
Decision Tree Parsing using a Hidden Derivation Model
E Jelinek,* J. Lafferty, D. Magerman, R. Mercer*, A. Ratnaparkhi, S. Roukos

I B M R e s e a r c h D iv i s ion

T h o m a s J. W a t s o n R e s e a r c h Cen te r

Y o r k t o w n He igh t s , N Y 10598

1. Introduction

Parser development is generally viewed as a primarily linguis-
tic enterprise. A grammarian examines sentences, skillfully
extracts the linguistic generalizations evident in the data, and
writes grammar rules which cover the language. The gram-
marian then evaluates the performance of the grammar, and
upon analysis of the errors made by the grammar-based parser,
carefully refines the rules, repeating this process, typically
over a period of several years.

This grammar refinement process is extremely time-
consuming and difficult, and has not yet resulted in a grammar
which can be used by a parser to analyze accurately a large
corpus of unrestricted text. As an alternative to writing gram-
mars, one can develop corpora of hand-analyzed sentences
(treebanks) with significantly less effort 1. With the avail-
ability of treebanks of annotated sentences, one can view NL
parsing as simply treebank recognition where the methods
from statistical pattern recognition can be brought to bear.

This approach divides the parsing problem into two separate
tasks: treebanking, defining the annotation scheme which will
encode the linguistic content of the sentences and applying
it to a corpus, and treebank recognition, generating these
annotations automatically for new sentences.

The treebank can contain whatever information is deemed
valuable by the treebanker, as long as it is annotated according
to some consistent scheme, probably one which represents
the intended meaning of the sentence. The goal of treebank
recognition is to produce the exact same analysis of a sentence
that the treebanker would generate.

As treebanks became available during the past five years,
many "statistical models" for parsing a sentence w~ of n
words still relied on a grammar. Statistics were used to sim-
ply rank the parses that a grammar allowed for a sentence.
Unfortunately, this requires the effort of grammar creation
(whether by hand or from data) in addition to the Treebank
and suffers from the coverage problem that the correct parse

*E Jelinek and R. Mercer, formerly of IBM, are now will, John Hopkins
University and Renaissance Technologies, Inc., respectively.

1 In addition, these annotated corpora have a more permanent value for
future research use than particular grammars

may not be allowed by the grammar. Parsing with these mod-
els is to determine the most probable parse, T*, from among
all the parses, denoted by Ta(w~), allowed by the grammar
G for the sentence w~:

T* = a rgmax p(T [w~). (1)
T6To(w~)

The a posteriori probability of a tree T given the sentence
w? is usually derived by Bayes rule from a generative model,
denoted by p(T, w~), based on the grammar. For example,
probabilistic CFGs (P-CFG) can be estimated from a treebank
to construct such a model [I, 2].

But there is no reason to require that a grammar be used to
construct a probabilistic model p(T [w~) that can be used for
parsing. In this paper, we present a method for contructing a
model for the conditional distribution of trees given a sentence
without the need to define a grammar. So with this new
viewpoint parsing avoids the step of extracting a grammar
and is merely the search of the most probable tree:

T* = arg maxp(Tlw~) (2)
T6T(w~)

where the maximization is over all trees that span the n-
word sentence. While others have attempted to build parsers
from treebanks using correctly tagged sentences as input, we
present in this paper the first results we know of in building
a parser automatically that produces the surface structure di-
rectly from a word sequence and does not require a correct
sequence of tags.

The probabilistic models we explore are conditional on the
derivational order of the parse tree. In [4], this type of model
is referred to as a history-based grammar model where a (de-
terministic) leftmost derivation order is used to factor the
probabilistic model. In this work, we use a set of bottom-
up derivations 2 of parse trees. We explore the use of a self-
organized hidden derivational model as well as a deterministic
derivational model to assign the probability of a parse tree.

In the remaining sections, we discuss the derivation history
model, the parsing model, the probabilistic models for node

2Traditional use of derivation order identifies the order of application of
grammar rules; in this work, we extend the notion to identify the order in
which edges in a tree are created.

