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ABSTRACT 

We present an integrated approach to speech and natural 
language processing which uses a single parser to create 
training for a statistical speech recognition component and 
for interpreting recognized text. On the speech recognition 
side, our innovation is the use of a statistical model 
combining N-gram and context-free grammars. On the 
natural language side, our innovation is the integration of 
parsing and semantic interpretation to build references for 
only targeted phrase types. In both components, a 
semantic grammar and partial parsing facilitate robust 
processing of the targeted portions of a domain. This 
integrated approach introduces as much linguistic structure 
and prior statistical information as is available while 
maintaining a robust full-coverage statistical language 
model for recognition. In addition, our approach facilitates 
both the direct detection of linguistic constituents within 
the speech recognition algorithms and the creation of 
semantic interpretations of the recognized phrases. 

1. INTRODUCTION 

Language modeling for speech recognition has focused on 
robustness, using statistical techniques such as n-grams, 
whereas work in language understanding and information 
extraction has relied more on rule based techniques to 
leverage linguistic and domain information. However, the 
knowledge needed in these two components of a speech 
language system is actually very similar. In our work, we 
take an integrated approach, which uses a single grammar 
for both language modeling and language understanding for 
targeted portions of the domain and uses a single parser for 
both training the language model and extracting 
information from the output of the recognizer. 

The goal of our work is provide speech recognition 
capabilities that are analogous to those of information 
extraction systems: given large amounts of (often low 
quality) speech, selectively interpret particular kinds of 
information. For example, in the air traffic control 
domain, we want to determine the flight IDs, headings, and 

altitudes of the planes, and to ignore other information, 
such as weather and ground movement. 

The following is a summary of the main techniques we use 
in our approach: 

Integration of N-gram and context free grammars for 
speech recognition: While statistically based Markov- 
chain language models (N-gram models) have been 
shown to be effective for speech recognition, there is, 
in general, more structure present in natural language 
than N-gram models can capture. Linguistically based 
approaches that use statistics to provide probabilities 
for word sequences that are accepted by a grammar 
typically require a full coverage grammar, and therefore 
are only useful for constrained sublanguages. In the 
work presented here, we combine linguistic structure 
in the form of a partial-coverage phrase structure 
grammar with statistical N-gram techniques. The 
result is a robust statistical grammar which explicitly 
incorporates syntactic and semantic structure. A 
second feature of our approach is that we are able to 
determine which portions of the text were recognized 
by the phrase grammars, allowing us to isolate these 
phrases for more processing, thus reducing the overall 
time needed for interpretation. 

Partial parsing: It is well recognized that full coverage 
grammars for even subsets of natural language are 
beyond the state of the art, since text is inevitably 
errorful and new words frequently occur. There is 
currently a upsurge in research in partial parsing in the 
natural language community (e.g., Hindle 1983, 
Weischedel, et al. 1991), where rather than building a 
single syntactic tree for each sentence, a forest is 
returned, and phrases outside the coverage of the 
grammar and unknown words are systematically 
ignored. We are using the partial parser "Sparser" 
(McDonald 1992), which was developed for extracting 
information from open text, such as Wall Street 
Journal articles. 
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Figure 1: 

Semantic grammar." Central to our approach is the use 
of a minimal, semantically based grammar. This 
allows us to build targeted grammars specific to the 
domain. It also makes the grammar much more 
closely tied to the lexicon, since the lexical items 
appear in the rules directly and in general there are 
many categories, each covering only a small number 
of  lexical items. As Schabes (1992) points out in 
reference to lexicalized stochastic tree adjoining 
grammars (SLTAG), an effective linguistic model 
must capture both lexical and hierarchical information. 
Context  free g rammars  using only syntact ic  
information fail to capture lexical information. 

Figure 1 shows a block diagram of the overall approach 
with the two components which use the parser shaded: the 
model construction component  and the interpretation 
component. 

