
Pattern Matching in a Linguistically-
Motivated Text Understanding System

Damaris M. Ayuso and the PLUM Research Group

BBN Systems and Technologies
70 Fawcett St.

Cambridge, MA 02138
dayuso@bbn.com

ABSTRACT
An ongoing debate in text understanding efforts centers on the use
of pattern-matching techniques, which some have characterized as
"designed to ignore as much text as possible," versus approaches
which primarily employ rules that are domain-independent and
linguisticaUy-motivated. For instance, in the message-processing
community, there has been a noticeable pulling back from large-
coverage grammars to the point where, in some systems, traditional
models of syntax and semantics have been completely replaced by
domain-specific finite-state approximations.

In this paper we report on a hybrid approach which uses such
domain-specific patterns as a supplement to domain-independent
grammar rules, domain-independent semantic rules, and automati-
cally hypothesized domain-specific semantic rules. The surprising
result, as measured on TIPSTER test data, is that domain-specific
pattern matching improved performance, but only slightly, over
more general linguistically-motivated techniques.

1. Introduction
Virtually all systems which participated in the Fifth Message Un-
derstanding Conference, MUC-5 [1], used finite-state (FS) pattem
matching to some extent. Two useful tasks that this approach is
well suited for are:

1. treating application-specific simple constructions that may not
belong in a general grammar of the language, and

2. detecting constructions which, though grammatical, may be
found more reliably using domain-specific patterns.

For example, special-purpose FS subgrammars were used widely
to efficiently and reliably recognize equipment names and company
names. This illustrates one (1) above. An illustration of (2) appears
in the complex sentence below:

Daio Paper Corp. said it will set up a cardboard factory
in Ho Chi Minh City, Vietnam, jointly with state-run
Cogido Paper Manufacturing Company.

It is easy for any parser to err in not attaching the modifier "jointly"
to "set up," and thereby miss the fact that a joint venture is being
reported. One might argue that the sentence includes a discontigu-
ous constituent ("set up ... jointly"). Nevertheless, it is easy to
write a general pattern to deal with the discontiguous constituent
correctly for this domain.

Finite-state parsers perform simple operations, and they are fast.
In data-extraction applications, where much of the input can be

safely ignored, they provide an easy means to skip text without
deep analysis. Some of the best-performing systems in MUC-5
relied heavily on the use of finite-state pattern-matching in crucial
system components.

However, there are several advantages in maintaining broad
linguistically-based coverage of a language, even in a data-
extraction task. First, it allows for well-defined linguistic struc-
tures to be recognized and represented in a domain independent
way. This provides a level of linguistic representation that can
be used by other general linguistic components such as a domain-
independent discourse processor. In fact, this is a representational
level which will probably be evaluated in the next Message Un-
derstanding Conference, MUC-6.

Secondly, general linguistic coverage provides application inde-
pendence. Different applications, such as data detection (infor-
mation retrieval) can use the linguistic representations for various
purposes. Achieving a synergistic operation of data-extraction and
data-detection systems is one of the key goals of ARPA's TIPSTER
Phase II project.

Another intuitive advantage is portability. When porting a system
to a new application, a base level of understanding is achieved
very quickly before having to add domain-specific patterns. This
is possible because the bulk of the processing work is done by the
domain-independent rules.

BBN's data-extraction system, PLUM [2], showed consistently
high-ranking performance in the MUC-3 [3], MUC-4 [4], and
MUC-5 evaluations. We added two new finite-state pattern-
matching modules to PLUM between MUC-4 and MUC-5, expect-
ing a substantial payoff in performance. The surprising result, as
measured on TIPSTER test data, was that although domain-specific
pattern matching improved performance, in the English domains it
was only a slight improvement over more general, linguistically-
motivated techniques.

In the next section we further discuss the movement towards FS
approximations in the community. We then describe the role of
finite-state pattern-matching in BBN's PLUM system in more de-
tail. Finally we present experiments used to measure the resulting
effect in PLUM.

2. A Shift in the Community
Text processing systems participating in the MUC evaluations
(most recently, MUC-5) perform linguistic processing to various
levels. Some systems may attempt to do a deep level of under-
standing whenever possible [5], whereas others use more shallow

182

"skimming" techniques [6], focusing only on information of inter-
est and ignoring all other text. Similarly, systems span the spectrum
in their use of finite-state pattern-matching instead of the more tra-
ditional, general, syntactic and semantic processing.

