
A Maximum Entropy Model for Prepositional Phrase Attachment 
Adwait  Ratnaparkhi, Je f f  Reynar,* and Salim Roukos 

I B M  R e s e a r c h  D i v i s i o n  

T h o m a s  J. W a t s o n  R e s e a r c h  C e n t e r  

Y o r k t o w n  H e i g h t s ,  N Y  10598 

1. Introduction 
A parser for natural language must often choose between two 
or more equally grammatical parses for the same sentence. 
Often the correct parse can be determined from the lexical 
properties of certain key words or from the context in which 
the sentence occurs. For example in the sentence, 

In July, the Environmental Protection Agency imposed a grad- 
ual ban on virtually all uses of asbestos. 

the prepositional phrase on virtually all uses of asbestos can 
attach to either the noun phrase a gradual ban, yielding 

[vP imposed [JvP a gradual ban [pp on virtually all uses of 
asbestos ] ] ], 

or the verb phrase imposed, yielding 

[vP imposed [uP a gradual ban ][iop on virtually all uses off 
asbestos ] ]. 

For this example, a human annotator's attachment decision, 
which for our purposes is the "correct" attachment, is to the 
noun phrase. We present in this paper methods for con- 
structing statistical models for computing the probability of 
attachment decisions. These models could be then integrated 
into scoring the probability of an overall parse. We present 
our methods in the context of prepositional phrase (PP) at- 
tachment. 

Earlier work [11 ] on PP-attachment for verb phrases (whether 
the PP attaches to the preceding noun phrase or to the verb 
phrase) used statistics on co-occurences of two bigrams: the 
main verb (V) and preposition (P)  bigram and the main noun 
in the object noun phrase (N1) and preposition bigram. In 
this paper, we explore the use of more features to help in 
modeling the distribution of the binary PP-attachment deci- 
sion. We also describe a search procedure for selecting a 
"good" subset of features from a much larger pool of features 
for PP-attachment. Obviously, the feature search cannot be 
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guaranteed to be optimal but appears experimentally to yield 
a good subset of features as judged by the accuracy rate in 
making the PP-attachment decisons. These search strategies 
can be applied to other attachment decisions. 

We use data from two treebanks: the IBM-Lancaster Treebank 
of Computer Manuals and the University of Pennsylvania 
WSJ treebank. We extract the verb phrases which include PP 
phrases either attached to the verb or to an object noun phrase. 
Then our model assigns a probability to either of the possible 
attachments. We consider models of the exponential family 
that are derived using the Maximum Entropy Principle [1]. 
We begin by an overview of ME models, then we describe 
our feature selection method and a method for constructing 
a larger pool of features from an exisiting set, and then give 
some of our results and conclusions. 

2. Maximum Entropy Modeling 

The Maximum Entropy model [1] produces a probability dis- 
tribution for the PP-attachment decision using only informa- 
tion from the verb phrase in which the attachment occurs. 
We denote the partially parsed verb phrase, i.e., the verb 
phrase without the attachment decision, as a history h, and 
the conditional probability of an attachment as p(dlh), where 
d 6 .[0, 1} and corresponds to a noun or verb attachment 
(respectively). The probability model depends on certain 
features of the whole event (h, d) denoted by fi(h, d). An 
example of a binary-valued feature function is the indicator 
function that a particular (V, P )  bigram occured along with 
the attachment decision being V, i.e. fprint,on(h, d) is one 
if and only if the main verb of h is "print", the preposition 
is "on", and d is "V". As discussed in [6], the ME principle 
leads to a model for p(dlh ) which maximizes the training data 
log-likelihood, 

a) log p(dlh), 
h,d 

where ~(h, w) is the empirical distribution of the training set, 
and where p(dlh ) itself is an exponential model: 
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4. Head Noun of the Object of the Preposition (N2) 

For example, questions on the history "imposed a gradual 
ban on virtually all uses of asbestos", can only ask about the 
following four words: 

At the maximum of the training data log-likelihood, the model 
has the property that its k parameters, namely the At's, satisfy 
k constraints on the expected values of feature functions, 
where the ith constraint is, 

EmA = #.f~ 

imposed ban on uses 

The notion of a "head" word here corresponds loosely to the 
notion of a lexical head. We use a small set of rules, called 
a Tree Head Table, to obtain the head word of a constituent 
[12]. 