For both the language modeling and information 
extraction, we are using the partial parser Sparser 
(McDonald 1992). Sparser is a bottom-up chart parser 
which uses a semantic phrase structure grammar (i.e. the 
nonterminals are semantic categories, such as HEADING or 
FLIGHT-ID, rather than traditional syntactic categories, such 
as CLAUSE or NOUN-PHRASE).  Sparser makes no 
assumption that the chart will be complete, i.e. that a top 
level category will cover all of the input, or even that all 
terminals will be covered by categories, effectively 
allowing unknown words to be ignored. Rather it simply 
builds constituent structure for those phrases that are in its 
grammar. 

In Section Two, we describe language modeling, and in 
Three, we focus on semantic interpretation. In Section 
Four, we present the results of our initial tests in the air 
traffic control domain, and finally we conclude with future 
directions for the work. 

2.  L A N G U A G E  M O D E L I N G  

There are two main inputs to the model construction 
portion of the system: a transcribed speech training set and 
a phrase-structure grammar. The phrase-structure grammar 

Overall Approach 
is used to partially parse the training text. The output of  
this is: (1) a top-level version of the original text with 
subsequences of words replaced by the non-terminals that 
accept those subsequences; and (2) a set of parse trees for 
the instances of those nonterminals. 

3.1 Rule  Probabi l i t i e s  

Figure two below shows a sample of the rules in the ATC 
grammar followed by examples of transcribed text and the 
text modified by the parser. Note that in this case, where 
goal is to model aircraft identifiers and a small set of air 
traffic control commands,  other phrases like the 
identification of the controller, traffic information, etc., are 
ignored. They will be modelled by the n-gram, rather than 
as specific phrases. 

R1 (def-rule land-action > ("land")) 
R2 (def-rule takeoff-action > ("takeoff")) 
R3 (def-rule takeoff-action > ("go")) 
R4 (def-rule clrd/land > ("cleared" "to" land-action) 
R5 (def-rule clrd/takeoff > ("cleared" "to" takeoff-action)) 
R6 (def-rule clrd/takeoff > ("cleared" "for" takeoff-action ))) 
R7 (def-rule tower-clearance > (runway clrd/land) 
R8 (def-rule tower-clearance > (runway clrd/takeoff )) 

Figure 2: Phrase structure rules for tower clearance 

>Nera twenty one zero nine runway two two fight cleared for takeoff 
>COMMERCIAL-AIRPLANE TOWER-CLEARANCE 

>Nera thirty seven twelve Boston tower runway two two fight cleared for takeoff 
>COMMERCIAL-AIRPLANE Boston tower TOWER-CLEARANCE 

>Jet Link thirty eight sixteen Boston tower runway two two fight cleared for 
takeoff traffic on a five mile final landing two two fight 
>COMMERCIAL-AIRPLANE Boston tower TOWER-CLEARANCE traffic on a 
five mile final landing RUNWAY 

>Jet Link thirty eight zero five runway two two fight cleared for takeoff sorry for 
the delay 
>COMMERCIAL-AIRPLANE TOWER-CLEARANCE sorry for the delay 

Figure 3: Training text modified by parser 

Using the modif ied training text we construct a 
probabilistic model for sequences of words and non- 
terminals. The parse trees are used to obtain statistics for 
the estimation of production probabilities for the rules in 
the grammar. Since we assume that the production 
probabilities depend on their context, a simple count is 
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insufficient. Smoothed maximum likelihood production 
probabilities are estimated based on context dependent 
counts. The context is defined as the sequence of rules and 
positions on the right-hand sides of these rules leading 
from the root of the parse tree to the non-terminal at the 
leaf. The probability of a parse therefore takes into account 
that the expansion of a category may depend on its parents. 
However, it does not take into consideration the expansion 
of the sister nonterminals, though we are currently 
exploring means of doing this (cf. Mark, et al. 1992). 

In the above grammar (Figure 2), the expansion of 
TAKEOFF-ACTION may be different depending on whether it 
is part of rule 5 or rule 6. Therefore, the "context" of a 
production is a sequence of rules and positions that have 
been used up to that point, where the "position" is where 
in the RHS of  the rule the nonterminal is. For example, 
in the parse shown below (Figure 4), the context of R2 
(TAKEOFF-ACTION > "takeoff') is rule 8/position 2, rule 
6/position 3. We discuss the probabilities required to 
evaluate the probability of a parse in the next section. 