There are several reasons for the recent shift to increased use of
FS approximations. Work was published on deriving finite-state
approximations from more general grammars [7]. Then in MUC-3
it became evident that, in certain data-extraction tasks, a system
which ignored much of the input text but focussed attention on
the items of interest could perform as well as other systems which
emphasized deeper understanding of all the text. Once the problem
of data-extraedon was perceived to only require the understanding
of small fractions of the input text, some systems evolved to do
more shallow processing and the use of finite-state approximations
increased.

It should be noted that incorporating finite-state elements can result
in advantages that are important for achieving operational data-
extraction systems. The simplicity of the finite-state formalism
makes FS rules more easily understandable (and thus, modifiable)
by non-experts. Since parsing finite-state grammars can be done
very efficiently, another advantage is fast processing, which is de-
sirable in many real applications.

In so/he systems, notably SRI's and GE's, there was a dramatic
shift between MUC-3 and MUC-5 towards the use of finite-state
pattern-matching in all the critical linguistic components, relying
heavily on domain-specific patterns. Development of GE's MUC-
5 system, SHOGUN [8], resulted in the complete replacement of
their general syntactic parser by a complex FS grammar. This new
grammar encodes domain-specific information which was formerly
distributed in other components. SRI's new FASTUS [9] relies on
a cascade of finite-state transducers; the first stages find simple lin-
guistic structures, and the final and most important stage consists of
multiple levels of domain-specific finite-state patterns. Information
not matched is ignored.

Message
i

Message Reader I

Morphologica l Ana lyze r I

1 ' I Lexical Pattern Matcher I
I

Fast Partial Parser I

l
Semantic Interpreter I

1' + I Sentence-Level Pattern Matcher[
I

Discourse I

Template Generator]

Output

Figure 1: PLUM'Architecture

2. as a backup strategy, identify patterns that are likely to have
been fragmented during regular processing.

Although both of these systems (along with BBN's PLUM), were
top performers in MUC-5, they now lack a large-coverage domain-
independent syntactic and semantic model. Rather, they rely on
intensive analysis of domain corpora in order to encode patterns in
each new domain.

3. Role in PLUM's Architecture
BBN's PLUM has a traditional and general-purpose processing
core, where morphological analysis, syntactic parsing, semantic
interpretation, and discourse analysis take place. Purely syntactic
parse structures and general semantic interpretations are created
during processing. When porting to a new domain, we can use
our automatic procedures for learning lexical-semantic case-frame
information from annotated data [10] to quickly obtain domain-
specific understanding without using finite-state approximations.
This then becomes the initial system on which more detailed de-
velopment is based.

During the development for TIPSTER, we added to the core PLUM
system two new optional processing modules which do use finite-
state patterns for the following specific purposes:

1. detect domain-specific simple constructions that can be iden-
tiffed on/he basis of shallow lexical information, and

Figure 1 shows PLUM's architecture. Parallel possible paths
are indicated where the optional pattern-matching modules ap-
pear. The two new modules, the Lexical Pattern Matcher and
the Sentence-Level Pattern Matcher, use the same core finite-state
pattern-matching processor, SPURT, which is described in the next
section.

The Lexical Pattern Matcher operates before parsing but after tag-
ging by part-of-speech to recognize constructions which can be de-
tected based on component words, their parts-of-speech, and sim-
ple properties of their lexical semantics. This is used primarily
for structures that could be part of the grammar, but can be more
efficiently recognized by a finite state machine. Examples are cor-
poration/organization names, person names, and measurements.

The Sentence-Level Pattern Matcher replaced our former fragment
combining component which sought to attach contiguous fragments
based on syntactic and semantic properties. The new pattern-
matching component applies FS patterns to the fragments of the
parsed and semantically interpreted input; the matched patterns'
associated actions may modify or add new semantic information at
the level of the sentence. That is, semantic relationships may be
added between objects in potentially widely separated fragments
of the sentence, thereby handling the example of the discontiguous
constituent presented earlier.

183

4. SPURT: A Finite-State Pattern-Action
Language

We defined our first version of the FS patteru-matcher and FS
grammar syntax for a gisting application [11]. The problem there
was to extract key information (e.g., plane-id, command) from the
output of a speech recognizer whose input was (real) air-traffic
controller and pilot interactions. This initial version of the pattern-
matcher 'was also utilized, for the purpose of detecting company
names, in the PLUM configuration used for the initial TIPSTER
evaluations.

Before M[UC-5 we made the FS grammar syntax more powerful
(though still finite-state) to give the rule-writer more flexibility.
We also introduced optimizations to the parser and added an action
component to the rules. The resulting utility is named SPURT. We
first used SPURT for applying sentence-level patterns, and later
replaced the simple company name recognizer by SPURT to per-
form general lexically-based pattern matching of various types of
constructions.

