principle. a 

T H E  P A R S I N G  A L G O R I T H M  
We are adopting a technique that  represents a cross 

between explicit rule-driven strategies and strictly data- 
driven approaches. About 100 generalized context-free 
rules, such as those illustrated in Table 1 are written 
by hand, and training words are parsed using TINA [9], 
according to their marked linguistic specifications. The 
parse trees of format as show in Figure 1 are then used 

2According to Webster's New World Dictionary, the root of 
"dedicated" is "-dic-", which is derived from the Latin word 
"dicare'. 

3The Maximal Onset Principle states that the number of conso- 
nants in the onset position should be maximized when phonotactic 
and morphological constraints permit, and Stress Resyllabification 
refers to maximizing the number of consonants in stressed syllables. 
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word 
root 
stressed-syllable 
nucleus 
n a s a l  

--~ [prefix] root [SUffLX] 
--~ stressed-syllable [reduced-syllable] 
--* [onset] nucleus [coda] 

vowel 
( /m /  I n /  / r j / )  

/ m /  --~ ("m . . . .  me . . . .  mn . . . .  mb . . . .  mm . . . .  mp") 

Table 1: Example rules at each of the different layers. 

to t ra in the probabilities in a set of "layered bigrams" 
[10]. We have chosen a probabilistic parsing paradigm 
for four reasons: First ,  the probabilities serve to augment 
the known structural  regularities that  can be encoded in 
simple rules with other structural  regularities which may 
be automatically discovered from a large body of training 
data. Secondly, since the more probable parse theories 
are distinguished from the less probable ones, search ef- 
forts can selectively concentrate on the high probabili ty 
theories, which is an effective mechanism for perplex- 
ity reduction. Thirdly, probabilities are less rigid than 
rules, and adopting a probabilistic framework allows us 
to easily generate multiple parse theories. Fourthly, the 
flexibility of a probabilistic framework also enables us to 
automatically relax constraints to at tain bet ter  coverage 
of the data.  

T r a i n i n g  P r o c e d u r e  

The layered bigrams formalism attaches probabili- 
ties to sibling-sibling transitions in context-free grammar 
rules. I t  has been shown to achieve a low perplexity 
at the linguistic level within the ATIS domain [10]. For 
our current sub-word application, we have modified the 
layered-bigrams in two ways: (1) parse trees are gener- 
ated in a bot tom-up fashion instead of top-down, and 
(2) t he  contextual information used in bot tom-up pre- 
diction includes the complete history in the immediate 
left column. 

Our experimental corpus consists of the 10,000 most 
frequent words appearing in the Brown Corpus [11], where 
each word entry contains a spelling and a single unaligned 
phoneme string. We used about 8,000 words for training, 
and a disjoint set of about 800 words for testing. 

The set of training probabilities are est imated by tab- 
ulating counts using the training parse trees. 4 It includes 
bot tom-up prediction probabilities for each category in 
the parse tree, and column advancement probabilities for 
extending a column to the next terminal. The same set of 
probabilities are used for both  letter-to-sound and sound- 
to-letter generation. 

T e s t i n g  P r o c e d u r e  

In letter-to-sound generation, the system takes in a 
spelling as an input, generates a parse tree in a bottom- 

4See [1] for a more de ta i led  descr ip t ion  of th i s  process. 

up left-to-right fashion, and derives a phonemic pronunci- 
ation from the complete parse: In sound-to-letter gener- 
ation, the system accepts a string of phonemes as input, 
and generates letters. An inadmissible stack decoding 
search algorithm is adopted for its simplicity. If multiple 
hypotheses are desired, the algorithm can terminate af- 
ter multiple complete hypotheses have been popped off 
the stack. These hypotheses are subsequently re-ranked 
according to their actual parse score. Though our search 
is inadmissible, we are able to obtain multiple hypotheses 
inexpensively with satisfactory performance. 