2 7 2

Iwcl I""'®IA, I ®lwol ® . . ,

I I I Figure 1: The extensions corresponding to a constituent for a
phrase such as "the Enter key".

features, the training algorithms, the experimental results, and
our colaclusions.

Me Enter key

Figure2: Representation of constituent and labeling of exten-
sions.

2. A d e r i v a t i o n history model
Current treebanks are a collection of n-ary branching trees,
with each node in a tree labeled by either a non-terminal label
or a part-of-speech label (called a tag). Usually, grammarians
elevate constituents to the status of elementary units in a parse,
especially in the case of rewrite-rule grammars where each
rewrite rule defines a legal constituent. However, if a parse
tree is interpreted as a geometric pattern, a constituent is no
more than a set of edges which meet at the same tree node. In
Figure 1, the noun phrase,"N", which spans the tags "AT VVC
NN 1", which correspond to an article, a command verb, and
a singular noun, respectively, consists of an edge extending
to the right from "AT," an edge extending straight up from
"VVC," and an edge extending to the left from "NNI" (see
Figure 1).

We introduce a new definition for a derivation of a parse tree
by using Figure 2 which gives a subtree used in our parser for
representing the noun phrase "the Enter key". We associate
with every node in the parse tree two features, a name which
is either a tag or a non-terminal label, and an extension which
indicates whether the edge going to its parent is going right,
left, up, or unary. Unary corresponds to a renaming of a non-
terminal. By specifying the two features (name and extension)
for each node we can reconstruct the parse tree. The order
of the nodes in which we specify these two features defines
the derivation order. We only consider bottom-up derivations.
In a bottom-up derivation, a node is named first, it may be
extended only after it's named, and it is not named until all
of the nodes beneath it are extended. Naming a node maybe
a tagging or labeling action depending on whether or not the
node is a leaf in the parse tree.

Using Figure 2, one derivation is to tag the first word "the"
as "AT", then to extend it "right", then to tag the third word
"key" as "NNI", then to tag the second word "Enter" as
"VVC" (command verb), then to extend the resulting node by
a "unary", then to label the resulting node as "Nn" (computer
noun), then to extend the resulting node "up", then to extend
the "NNi" node by a "left" to yield a node that spans the
whole phrase "the Enter key". By our definition of bottom-up
derivation, it's only at this point in the derivation that we can
label the node that spans the whole phrase as "N", and then
extend it "left" as is implied in Figure 2. Using the node
numbering scheme in Figure 2, we have at the beginning of
this derivation the words with the nodes {2, 4, 5} that have
unassigned names. These are the active nodes at this point.
Suppose that node 2 is picked and then tagged "AT". That
corresponds to the derivation [2]; at this point, only nodes
{2, 4, 5} are active. If we pick node 2 again, then an extension
step is required and the derivation is [22]. The derivation
presented at the beginning of this paragraph corresponds to
the sequence of nodes [2 2 5 4 4 3 3 5 1 1] .

To derive the tree in Figure I when we are given the three-tag
sequence, there are 6 possible derivations. We could start by
extending any of the 3 tags, then we have either of 2 choices
to extend, and we extend the one remaining choice, then we
name the resulting node. This leads to 3x2xl=6 derivations
for that tree.

If we use a window of 1, then only a single derivation is per-
mitted and we call it the bottom-up leftmost derivation. In our
example, this leftmost derivation would be [2 2 4 4 3 3 5 5 1] .

2 7 3

3. The Pars ing Model

We represent a derivation of a parse tree by the sequence of
nodes as they are visited by the derivation, denoted by d.
Denote by ~ the i-th node of the derivation d. Denote by
ld, the nanm feature for a node selected at the i-th step in
the derivation and by ed~ its extension. A parse derivation is
constructed' by the following 2-step algorithm:

• select which node to extend among active nodes using
p(active = di [context),

• then either

- assign a name to the selected node whether it is
tagging or labelling a node (constituent) with a non-
terminal label using p(la, [context), or

- extend the selected node (which adds an edge to
the parse graph) using p(ed, [contezt).