SPURT rules are finite-state patterns which can be used to search
for complex patterns of information in a sentence and build se-
mantic structures from that information. A SPURT rule has a
:PATTERN component which is the expansion (the "right-hand
side") of a finite-state grammar rule. It optionally has an :UNDER-
STANDING component which states actions to take if the pattern
is matched. Examples of SPURT rules are included in subsequent
sections.

Rules are either top-level rules or sub-level (supporting-level) rules.
Top-level rules indicate multiple entry points into the grammar
defined by the patterns, and may invoke sub-level rules, as in a
context-free grammar where the fight hand side of a non-terminal
may be in terms of other non-terminals. Top-level patterns are
iterated over for each sentence, and the actions corresponding to
matched rules are executed.

Rules are assigned a phase. Rules belonging to phase n+l operate
on the input after it is mutated by phase n. So far we have only
seen the need for up to 2 phases in our rules.

When the SPURT rules are read in at system load time, they are
compiled into a network of nodes and arcs. Arcs coming out of
a node indicate multiple possible next states. Nodes contain tests,
so that if the test at the end-node of an arc is successful when
applied to the input at the pointer, that arc is traversed. The parser
simply matches an input against the network, performing a depth-
first search, and selecting a path that matches the maximal amount
of input. At each decision point, arcs are tried in an order which
favors paths that consume a maximal amount of input in a mean-
ingful way (e.g., the parser only follows "don't-care" arcs when
other possibilities are exhausted). Once a successful parse of the
whole input is found the search is terminated. 1 The resulting path
is then traversed to execute the corresponding actions.

4.1. Lexically-based SPURT

The Lexical Pattern Matcher applies SPURT patterns after mor-
phological analysis but prior to parsing. The input consists of

1 In all-paths mode, the parser can be used to find arc probabilities based
on training data. This was used in the gisting application, but has not yet
been used in PLUM.

word tokens with part-of-speech information. A pattern can test
on a token's word component, its part-of-speech, its semantic type,
or a top-level predicate in its lexical semantics. When a pattern is
matched, the action component identifies substrings of the matched
sequence to add to the temporary lexicon. These temporary defi-
nitions are active for the duration of the message.

For example, a pattern for recognizing company names could match
a sequence such as ("Bfidgestone" NP) ("Sports" NPS) ("Co." NP),
where NP is the tag for proper nouns, and NPS for plural proper
nouns; the pattern's action results in this sequence being replaced
by the singular token ("Bridgestone Sports Co." NP), which is,
as a side effect, defined as a lexical entry having semantic type
CORPORATION.

Figure 2 shows the roles used to match the example above. The
first sub-rule, NP-PLUS, finds sequences of tokens that have been
tagged as proper nouns. The XXX-CO rule finds sequences of
the type {'the'} [proper-noun]+ {[proper-noun-plural]} [corp-
designator]. The :TERM-PRED operator appearing in this rule
allows for other simple tests on the tokens. In this case, the corp-
designator? test tries to match one of a list of possible company
designators, e.g., "Corp.". The CO-INSTANCE rule determines
the existence of a company name if one of many company patterns
matches. If there is a match, the pattern assigns the tag tag-string
to the sequence, and the action component creates a lexical entry
for it. The lexical entry is assigned type CORPORATION and as-
signed the predicate NAME-OF relating the entry to a string created
out of the words in the matched sequence. Finally, the top-level
rule CO finds multiple instances of companies in the input.

(def-sub-patt NP-PLUS
(:pattern (:PLUS tagger::np)))

(def-sub-patt XXX-CO
(:pattern

(:SEQ (:OPT "the") (:RULE NP-PLUS)
(:OPT tagger::nps)
(:TERM-PRED corp-designator?))))

(def-sub-patt (CO-INSTANCE (:args tag-string))
(:pattern
(:tag tag-string

(:OR ... (:RULE XXX-CO) ...)))
(:understanding
((:type CORPORATION tag-string name)
(:string STR tag-string)
(:pred NAME-OF tag-string STR))))

(def-top-patt CO
(:pattern
(:seq
(:plus
(:seq
(:star :anyword)
(:rule CO-INSTANCE corp-string)))

(:star :anyword))))

Figure 2: Lexical Pattern Example

184

4.2. Sentence-Level SPURT

The input to Sentence-Level SPURT is a sentence object which has
already been processed through the fragment semantic interpreter.
Its fragments' parse nodes have already been annotated with a se-
mantic interpretation. SPURT's parser actually operates on the leaf
elements (the nodes corresponding to the terminals, or words) of
the fragment parses. The "pointer" can move along the input either
at the word level, or at the level of higher structures, achieved by
matching nodes that are ancestors of the leaf nodes. Thus patterns
can test on words or phrases. When a word is matched, the parse
pointer moves to the next word's leaf node; if a phrase is matched,
it is moved to the next possible word not spanned by the tree.