TOWER-CLEARANCE (R8) 

CLRD/'I'AKEOFF (R6) 

e ~  
*runway" RUNWA¥-NUM 

,,,,,,,,,,,,.,,,,,,,,,,,,,"'r ~,,,.,,,,,,,,,,,.,,,,,,. .cl OFF- 
ONES ONES LR-D AC~ON(R2) 

I I ! = 

"two" "six" "right . . . .  takeoff" 
Figure 4: Parse tree with path highlighted 

In order to use a phrase-structure grammar directly in a 
time-synchronous recognition algorithm, it is necessary to 
construct a finite-state network representation If there is no 
recursion in the grammar, then this procedure is 
straightforward: for each rule, each possible context 
corresponds to a separate subnetwork. The subnetworks for 
different rules are nested. We are currently comparing 
methods of allowing limited recursion (e.g. following 
Pereira & Wright 1990). Figure 5 shows the expansion of 
the rules in from Figure 2. 

There have been several attempts to use probability 
estimates with context free grammars. The most common 

technique is using the Inside-Outside algorithm (e.g. 
Pereira & Schabes 1992, Mark, et al. 1992) to infer a 
grammar over bracketed texts or to obtain Maximum- 
Likelihood estimates for a highly ambiguous grammar. 
However, most require a full coverage grammar, whereas 
we assume that only a selective portion of the text will be 
covered by the grammar. A second difference is that they 
use a syntactic grammar, which results in the parse being 
highly ambiguous (thus requiring the use of the Inside- 
Outside algorithm). We use a semantic grammar, with 
which there is rarely multiple interpretations for a single 
utterance. 1 

3.2  Probability Estimation 

Both the context-dependent production probabilities of the 
phrase grammar and one for the Markov chain probabilities 
for the top-level N-gram model must be estimated. We use 
the same type of "backing-off' approach in both cases. For 
the phrase grammar, we estimate probabilities of the form 

P(rn+ 1 I (r I, Pl), (r2, P2) . . . . .  (rn, Pn)) 

where r i are t h e  rules and P i  are the positions within the 
rules. In the N-gram case, we are estimating 

P(Sn+l I sl,  s2 .. . . .  Sn) 

where Sl, s2 . . . . .  Sn is the sequence of words and non- 
terminals leading up to Sn+l. In both cases, the estimate 
is based on a combination of the Maximum-Likelihood 
estimate, and the estimates in a reduced context: 

P(rn+l I (r 2, P2) . . . . .  (rn, Pn)) 

and 

P(sn+ 1 I s2 .. . . .  Sn). 

The Maximum-Likelihood (ML) estimate reduces to a 
simple relative-frequency computation in the N-gram case. 
In the phrase grammar case, we assume that the parses are 
in general unambiguous, which has been the case so far in 
our domain. Specifically, we only consider a single parse 
and accumulate relative frequency statistics for the various 
contexts in order to obtain the ML product ion 

Figure 5: Finite state network 
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probabilities. 

The approach we use to backing off  is described in 
Placeway, et al. (1993). Specifically, we form 

pBO(y ix 1 ..... Xn ) = pML(y Ix 1 .... Xn) (1 - 0) 

+ p B O ( y l x  2 ..... x n) 0. 

The value of 0 depends on the context Xl ... . .  Xn and is 
motivated by approximation of the probability of 

0 =  r / ( n + r )  

where r is the number of different next symbols/rules seen 
in the context and n is the number of times the context was 
observed. 

3.  INFORMATION EXTRACTION 

The final stage of processing is the interpretation of the 
recognized word sequence. We use the same phrase 
structure grammar for interpretation as that used to build 
the recognition model. However, in this last phase, we 
take advantage of the semantic interpretation facility of the 
parser. 

Most approaches to natural language understanding separate 
parsing (finding a structural description) from interpretation 
(finding a semantic analysis). In the work presented here, 
we use a single component for both. The Sparser system 
integrates parsing and interpretation to determine "referents" 
for phrases incrementally as they are recognized, rather than 
waiting for the entire parse to finish. The referent of  a 
phrase is the object in the domain model that the phrase 
refers to. For example, the initial domain model consists 
of objects that have been created for entities which are 
known to the system in advance, such as airlines. When 
the name of an airline is recognized, such as "Delta", its 
referent is the airline object, #<airline delta>. Referents for 
entities that cannot be anticipated, such as number 
sequences and individual airplanes, are created incrementally 

Controller Transmission: 

when the phrase is recognized. Figure 6 shows an example 
of the edges created by the parser and their referents. 