If the node selected has its name identified then an extension
step is performed otherwise a naming step is performed. Note
that only extension steps change which nodes are active.

We have a different probabilistic model for each type of step
in a parse derivation. The probabilistic models do not use
the whole derivation history as context; but rather a five node
window around the node in question. We will discuss this in
more detail later on.

The probability of a derivation of a parse tree is the product
of the probabilities of each of the feature value assignments
in that derivation and the probability of each active node
selection made in that derivation:

p(T, dlw) = IX
X<j<Idl

wh~e

= p(active = dj I conte t(di-1))p(wj I ont t(dl))

where xj is either the name lj of node dj or its extension ej

and d~ is the derivation up to thej-th step. The probability of
a parse tree given the sentence is the sum over all derivations
of that parse tree:

p(T I w~) = ~ p (T , d l w~)
d

Due to computational complexity, we restrict the number of
bottom-up derivations we consider by using a window of n
active nodes. For a window of 2, we can only choose either
of the two leftmost nodes in the above process. So for the
parse in Figure 1, we only get 4 derivations with a derivation
window of 2.

Eesh charscter used by the computer Is listed

Figure 3: Treebank analysis encoded using feature values.
Each internal node contains, from top to bottom, a label,
word, tag, and extension value, and each leaf node contains a
word, tag, and extension value.

4. Probabi l is t ic Mode l s for Node Features

Node Representation We do not use all the subtree infor-
mation rooted at a node N to condition our probabilistic mod-
els. But rather we have an equivalence class defined by the
node name (if it's available), we also have for constituent
nodes, a word, along with its corresponding part-of-speech
tag, that is selected from each constituent to act as a lexical
representative. The lexical representative from a constituent
corresponds loosely to the linguistic notion of a head word.
For example, the lexical representative of a noun phrase is the
rightmost noun, and the lexical representative of a verb phrase
is the leftmost non-auxiliary verb. However, the correlation
to linguistic theory ends there. The deterministic rules (one
per label) which select the representative word from each con-
stituent were developed in the better part of an hour, in keep-
ing with the philosophy of avoiding excessive dependence
on carefully crafted rule-based methods. Figure 3 illustrates
the word and tag features propagated along the parse tree for
an example sentence. Each internal node is represented as a
4-feature vector: label, head word, head tag, and extension.

Notation In the remainder of this section, the following no-
tational scheme will be used. wi and ti refer to the word
corresponding to the ith token in the sentence mad its part-of-

2 7 4

speech tag, respectively. N ~ refers to the 4-tuple of feature
values at the kth node in the current parse state, where the
nodes are numbered from left to right. N/~, N~, Nt k, and
N~ refer, respectively, to the label, word, tag, and extension
feature values at the node k. N ¢j refers to the jth child of
the current node where the leftmost child is child 1. N e-~
refers to the jth child of the current node where the rightmost
child is child 1. The symbol Q,te refers to miscellaneous
questions about the current state of the parser, such as the
number of nodes in the sentence and the number of children
of a particular node.

The Tagging Model The tag feature value prediction is con-
ditioned on the two words to the left, the two words to the
right, and all information at two nodes to the left and two
nodes to the right.

p(ti [contezt) ~ p(t~ [w~wi-twi-2wi+twi+2t~-tti-2
t~+lti+2Nk-l N~-2N~+t N~+ 2)

The Extension Model The extension feature value predic-
tion is conditioned on the node information at the node being
extended, all information from two nodes to the left and two
nodes to the right, and the two leftmost children and the two
rightmost children of the current node (these will be redundant
if there are less than 4 children at a node).

v(N I o=te t)

The Label Model The label feature value prediction is con-
ditioned on questions about the presence of selected words in
the constituent, all information from two nodes to the left and
two nodes to the right, and the two leftmost children and the
two rightmost children of the current node.

p(N~ I contezt) ~ p(N~ I Q ~Nk-INk-2Nk+INk+2N¢I
NC~NC-~NC-~)

questions about the history. We have described in earlier
papers, [6, 4], how we use mutual information clustering of
words to define a set of classes on words that form the basis
of the binary questions about words in the history. We also
have defined by the same mutual information on the bigram
tag distribution classes for binary questions on tags. We have
identified by hand a set of classes for the binary questions on
the labels. The decision trees are grown using the standard
methods described in [5]. In the case of hidden derivations,
the forward-backward algorithms can be used to get partial
counts for the different events used in building the decision
trees.