A pattern can test both syntactic and semantic information associ-
ated with the parse nodes. When a pattern is matched, the action
component specifies new semantic information to be added to par-
ticular parse nodes (and thus to the fragment in which each node is
contained). The new information is allowed to include predicates
connecting semantic structures across different fragments-this is
something the fragment semantic interpreter is unable to do, as it
is a compositional operation on the individual, independent, parse
fragments.

Below is an example of a sentence-level rule which will match
the example given in the introduction. This pattern matches se-
quences of the type [anyword]* [joint-word] [anyword]* [activity-
corporation-or-venture-np] [anyword]*, where [joint-word] (or
JOINT-WORDS as specified below) is one of a list of words
such as "jointly" and "together". The operator :AND-ENV intro-
duces tests on phrases in a parse tree: :CAT indicates the phrase
category; because some phrasetypes are recursive, :LOW (or other
values) is used to indicate which level of the recursive structure is
the one to be looked at; and :CONCEPT indicates the semantic type
that is desired of that phrase. The simple action component of this
rule adds the semantic type JOINT-VENTURE to the parse-node
where the joint-word occurred. In effect this is indicating there is
a joint-venture in the sentence. Note that this pattern makes no
decisions regarding the role, if any, that [activity-corporation-or-
venture-np] plays in the joint venture.

(def-top-patt JOINT-WORD-TRIGGER
(:pattern
(:seq
(:star :anyword)
(=tag joint-word-tag
(:star :anyword)
(:or

(:and-env

(:and-env

(:and-env

(:term *JOINT-WORDS*))

(:cat np :low)
(=concept JV-ACTIVITY))
(:cat np :low)
(:concept CORPORATION))
(:cat np :low)
(:concept POSS-JV)))

(:star :anyword)))
(:understanding
((=type JOINT-VENTURE joint-word-tag))))

Figure 3: Sentence-Level Pattern Example

5. Experiments
In order to measure the impact of the new FS components, we ran
our MUC-5 English configurations (for English joint ventures and
English microelectronics) on two test sets. The first is test data
used for the TIPSTER 18-month evaluation, the second is data that
was released for training, but was kept blind. For each pair of
domain and test set, we ran experiments in each of 4 modes:

• Baseline: our default configuration, using both FS compo-
nents;

• No Lexical FS: turn off lexical FS processing, except for the
old company-name recognizer;

• No Sentence FS: turn off sentence-level FS processing; and

• No FS: turn off both.

The default configurations in the two domains share the same
processing modules, the same general domain-independent gram-
mar and semantic rules, and the same company-name recognizer.
Each configuration contains its own set of domain-specific lexical-
semantic definitions. A lexical-semantic definition contains the
word's semantic type and (optionally) case-frames identifying se-
mantic tests on possible arguments to the word. The semantic
interpreter uses these rules in compositionally assigning semantics
to parse-trees. For EJV, the initial version of the lexical semantics
Was automatically generated from training data [I0]; it was then
modified manually as needed.

Although we tested both domains, we consider the test on EME to
be more representative of the effects of the new modules. Most of
the EJV development preceded the existence of the modules. In
fact, for EJV we added no new rules to the lexical FS component.
EME development, however, was able to take advantage of the new
utilities almost from the start. It made heavier use of the front-end
rules for some of the tricky technical constructions in that domain;
it should be noted that even then, the impact of the lexical FS was
minimal in that domain.

Table 1 shows the difference in ERR for the various modes. ERR
was the primary error measure used in MUC-5; to show improved
performance, the goal is to minimize this measure. The new FS
components, as evidenced by the Base results, improved ERR by
at most 3 percentage points.