E X P E R I M E N T A L  R E S U L T S  
Experiments on both letter-to-sound and sound-to- 

letter generation were conducted using 26 letters, one 
graphemic place-holder and 52 phonemes (including sev- 
eral unstressed vowels and pseudo diphthongs such a s / o  
r / ) .  Each entry in the test corpus contains a spelling 
corresponding to a single pronunciation. The genera- 
tion procedures use evaluation criteria that  directly mir- 
ror one another. Word accuracy is the percentage of 
parsable words for which the top-ranking theory gener- 
ates a spelling/pronunciation that  matches the lexical 
entry exactly. Non-parsable words are those for which 
no sPelling/pronunciation output  is produced. "Top N" 
word accuracy refers to the percentage of parsable words 
for which the correctly generated spelling/pronunciation 
appears in the top N complete theories. Let ter /Phoneme 
accuracies include insertion, substi tution and deletion er- 
ror rates, and are obtained using the program provided 
by NIST for evaluating speech recognition systems. 

R e s u l t s  o n  L e t t e r - t o - S o u n d  G e n e r a t i o n  

In letter-to-sound generation, about 6% of the test set 
was nonparsable. This set consists of compound words, 
proper names, and words that  failed due to sparse da ta  
problems. Results for the parsable portion of the test set 
are shown in Table 2. The 69.3% word accuracy corre- 
sponds to a phoneme accuracy of 91.7%, where an inser- 
tion rate of 1.2% has been taken into account. 

Thus far there are no standardized evaluation meth- 
ods for text-to-speech systems, and therefore comparison 
among different systems remains difficult. Errors in the 
generated stress pat tern  and/or  phoneme insertion er- 
rors are often neglected. Evaluation criteria that  have 
been used include word accuracy, accuracy per phoneme 
and accuracy per letter (in measuring the accuracy per 
letter, silent letters are regarded as mapping to a [NULL] 
phone). We believe that  accuracy per letter would gener- 
ally be higher than accuracy per phoneme, because there 
are generally more letters than phonemes per word, and 
the letters mapping to the generic category [NULL] would 
usually be correct. To verify our claim, we computed the 
two measurements based on our training set, using the 
alignment provided by the training parse trees. Our re- 
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Accuracy top choice 

train word 
phoneme 

test word 
phoneme 

top 5 top 10 
correct correct correct 
77.3% 93.7% 95.7% 
94.2% - - 
69.3% 86.2% 87.9% 
91.7% - - 

Table 2: Letter-to-Sound-Generation Experiments: Word 
and Phoneme Accuracy for Training and Testing data 

Accuracy 

train!  word 
letter 

test  word 
I letter 

top choice top 5 top 10 
correct correct correct 
58.8% 85.0% 89.3% 
90.6% - - 

51 .9% 77.0% 81.1% 
88.6% - - 

Table 3: Sound-to-Letter Generation Experiments: 
and Letter Accuracy for Training and Testing data 

Word 

100' 

701 mm 
¢1 

5O 
0 10 20 50 

Rank of Correct Pronunciation 

Figure 2: Letter-to-Sound: Percent correct whole-word the- 
ories as a function of N-best depth for the test set 

100 '  

& |50, 
7o, 

= 

eo. 

5 0  

f - - -  
Rank of Correct Spelling 

Figure  3: Sound-to-Letter: Percent correct whole-word the- 
ories as a function of N-best depth for the test set 

sult shows tha t  a per letter measurement would lead to 
a .10% reduction in error rate. 

Figure 2 is a plot of cumulative percent correct of 
whole word theories as a function of the N-best  depth 
for the test set. Although 30 complete theories were gen- 
erated for each word, no correct theories occur beyond 
N ----18 after resorting, with an asymptotic value of just  
over 89%. 

R e s u l t s  o n  S o u n d - t o - L e t t e r  G e n e r a t i o n  

In sound-to-letter generation, about 4% of the test 
set was nonparsable. Results for the parsable words are 
shown in Table 3; top-choice word accuracy for sound-to- 
letter is about 52%. This corresponds to a letter accu- 
racy of 88.6%, with an insertion error rate of 2.5% taken 
into account. This performance compares favorably with 
those reported in previous work. 