We allow two types of binary-valued questions: 

The model expected value is, 

Emf~ = ~ ( h ) p ( d l h ) f i ( h ,  d) 
h,d 

1. Questions about the presence of any n-gram (n _< 4) 
of the four head words, e.g., a bigram maybe {V == 
' ' i s '  ' ,  P == ' ' o f '  ' }. Features comprised solely 
of questions on words are denoted as "word" features. 

and the training data expected value, also called the desired 
value, is 

$ f ,  = d)f,(h, d) 
h,d 

The values of these k parameters can be obtained by one of 
many iterative algorithms. For example, one can use the Gen- 
eralized Iterative Scaling algorithm of Darroch and Ratcliff 
[3]. As one increases the number of features, the achievable 
maximum of the training data likelihood increases. We de- 
scribe in Section 3 a method for determining a reliable set of 
features. 

3. Features 
Feature functions allow us to use informative characteristics 
of the training set in estimating p(dlh). A feature is defined 
as follows: 

- .~(h,d)  d~_f ~'1, i f f d = O a n d V q 6  Q~,q(h)= 1 
O, otherwise. I. 

where Q~ is a set of binary-valued questions about h. We 
restrict the questions in any Q~ ask only about the following 
four head words: 

I. Head Verb (V) 

2. Head Noun (N1) 

3. Head Preposition (P) 

. Questions that involve the class membership of a head 
word. we use a binary hierarchy of classes derived by 
mutual information clustering which we describe below. 
Given a binary class hierarchy, we can associate a bit 
string with every word in the vocabulary. Then, by 
querying the value of certain bit positions we can con- 
stmct binary questions. For example, we can ask whether 
about a bit position for any of the four head words, e.g., 
Bit 5 of Preposition == i. We discuss be- 

low a richer set of these questions. Features comprised 
solely of questions about class bits are denoted as "class" 
features, and features containing questions about both 
class bits and words are denoted as "mixed" features 1. 

Before discussing, feature selection and construction, we 
give a brief overview of the mutual information clustering 
of words. 

Mutual Information Bits Mutual information clustering, as 
described in [10], creates a a class "tree" for a given vocab- 
ulary. Initially, we take the C most frequent words (usually 
1000) and assign each one to its own class. We then take the 
(C + 1)st word, assign it to its own class, and merge the pair 
of classes that minimize the loss of average mutual informa- 
tion. This repeats until all the words in the vocabulary have 
been exhausted. We then take our C classes, and use the same 
algorithm to merge classes that minimize the loss of mutual 
information, until one class remains. If we trace the order in 
which words and classes are merged, we can form a binary 
tree whose leaves consists of words and whose root is the 
class which spans the entire vocabulary. Consequently, we 
uniquely identify each word by its path from the root, which 

1 See Table 7 for  examples  o f  features  
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can be represented by a string of binary digits. If  a path lengt 
of a word is less than the maximum depth, we pad the bottor 
of the path with O's (dummy left branches), so that all word 
are represented by an equally long bitstring. "Class" feature 
query the value of bits, and hence examine the path of th 
word in the mutual information tree. 

Special Features In addition to the types of features de 
scribed above, we employ two special features in the MI 
model, the: Complement and the Null feature. The Comple 
ment, defined as 

fcomr,(h,d) dJ {1,0, otherwise.ifffi(h'd)=0'Vfi 6.,%4 

will fire on a pair (h, d) when no other fi in the model applie,, 
The Initial feature is simply 

clef I'1, i f f d = O  fn~zz(h, d) 
= ~, 0, otherwise 

and causes the ME model to match the a p r  i o r  i probability 
of seeing an N-attachment. 

3 .1.  F e a t u r e  S e a r c h  

The search problem here is to find an optimal set of features 
A4 for use in the ME model. We begin with a search space 79 
of putative features, and use a feature ranking criterion which 
incrementally selects the features in .A4, and also incremen- 
tally expands the search space 79. 

Initially 79 consists of all 1, 2, 3 and 4-gram word features of 
the four headwords that occur in the training histories 2, and 

4 
all possible unigram class features 3. We obtain E (~) = 15 

k = l  
word features from each training history, and, assuming each 
word is assigned m bits, a total of 2m * 4 unigram class 
features, e.g., there are 2m features per word: B i t  1 o f  
Verb == O, Bit 1 of Verb == 1 ..... 