When a referent actually refers to an entity in the world, 
such as a runway or airplane, then the same referent object 
is cataloged and reused each time that entity is mentioned. 
The referent for a number sequence is a number object with 
the value the sequence represents. The referent for the 
entire phrase "Delta three five nine" is an object of  type 
airplane. In some cases, the object will also be indexed by 
various subparts (such as indexing a flight ID by the digit 
portion of the ID) to aid in disambiguating incomplete 
subsequent references. For example, in the pilot reply in 
Figure 6, indexing allows the system to recognize that the 
number "three five nine" actually refers to the previously 
mentioned Delta flight. 

We extend the notion of referent from simply things in the 
world to utterance acts as well, such as commands. Each 
time a command is uttered, a new referent is created. 
Command referents are templates which are created when 
some core part is recognized and then added to 
compositional as other (generally optional) information is 
recognized. So following our earlier example of tower 
clearances, rules 4, 5, and 6 instantiate a takeoff clearance 
template and fill in the action type, whereas rules 7 and 8 
fill in the "runway" field. We show examples of each of 
these groups and the templates in Figure 7 below: 

R6 (def-rule clrd/takeoff ("cleared" "for" takeoff-action) 
:referent (:function create-tower-clearance third)) 

R8 (def-rule tower-clearance (runway clrd/takeoff) 
:referent (:function add-to-tower-clearance second first)) 

#<tower-clearance 
Type: TOWER-CLEARANCE 
ACTION: #<TAKEOFF> 
RUNWAY: #<Runway 26L>> 

Figure 7: Rules with referents and completed template. 

Pilot Reply: 
CRD/TAKEOFF 

ACTION 

I 
cleared for takeoff 

I I I 

COMMERCIAL AIRPLANE TOWER-COMMAND 
l #<airplane DEL359> li #<clearance> 

category + AIRLINE . . . . .  ,-, II RUNWAY CLRDrrAKEOFF 
r e f e ren t  . ~  . .. , ~ u m - o = u  I I I  # < R 2 6 L >  II #<clearance> I 

< a m i n e  . TAKEOFF-  edge'-="[ ~ delta:J[ #<number359>[ll I .I 
tokens--~ delta I three I fivel nine I runway I two I six I left I cleared i for I take° f f l  

COMMERCIAL AIRPLANE 
I #<airplane DEL359> 

NUM-SEQ 
I I #<number 359> ] 

three five nine 
I I I I 

Figure 6: Parse Diagram 
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4.  RESULTS 

This approach was first applied in the Gisting system 
(Rohlicek, et al. 1992), where the goal was to extract flight 
IDs from off-the-air recordings of ATC communications. 
In this application, the input is extremely noisy and 
recognition performance is generally quite poor. We report 
the general word recognition accuracy and flight ID 
recognition accuracy for both the combined phrase structure 
and n-gram language models (as described in section 2), and 
just n-grams. The training data consists of  2090 
transcribed controller transmissions. Testing data consists 
of 469 transmissions of average length 16. The results are 
presented for controller transmissions where the start and 
end times of the transmissions are known. 

As shown in Table 1, the overall word accuracy was 
improved only slightly (70% to 72%), which was expected 
since we only modeled a small portion of the domain. 
However, the best result was in the fraction of flight IDs 
detected, where we halved the miss rate (from 11% down to 
5%). 

N-gram 
& phrase 
N-gram 

Word Recognition 

Sub. Del. Ins Acc. 
18.6 4.5 5.2 72 

20.4 5.0 4.3 70 

FID rec. 
accuracy 

57 

53 

Table 1: Results for Gisting experiment. 