5. Expectation Maximization Training

The proposed history-based model cannot be estimated by
direct frequency counts because the model contains a hidden
component: the derivation model. The order in which the
treebank parse trees were constructed is not encoded in the
treebank, but the parser assigns probabilities to specific de-
rivations of a parse tree. A forward-backward (FB) algorithm
can be easily defined to compute a posteriori probabilities
for. the states. These probabilities can then be used to de-
fine counts for the different events that are used to build the
decision trees.

To train the parser, all legal derivations of a parse tree (ac-
cording to the derivational window constraint) are computed.

~ p (N ~ [N ~ N t k N p N ~ N ~ - i N ~-2 Each derivation can be viewed as a path from a common ini-
Nk+iNk+2NC~NC~NC-lNC-~}ial state, the words in the sentence, to a common final state,

the completed parse tree. These derivations form a lattice
of states, since different derivations of the same parse tree
inevitably merge. For instance, the state created by tagging
the first word in the sentence and then the second is the same
state created by tagging the second word and then the first.
These two derivations of this state have different probability
estimates, but the state can be viewed as one state for future
actions, since it represents a single history.

The Derivation Model In initial experiments, the ac-
tive node selection process was modelled by a uniform
(p(active) = 1/n) model with n = 2. Our intuition was that
by parametrizing the choice of which active node to process,
we could improve the parser by delaying labeling and exten-
sion steps when the partial parse indicates ambiguity. We
used the current node information and the node information
available within the five node window.

5.1. Decision Trees and the Forward-Backward
Algorithm

Each leaf of decision tree represents the distribution of a class
of histories. The parameters of these distributions can be
updated using the F-B algorithm.

Initially, the models in the parser are assumed to be uniform.
Accordingly, each event in each derivation contributes equally
to tlm process which selects which questions to ask about
the history in order to predict each feature value. However,

k k ~ 1 k ~ ~+1 ~ 2 t h e u n i f ° r l n m ° d e l i s certainly not a v e r y good model of
p(active I contezt) ,~ p(active [Q "N N "- N - N N "-~)feature value assignments. And, since some derivations of

a parse tree are better than others, the events generated by
Statistical Decision Trees The above probability distribu- the better derivations should contribute more to the decision
tion are each modeled as a statistical decision tree with binary tree-growing process. The decision trees grown using the

275

uniform as!;umption collectively form a parsing model, MI.
The F-B count for each event in the training corpus using
MI can be used to grow a new set of decision trees, M2.
The decision trees in M2 are constructed in a way which
gives more weight to the events which contributed most to the
probability of the corpus. However, there is no guarantee that
M2 is a betl.er model than MI. It isn't even guaranteed that the
probability of the training corpus according to M2 is higher
than the probability according to MI. However, based on
experimental results, the use of F-B counts in the construction
of new decision trees is effective in acquiring a better model
of the data.

Thereis no >way of knowing, apriori, which combination of the
previously mentioned applications of the forward-backward
algorithm will produce the best model. After initial exper-
imentation, the following sequence of training steps proved
effective:

Grow initial decision trees (MI) based on uniform mod-
els

Create M2 by pruning trees in MI to a maximum depth
of 10.

Grow decision trees (M3) from F-B counts from M2.

Perform F-B reestimation for leaves of decision trees in
M3.

Smoothing Decision Trees Once the leaf distributions for a,
set of decision trees are fixed, the model must be smoothed us-
ing held-out data to avoid overtraining on the original training
corpus.