Bit m of Verb == 0, Bit m of Verb ==I 

The feature search then proceeds as follows: 

1. Initialize 79 as described above, initialize A,4 to contain 
complement and null feature 

2. Select the best feature from 79 using Delta-Likelihood 
rank 

3. Add it to .A4 

2With  a cer ta in  f r e q u e n c y  cut-off ,  usua l ly  3 to 5 
3 A l so  wi th  a cer ta in  f r e q u e n c y  cut -of f  
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Figure 1" Performance of Maximum Entropy Model on Wall 
St. Journal Data 

4. Train Maximum Entropy Model, using features in .A4 

5. Grow 79 based on last feature selected 

6. repeat from (2) 

If we measure the training entropy and test entropy after the 
addition of each feature, the training entropy will monotoni- 
cally decrease while the test entropy will eventually reach a 
minimum (due to overtraining). Test set performance usually 
peaks at the test entropy minimum ( see Fig. 1 & 2 ). 

Delta-Likelihood At step (2) in the search, we rank all fea- 
tures in 7 9 by estimating their potential contribution to the 
log-likelihood of the training set. Let q be the conditional 
probability distribution of the model with the features cur- 
rently in A,4. Then for each f~ 6 79, we compute, by estimat- 
ing only ~ ,  the probability distribution p that results when fi  
is added to the ME model: 

p(dlh) = 
q(dlh)e~J,(h, d) 

1 
E q(wlh) e~'J'(h''°) 

't,.' = 0  

We then compute the increase in (log) likelihood with the new 
model: 

6L, = ~IS(h ,  w)lnp(wlh ) - ~e~(h,  w)lnq(wlh ) 
h,w h,'w 

and choose the feature with the highest 6L. Features redun- 
dmlt or correlated to those features already in .A.4 will produce 
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Figure 2: Entropy of Maximum Entropy Model on Wall St. 
Journal Data 

a zero or negligible 6L, and will therefore be outranked by 
genuinely informative features. The chosen feature is added 
to M and used in the ME Model. 

3.2. Growth of Putative Feature Set 

At step (5) in the search we expand the space 7 ~ of putative 
features based on the feature last selected from 72 for addition 
to M .  Given an n-gram feature f~ (i.e., of type "word", 
"class" or"mixed") that was last added to M ,  we create 2 m . 4  
new n + 1-gram features which ask questions about class bits 
in addition to the questions asked in fi. E.g., let fi(h, d) 
constrain d = 0 and constrain h with the questions v == 
' ' i m p o s e d '  ' , P = =  ' ' o n '  ' Then, given fi(h,d), 
the 2m new features generated for just the Head Noun are the 
following: 

V == ''imposed'', P == ~'on'', 

Bit 1 for Noun == 0 

V == ''imposed'', P == ''on'', 

Bit 1 for Noun == 1 

V == ''imposed'', P == 

Bit m for Noun == 0 

''on'' 

V == ''imposed'', P == ''on'', 

Bit m for Noun == 1 

We construct the remaining 6m features similarly from the 
remaining 3 head words. We skip the construction of features 

Computer Manuals Wall St. Journal 
Training Events 8264 20801 
Test Events 943 3097 

Table 1: Size of Data 

containing questions that are inconsistent or redundant with 
those word or class questions in fi. 

The newly created features are then added to P ,  and compete 
for selection in the next Delta-Likelihood ranking process. 
This method allows the introduction of complex features on 
word classes while keeping the search space manageable; "P 
grows linearly with .M. 

4. R e s u l t s  

We applied the Maximum Entropy model to sentences from 
two corpora, the I.B.M. Computer Manuals Data, annotated by 
Univ. of Lancaster, and the Wall St. Journal Data, annotated 
by Univ. of Penn. The size of the training sets, test sets, and 
the results are shown in Tables 1 & 2. 

The experiments in Table 2 differ in the following manner: 

"Words  Only" The search space P begins with all possible 
n-gram word features with n being 1, 2, 3,or 4; 
this feature set does not grow during the feature 
search. 

"Classes Only" The search space P begins with only un- 
igram class features, and grows by dynamically 
contructing class n-gram questions as described 
earlier. 

"Word  and Classes" The search space P begins with all 
possible n-gram word features and unigram class 
features, and grows by adding class questions (as 
described earlier). 