Base No Lex No Sent No FS
EJV- 1 66 66 68 68
EJV-2 68 68 70 70
EME- 1 59 60 61 62
EME-2 62 63 63 63

Table 1: Impact of New FS Components: Numbers are ERR mea-
sures

It should be noted that the Japanese domains, JJV and JME, made
heavy use of the sentence-level patterns. FS patterns for JJV gave
us a quick gain in performance, but the price paid was having little
carryover to the JME domain once that development began. We did
not test those domains without the FS components. Based on our
experience, if multiple Japanese domains are expected, we would

185

undoubtedly build a robust domain-independent core of semantic
rules, which in the long-run maximizes re-usability and minimizes
effort :for each new domain. We utilized FS pattems because our
Japanese expert wanted to explore the capabilities, and limits, of
pattern-matching.

6. Conclusion
Finite-state pattern-matching has already shown to be useful and
valuable in data-extraction applications. Its full possible impact is
still being investigated. For example, several groups are trying to
find automatic ways to derive FS patterns in order to surmount the
porting: problem they pose in systems that heavily depend on them.

However, maintaining a wide-coverage linguistic core can result
in excellent data-extraction capability as has been evidenced by
PLUM's performance in the government-sponsored MUC evalua-
tions.

Perhaps the most interesting result was that domain-specific pat-
terns, though in principle very powerful, added relatively little to
the performance of the linguistically motivated components. Error
rate was improved by at most 3 percentage points. Nevertheless,
PLUM data extraction system's performance was among the high-
est of all systems participating in MUC-5.

While this one case study does not prove the relative efficacy of
domain-specific patterns versus domain-independent, linguistically
motivated processing, it does suggest that more research and de-
velopment in linguistically motivated syntactic and semantic pro-
cessing is promising even in the short term, not just in long range
research.

7. Acknowledgements
The work reported here was supported in part by the Advanced
Research Projects Agency and was monitored by the Rome Air
Development Center under Contract No. F30602-91-C-0051. The
views and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily representing
the official policies, either expressed or implied, of the Advanced
Research Projects Agency or the United States Government.

The members of the PLUM Research Group are: Ralph Weischedel
(Principal Investigator), Damaris M. Ayuso, Sean Boisen, Heidi
Fox, and Constantine Papageorgiou (BBN), and Dawn MacLaugh-
lin (Boston University).

References
1. Proceedings of the Fifth Message Understanding Conference

(MUC-5), August 1993, to appear.

2. The PLUM System Group. BBN PLUM: MUC-5 System De-
scription. To appear in Proceedings of the Fifth Message Un-
derstanding Conference (MUC-5), August 1993.

3. Proceedings of the Third Message Understanding Conference
(MUC-3), Morgan Kaufmann Publishers Inc., May 1991.

4. Proceedings of the Fourth Message Understanding Confer-
ence (MUC-4), Morgan Kaufmann Publishers Inc., June 1992.

5. Grishman, R. and Sterling J. New York University: Descrip-
tion of the Proteus System as Used for MUC-5. To appear in
Proceedings of the Fifth Message Understanding Conference
(MUC-5), August 1993.

6. Lehnert, W., McCarthy, J., Soderland, S., Riloff, E., Cardie,
C., Peterson, J., and Feng, F. UMASS/HUGHES: Descrip-
tion of the CIRCUS System Used for MUC-5. To appear in
Proceedings of the Fifth Message Understanding Conference
(MUC-5), August 1993.

7. Pereira, F. Finite-State Approximations of Grammars. Pro-
ceedings of the Speech and Natural Language Workshop,
pages 20-25. Morgan Kaufmann Publishers Inc., June 1990.

8. Jacobs, P. (Contact). GE-CMU: Description of the SHOGUN
System Used for MUC-5. To appear in Proceedings of the
Fifth Message Understanding Conference (MUC-5), August
1993.

9. Appelt, D., Hobbs, J., Bear, J., Israel, D., Kameyama, M., and
'l~json, M. The SRI MUC-5 JV-FASTUS Information Extrac-
tion System. To appear in Proceedings of the Fifth Message
Understanding Conference (MUC-5), August 1993.

10. Weischedel, R., Ayuso, D., Bobrow, R., Boisen, S., Ingda,
R., and Palmucci, J. Pa~ial Parsing: A Report on Work in
Progress. Proceedings of the Speech and Natural Language
Workshop, pages 204-209. Morgan Kaufmann Publishers Inc.,
Feb 1991.

11. Rohlicek, R., Ayuso, D., Bates, M., Bobrow, R., Boulanger,
A., Gish, H., Jeanrenaud, P., Meteer, M., Siu, M., Gisting
Conversational Speech" in Proceedings of International Con-
ference of Acoustics, Speech, and Signal Processing (ICASSP),
Mar. 23-26, 1992, Vol.2, pp. 113-116.

186