Each node in a decision tree potentially assigns a different
distribution to the set of future values predicted by that tree.
The problem of smoothing is to decide which combination of
the distributions along a path from a leaf to the root will result
in the most accurate model. The decision trees are smoothed
by assigning a parameter to each node. This parameter repre-
sents the extent to which the distribution at that node should
be trusted with respect to the distribution at the parent node.

6. Experimental Results
Task Domain We have chosen computer manuals as a task
domain. We picked the most frequent 3000 words from 10
manuals as our vocabulary. We then extracted about 35,000
sentences covered by this vocabulary3 from40,000,000 words
of computer manuals. This corpus was treebanked by the
University of Lancaster. The Treebank uses 17 non-terminal
labels and 240 tags4.

actual vocabulary is around 7,000 words when we include the many
symbols, formulas, and numbers that occur in t l~e manuals

*we have projected the tag set to 193

Table 1: Distribution of sentences, average wordslsentence,
and average number of non-terminals per sentence for the
blind test set.

A parse produced by the parser is judged to be correct under
the "Exact Match" criterion if it agrees with the Treebank
parse structurally and all NT labels and tags agree5

Length

Experiment 1 The parser using a stack decoding search
which produced 1 parse for each sentence, and this parse was
compared to the treebank parse for that sentence. On this test
set, the parser produced the correct parse, i.e. a parse which
matched the treebank parse exactly, for 38% of the sentences.
Ignoring part-of-speech tagging errors, it produced the correct
parse tree for 47% of the sentences. Further, the correct parse
tree is present in the top 20 parses produced by the parser for
64% of the sentences.

Words/
Sentence

of
Sentences

No other parsers have reported results on exactly matching
treebank parses, so we also evaluated on the crossing brack-
ets measure from [2], which represents the percentage of sen-
tences for which none of the constituents in a parser's analysis
violate the constituent boundaries of the treebank parse. The
crossing-brackets measure is a very weak measure of parsing
accuracy, since it does not verify prepositional phrase attach-
ment or any other decision which is indicated by omitting
structure. However, based on analysis of parsing errors, in
the current state-of-the-art, increases in the crossing brackets
measure appear to correlated with improvements in overall
parsing performance. This may not remain true as parsers
become more accurate.

Constituent1
Sentence

The 1100 sentence corpus that we used in this first experi-
ment was one of the test corpora used in several experiments
reported in [2]. The grammar-based parser discussed in [2]
uses a P-CFG based on a rule-based grammar developed by
a grammarian by examining the same training set used above
over a period of more than 3 years. This P-CFG parser pro-
duced parses which passed the crossing brackets test for 69%
of the 1100 sentences. Our decision tree hidden derivation
parser improves upon this result, passing the crossing brackets
test for 78% of the sentences. The details of this experiment
are discussed in [9].

% sample of 5000 sentences (a training set of 4000, a development
test of 500, and an evaluation test of 500) is available by request from
roukos Q watson.ibm.com.

Length Treebank
Consistency

1-10 69.1%
1-15 64.9%
1-23 58.3%
1-30 - - -
1-oo 52.5%

Exact top 20 Crossing
Match Bracket
55.9% 80.8% 91.5%
51.7% 78.7% 86.2%
41.9% 68.9% 76.5%
38.1% 64.0% 70.9%
34.9% 59.1% 65.7%

Sentencesin E x a c t Top 20
Training D ~ a Mmch
15000 34.2 61.1
20000 37.4 64.8
25000 37 67.7
30000 38.1 68.4
34000 38.9 73

Table 2: Performance of leftmost bottom-up derivation for
Computer Manuals.