The next set of experiments we ran focused on comparing 
general word accuracy with word accuracy in the targeted 
portion of the domain (i.e. that portion covered by the 
grammar). Using a different ATC dataset (still operational 
data, but recorded in the tower rather than off the air), we 
compared bi-grams with our combined rule based and n- 
gram approach The grammar covered approximately 68% 
of the training data. We tested not only the overall word 
accuracy, but also the word accuracy in those portions of 
the text that were modeled by the grammar. 

Integrated 

) r d s  word 

Bi-gram 

words word words 
correct error correct error 

Overall word 64.3 45.9 68.2 40.4 
accuracy 

Word accuracy 58.6 46.0 74.8 36.2 

in phrases 

Table 2: Comparison between Bi-grams and integrated 
approach. 

As shown in Table 2, not only was there an improvement 
in the overall word score using the integrated vs. the bi- 

gram language model, we can see that the improvement in 
accuracy in the targeted portion of the domain was much 
greater in the integrated approach. 

Our third set of  experiments focused on the information 
extraction portion of the system. We evaluated the ability 
of the parser to extract two kinds of commands from the 
output of recognition. In these experiments, we took truth 
to be the performance of the parser on the transcribed text, 
since we did not have truth annotated for these phrases in 
our test data. (It has been our experience in working w~h 
flight IDs, which were annotated, that in the ATC domain 
the phrases are regular enough that the parser will extract 
nearly 100% of the information in the targeted categories. 
The errors that occur are generally caused by restarts, 
speech errors, or transcription errors.) 

Using the same training and test conditions as the first set 
of experiments described above 1, we extracted phrases for 
tower clearances using the grammar partially shown above 
(Figure 2), and direction orders, which generally consisted 
of a direction to turn and some heading. The test set 
consisted of 223 controller utterances and we scored as 
correct only exact matches, where the same referent object 
was found and all of the fields matched exactly. Results are 
shown in Table Three. 

Exact Match Direct ion Tower 
Order Clearance 

Total in reference 38 118 

Total in recog. 35 117 

Precision 91.4% 43.6% 

Recall 81.6% 43.2% 

False Positives 1 11 

Misses 5 12 

Errors 2 7 

Partial Match 

Precision 64.4 

Recall 63.8 

Table 3: Precision and recall in extracting information. 

We observe that the precision and recall for direction orders 
is drastically better than that for tower clearances, even 
though the grammars for the two are very similar in size. 
One difference, which we would like to explore further, is 

1 Note on difference was that these tests were done on 
recognition results after automatic segmentation and 
classification according to pilot and controller, which 
generally decrease recognition accuracy. 
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that the direction orders grammar was part of the language 
model which was used for recognition, whereas tower 
clearances were not modelled by the phrase grammar, only 
the n-gram. To know if this was a factor, we need to 
compare the actual word recognition accuracy for these two 
phrase types. 

In looking at the results for tower clearances, we found that 
although the exact match score was very low, there were 
many partial matches, where for example the runway and or 
the action type (takeoff, land, etc.) were found correctly, 
even though the entire tower clearance was not recognized. 
In order to take into account these partial matches, we 
rescored the precision and recall, counting each individual 
piece of information (runway, action, and clearance), so 
that an exact match gets a score of 3 and partial matches 
score a 1 or 2. Using this measure, we got a significantly 
improved performance: precision 64.4 and recall 63.8. 
These results highlight one of the main the advantage of 
this approach, that even with errorful input, useful 
information can be found. 

FUTURE WORK 

We have shown the the approach described here both 
improves overall word accuracy in recognition and provides 
a means for extracting targeted information even 
recognition performance is quite poor. Our next goal is to 
apply the technique to new domains. As part of this effort 
we are developing a set of tools for building and evaluating 
grammars. 

We are also also applying these techniques in new 
applications. In particular, we have recently performed 
experiments in Event Spotting, which is an extension of 
wordspotting where the goal is to determine the location of 
phrases, rather than single keywords. We used the 
parser/extraction portion of the system to find examples of 
phrase types in the corpus and to evaluate the results, as 
well as in the language model of the recognizer. In an 
experiment detecting time and date phrases in the 
Switchboard corpus (which is conversational telephone 
quality data), we saw an increase in detection rate over 
strictly bi-gram or phoneme loop language models 
(Jeanrenaud, et al. 1994). 
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