Figure 3 is a plot of the cumulative percent correct 
(in sound-to-letter generation) of whole word theories as 
a function of N-best  depth of the test  set. The asymp- 
tote of the graph shows that  the first 30 complete the- 
ories generated by the parser contain a correct theory 
for about  83% of the test words. Within  this pool, re- 
sorting using the actual parse score has put  the correct 
theory within the top 10 choices for about 81% of the 
cases, while the remaining 2% have their correct theo- 
ries ranked between N = 10 and N = 30. Resorting 
seems to be less effective in the sound-to-letter case, pre- 

sumably because many more "promising" theories can 
be generated than for letter-to-sound. A possible rea- 
son for this is the ambiguity in phoneme-to-letter map- 
ping, and another reason is that  geminant letters are of- 
ten mapped to the same (consonantal) phoneme. For 
example, the generated spellings from the pronunciation 
of "connector" i.e., the phoneme string (k t n e k t a~), 
include: "conecter", "conector", "connecter", "connec- 
tor",  "conectar", "conectyr", "conectur", "connectyr", 
"eonnectur", "conect ter ' ,  "connectter" and "cannecter ' .  
Many of these hypotheses can be rejected with the avail-' 
ability of a large lexicon of legitimate English spellings. 

E r r o r  A n a l y s e s  

Both of the cumulative plots shown above reach an 
asymptotic value well below 100%. The words that  be- 
long to the port ion of the test set lying above the asymp- 
tote appear  intractable - a correct pronunciation/spell ing 
did not emerge as one of the 30 complete theories. De- 
tailed analysis of these words shows that  they fall into ap- 
proximately 4 categories. (1) Generated pronunciations 
that  have subtle deviations from the reference strings. (2) 
Unusual pronunciations due to influences from foreign 
languages. (3) Generated pronunciations which agree 
with the regularity of English letter-phoneme mappings, 
but  were nevertheless incorrect. (4) Errors a t t r ibutable  
to sparse da ta  problems. Some examples are shown in 
Table 4. It is interesting to note tha t  there is much over- 
lap between the set of problematic words in letter-to- 
sound and sound-to-letter generation. This implies tha t  
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Category correct generated generated correct 
spelling spelling pronunciation pronunciation 

(1) Subtle acquiring equiring IkwoYrzl] i k w o / ~ l l j  

balance balence correct ba~hns 
launch lawnch correct lon5 

pronounced pronounst pnnoWnst proWnaWnst 
(2) Umzsual champagne shampain ~a~mplgniY ~a:mpeYn 

debris dibree diYbns dlbriY 
(3) Regular basis correct ba~sls beYsts 

elite aleat doYt diYt 
violence viallence correct voYdms 
viscosity viscossity v,skoWs,ti y vIskos~ti y 

(4) Sparse braque brack bra~kwiY bra~k 

T a b l e  4: Some examples  of genera t ion  errors  

improvements made in one generative direction should 
carry over to the opposite direction as well. 

E V A L U A T I N G  T H E  
H I E R A R C H Y  

We believe that  the higher level linguistic knowlege 
incorporated in the hierarchy is important  for our gener- 
ation tasks. Consequently, we would like to empirically 
assess: (1) the relative contribution of the different lin- 
guistic layers towards generation accuracy, and (2) the 
relative merits of the overall design of the hierarchical lex- 
ical representation. Our studies [13] are based on letter- 
to-sound generation only, although we expect t ha t  the 
implications of our s tudy should carry over to sound-to- 
letter generation. 

I n v e s t i g a t i o n s  o n  t h e  H i e r a r c h y  

The implementation of our parser is flexible, in that  it 
can train and test on a variable number of layers in the 
hierarchy. This enables us to explore the relative con- 
tr ibution of each linguistic level in the generation task. 
We conducted a series of experiments whereby an in- 
creasing amount of linguistic knowledge (in terms of the 
number of layers in the hierarchy) is omitted from the 
training parse trees. For each reduced configuration, the 
system is re-trained and re-tested on the same training 
and testing corpora as described earlier. For each ex- 
periment we compute the top-choice word accuracy and 
perplexity, which reflect the amount of constraint pro- 
vided by the hierarchical representation. We also mea- 
sure the coverage to show the extent to which the parser 
can generalize to account for previously unseen struc- 
tures, and count the number off system parameters in 
order to observe the computational load, as well as the 
parsimony of the hierarchical framework in capturing En- 
glish orthographic-phonological regularities. We found 
that  for every layer omitted from the representation, lin- 
guistic constraints are lost, manifested as a lower gener- 

ation accuracy, higher perplexity and greater coverage. 
Fewer layers also require fewer training parameters.  