Exper imen t 2 By using a derivation window of 1, we find
that Exact Match accuracy decreases by two percentage points
with a significant reduction in computational complexity. Us-
ing the simpler single derivation model, we built a new set of
models. We also combined the naming and extension steps
into one, improved some of our processing of the casing of
words, and added a few additional questions. Using these
models, we ran on all sentences in our blind test set. Ta-
ble 1 gives some statistics a function of sentence length on
our test set of 1656 sentences. Table 2 gives the parser's
performance e. In Table 2, we show a measure of treebank
consistency. During treebanking, a random sample of about
1000 sentences was treebanked by two treebankers. The per-
centage of sentences for which they both produce the same
exact trees (tags included) is shown as Treebank Consistency
in Table 2. We also show the percentage of sentences that
match the Treebank, the percentage where the Treebank parse
is among the top 20 parses produced by the parser, and the
percentage of sentences without a crossing bracket. Currently,
the parser parses every third sentence exactly as a treebanker
and is about 15 percentage points below what the treebankers
agree on when they are parsing in production mode. A more
carefully treebanked test set may be necessary in the future as
we improve our parser.

We also explored the effect of training set size on parsing
performance with an earlier version of the parsing model.
Table 3 shows the Exact Match score for sentences of 23
words or less. From this data, we see that we have a small
improvement in accuracy by doubling the training set size
from 15k to 30k sentences.

/

7. C o n c l u s i o n

We presented a "linguistically" naive parsing model that has
a parsing accuracy rate that we believe is state-of-the-art. We
anticipate that by refining the "linguistic" features that can be
examined by the decision trees, we can improve the parser's
performance significantly. Of particular interest are linguistic

6 While we prefer to use Exact Match for automatic parsing, we computed
the PARSEVAL performance measures to be: 80% Recall, 81% Precision,
and 10% Crossing Brackets on the unseen test set of Experiment 2. Note: On
this test set, 65.7% of the sentences are parsed without any crossing brackets.

Table 3: Performance as a function of Training Set Size

features that may be helpful in conjunction and other long
distance dependency. We are currently investigating some
mehtods for building in some of these features.

Acknowledgement

We wish to thank Robert T. Ward for his measurements of
Treebank consistency. This work was supported in part by
ARPA under ONR contract No. N00014-92-C-0189.

References
1. Baker, J. K., 1975. Stochastic Modeling for Automatic Speech

Understanding. In Speech Recognition, edited by Raj Reddy,
Academic Press, pp. 521-542.

2. Black, E., Garside, R., and Leech, G., 1993. Statistically-
driven Computer Grammars of English: The IBM/Lancaster
Approach. Rodopi. Atlanta, Georgia.

3. Black, E., Lafferty, J., and Roukos, S., 1992. Development
and Evaluation of a Broad-Coverage Probabilistic Grammar
of English-Language Computer Manuals. In Proceedings of
the Association for Computational Linguistics, 1992. Newark,
Delaware.

4. Black, E., Jelinek, F., Lafferty, J., Magerman, D. M., Mercer,
R., and Roukos, S., 1993. Towards History-based Grammars:
Using Richer Models for Probabilistic Parsing. In Proceed-
ings of the Association for Computational Linguistics, 1993.
Columbus, Ohio.

5. Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C.
J., 1984. Classification and Regression Trees. Wadsworth and
Brooks. Pacific Grove, California.

6. Brown, P. F., Della Pietra, V. J., deSouza, P. V., Lai, J. C.,
and Mercer, R. L. Class-based n-gram Models of Natural
Language. In Proceedings of the IBM Natural Language ITL,
March, 1990. Paris, France.

7. Magerman, D. M. and Marcus, M. P. 1991. Pearl: A Probabilis-
tic Chart Parser. In Proceedings of the February 1991 DARPA
Speech and Natural Language Workshop. Asilomar, California.

8. Magerman, D. M. and Weir, C. 1992. Efficiency, Robust-
ness, and Accuracy in Picky Chart Parsing. In Proceedings of
the Association for Computational Linguistics, 1992. Newark,
Delaware.

9. Magerman, D., 1994. Natural Language Parsing as Statistical
Pattern Recognition. Ph. D. dissertation, Stanford University,
California.

10. Sharman, R. A., Jelinek, F., and Mercer, R. 1990. Generat-
ing a Grammar for Statistical Training. In Proceedings of the
June 1990 DARPA Speech and Natural Language Workshop.
Hidden Valley, Pennsylvania.

277