The results in Table 2 are achieved in the neighborhood of 
about 200 features. As can be seen in Figure 1, performance 
improves quickly as features are added and improves rather 
very slowly after the 60-th feature. The performance is fairly 
close for the various feature sets when a sufficient number of 
features are added. We also compared these results to a deci- 
sion tree grown on the same 4 head-word events. The same 

Experiment Computer Manuals Wall St. Journal 
Words Only 82.2% 77.7% 
Classes Only 84.5% 79.1% 
Words and Classes 84.1% 81.6% 

Table 2: Performance of ME Model on Test Events 
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Domain Performance 
Computer Manuals 79.5% 
Wall St. Journal 77.7% 

Table 3: Decision Tree Performance 

mutual intbrmation bits were used for growing the decision 
trees. Table 3 gives the results on the same training and test 
data. The ]VIE models are slightly better than the decision tree 
models. 

For comparison, we obtained the PP-attachment performances 
of 3 treebanking experts on a set of 300 randomly selected test 
events from the WSJ corpus. In the first trial, they were given 
only the four head words to make the attachment decision, 
and in the next, they were given the headwords along with the 
sentence in which they occurred. Figure 3 shows an example 
of the head words test a. The results of the treebankers and 
the performance of the ME model on that same set are shown 
in Table 5. We also identified the set of 274 events on which 
treebankers, given the sentence, unanimously agreed. We 
defined this to be the truth set. We show in Table 6 the 
agreement on PP-attachment of the original WSJ treebank 
parses with this consensus set, the average performance of the 
3 human experts with head words only, and the ME model. 
The WSJ treebank indicates the accuracy rate of our training 
data, the human performance indicates how much information 
is in the headwords, and the ME model is still a good 12 

4 the key is N,V,N,N,V, N,N,N,N,V,V,N,V,N,N,N,V,N,V 

percentage points behind. 

Selection Order Feature 
(1) Preposition == "of" 
(2) Bit 2 of Head Noun == 0 
(3) Preposition is "to" 
(4) Bit 12 of Head Noun == 1 

(9) Head Noun == "million", Preposition == "in" 

(30) Preposition == "to", Bit 8 of Object == 1 

(47) Preposition == "in", Object = =  "months" 

Table 4: Examples of Features Chosen for Wall St. Journal 
Data 

Average Human(head words only) ~ 88.2% 
Average Human(with whole sentence) 93.2% 
ME Model 78.0% 

Table 5: Average Performance of Human & ME Model on 
300 Events of WSJ Data 

# Events % WSJ TB Human ME Model 
in Consensus Performance Performance Performance 

2 7 4  95.7% 92.5% 80.7% 

Table 6: Human and ME model performance on consensus 
set for WSJ 

report milllion in charges 
report milllion for quarter 

reflecting settlement of contracts 

carried all but one 

were injuries among workers 

had damage to building 

be damage to some 

uses variation of design 

cited example of district 

leads Pepsi in share 

trails Pepsi in sales 

risk conflict with U.S. 

risk conflict over plan 

oppose seating as delegate 

save some of plants 

introduced versions of cars 

lowered bids in anticipation 

oversees trading on Nasdaq 

gained 1 to 19 

Figure 3: Sample of 4 head words for PP-attachment 

We also obtained the performances of 3 non-experts on a 
set of 200 randomly selected test events from the Computer 
Manuals corpus. In this trial, the participants made attachment 
decisions given only the four head words. The results are 
shown in Table 7. 

5. Conclusion 
The Maximum Entropy model predicts prepositional phrase 
attachment 10 percentage points less accurately than a tree- 
banker, but it performs comparably to a non-expert, assuming 
that only only the head words of the history are available in 
both cases. The biggest improvements to the ME model will 
come from better utilization of classes, and a larger history. 

Currently, the use of the mutual information class bits gives 
us a few percentage points in performance, but the ME model 
should gain more from other word classing schemes which 
are better tuned to the PP-attachment problem. A scheme in 
which the word classes are built from the observed attach- 
ment preferences of words ought to outperform the mutual 
information clustering method, which uses only word bigram 
distributions[10]. 
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I Average Human I 77-3% ] 
ME Model 83.5% 

Table 7: Average Performance of  Human & ME Model on 
200 Events of  Computer Manuals Data 

Secondly, the ME model does not use information contained 
in the rest of  the sentence, although it is apparently useful 
in predicting the attachment, as evidenced by a 5% average 
gain in the treebankers' accuracy. Any implementation of this 
model using the rest of  the sentence would require features 
on other words, and perhaps features on the sentence's parse 
tree structure, coupled with an efficient incremental search. 

Such improvements should boost the performance of the 
model to that of  treebankers. Already, the ME model out- 
performs a decision tree confronted with the same task. We 
hope to use Maximum Entropy to predict other linguistic phe- 
nomena that hinder the performance of  most natural language 
parsers. 
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