The significant exception was the case of omitt ing the 
layer of broad classes (layer 5), which seems to introduce 
additional constraints, thus giving the highest generation 
performance. The word accuracy based on the parsable 
portion of the test set was 71.8%, 5 which corresponds to 
a phoneme accuracy of 92.5%. This improvement 6 can 
be understood by realizing that  broad classes can be pre- 
dicted from phonemes with certainty, and the inclusion of 
the broad class layer probably led to excessive smoothing 
across the individual phonemes within each broad class7 
Again, about 6% of the test set was nonparsable. When a 
robust parsing scheme is used to recover the nonparsable 
words, 100% coverage was achieved, but  performance de- 
grades to 69.2% word and 91.3% phoneme accuracy. 

C o m p a r i s o n  w i t h  a S i n g l e - L a y e r  A p p r o a c h  

We also compared our current hierarchical framework 
with an alternative approach which uses a single-layer 
representation. Here, a word is represented mainly by 
its spelling and an aligned phonemic transcription, us- 
ing the [NULL] phoneme for silent letters. The alignment 
is based on the training parse trees from the hierarchical 
approach. For example, "bright" is transcribed a s / b  raY 
NULL NULL [ / .  The word is then fragmented exhaustively 
to obtain letter sequences (word fragments) shorter than 
a set maximum length. During training, bigram proba- 
bilities and phonemic transcription probabilities are com- 
puted for each letter sequence. Therefore this approach 

5When normalized on the entire test set, the word accuracy 
becomes 67.5%. 

6We also found improvement on sound-to-letter generation - 
55.8% word accuracy on the parsable test words, corresponding to 
89.4% letter accuracy, and 5% of the words were nonparsable. 

7However, broad classes may still serve a role as a "fast match" 
layer in recognition experiments, where their predictions could no 
longer be certain, due to recognition errors. 
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captures some graphemic constraints within the word 
fragment, but  higher level linguistic knowledge is not ex- 
plicitly incorporated. Letter-to-sound generation is ac- 
complished by finding the "best" concatenation of letter 
sequences which constitutes the spelling of the test word. 

TO facilitate comparison with the hierarchical approach, 
we use the same training and test sets to run letter-to- 
sound generation experiments with the single-layer ap- 
proach. Several different value settings were used for 
the maximum word fragment length. We expect genera- 
tion accuracy to improve as the maximum word fragment 
length increases, because longer letter sequences can cap- 
ture more context. However, this should be accompanied 
by an increase in the number of system parameters due to 
the combinatorics of the letter sequences. Furthermore, 
there are no nonparsable test words in the single-layer 
approach, because it can always "backolT' to mapping a 
single letter to its most probable phoneme. 

The hierarchical approach (without the broad class 
layer) achieved the same performance as the highest per- 
forming single-layer approach, which allowed a maximum 
fragrnent length of 6. 8 The mean fragment length of the 
segmentations used in the test set by the single-layer ap- 
proach was 3.7, while the mean grapheme length used 
by the hierarchical approach was  only 1:2. The hierar- 
chical approach is capable of reversible generation us- 
ing about 32,000 parameters,  while the single-layer ap- 
proach requires 693,300 parameters  (a 20-fold increase) 
for uni-directional letter-to-sound generation. In order 
to achieve reversibility, the number of parameters would 
have to be doubled. 

D I S C U S S I O N  
Our current work demonstrates the utility of a hi- 

erarchical framework, which is relatively rich in linguis- 
tic knowledge, for bi-directional let ter-to-sound/sound- 
to-let ter  generation. The use of layered bigrams in our 
hierarchy is extendable to encompass natural  language 
constraints [10], prosody, discourse and perhaps even di- 
alogue modeling constraints on top, as well as phonet- 
ics and acoustics at the bottom. As such this paradigm 
should be part icularly useful for applications in speech 
synthesis, recognition and understanding. 

The versatili ty of our framework can lead to a variety 
of applications. These range from a lexical representation 
for large-vocabulary recognition, which provides seman- 
t ic information, syntactic information, and a clustering 
mechanism for fast match [12], to a low-perplexity lan- 
gnage model for character recogition tasks, where our 
system gives a test set perplexity of 8.0 as constrasted 

Swe did not investigate the cases where maximum word frag- 
ment lengths are set beyond 6, due to computational limitations, 
and the vast number of training parameters required. 

with 11.3 from a s tandard letter bigram. In the near fu- 
ture, we plan to report  on our robust parsing mechanism 
for extending coverage, and to experiment with alterna- 
tive search strategies in the layered bigrams framework. 
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