
P R I N C I P L E S O F T E M P L A T E D E S I G N
Jerry Hobbs, David Israel

Artificial Intelligence Center
SRI International

Menlo Park CA 94025

A B S T R A C T
The functionality of systems that extract information from
texts can be specified quite simply: the input is a stream of
texts and the output is some representation of the informa-
tion to be extracted. Hence, the problem of template design
is an instance of the problem of knowledge representation.
In particular, it is the problem of representing essential facts
about situations in a way that can mediate between texts
that describe those situations and a vaxiety of applications
that involve reasoning about them.

The research on which we report here is directed at eluci-
dating principles of template design and at compiling these,
with examples, in a manual for template designers.

1. In t roduc t ion
The functionality of systems that extract information from
texts can be specified quite simply: the input is a stream of
texts and the output is some representation of the informa-
tion to be extracted. In the message understanding research
promoted by ARPA through its Human Language Technol-
ogy initiative, the form of this output has been templates
(feature-structures), with complex path-names (slots) and
various constraints on fillers. The design of these templates,
especially considered as concrete data structures, has been
determined to some degree at least by considerations having
to do with automatic scoring. Beyond that, it has not been
made clear what principles have driven or should drive the
design of these output forms; but it has become clear that
serious defects in the form of the output can undermine the
utility of an information extraction system. If the output is
unusable, or not easily usable, the breadth and reliability of
coverage of the natural language analysis component will be
of little value.

As part of the D A S H research project on Data Access for
Situation Handling, we axe attempting to elucidate principles
of template design and at compiling these, with examples, in

• a manual for template designers. Our methodology has in-
eluded detailed critical analysis of the templates from a vari-
ety of information extraction tasks (MUC-4, MUG-5, Tipster-
1, the Waxbreaker Message Handling [WBMH] tasks), to-
gether with the creation of templates for the TREC topic
descriptions and narratives.

The design of templates, or more generally, abstract data
structures, as output forms for automatic information ex-
traction systems must be sensitive to three different but in-
teracting considerations:

1. the template as representational device

2. the template as generated from input

3. the template as input to further processing, by humans
or programs or both.

The central consideration in our research is that of the tem-
plate as a representational device. The problem of template
design is a special case of the general problem of knowledge
representation. In particular, it is the problem of represent-
ing, within a constrained formalism, essential facts about sit-
uations in a way that can mediate between texts that describe
those situations and a variety of applications that involve rea-
soning about them.

What facts about a situation are essential is determined by
a semantic model of the domain, which is in turn motivated
by the particular information requirements of the analytical
purposes which the extracted information is to serve. This
specification could, in principle, be done without any detailed
thought given to the nature of the texts from which informa-
tion is to be extracted; thus it could include information re-
quirements that simply could not be met by the input stream.
It might also abstract from information readily transduced
from the input stream. Conversely, the domain specification
may reveal cases where one must extract information that is
not important to the end user in order to disambiguate or
otherwise explicate important informational content. Again,
the domain model could be specified without any detailed
thought given to the design of the concrete syntax of the
template. In this latter regard, crucial considerations include
intelligibility and 'browsability', together with the utility of
the template fills as input to further processing.

We here report some results of a program of research ~med
at uncovering the underlying principles of template design.

2. Basic Ontology
In constructing a representation for a domain or task, the
first questions to ask are:

1. What axe the basic entities? What properties of these
objects and what relations among them are we inter-
ested in?

2. What kinds of changes in such properties and relations
are we interested in?

Answers to any one of these questions depend on answers to
the others. Answers to the first provide the basic ontology of

177

the representation.

B a s i c E n t i t i e s The basic entities should be things that en-
dure throughout the temporal focus of the task. 1 They enter
into the relations and axe characterized by the properties of
pr imary interest and are the participants in events that may
change those properties and relations. In the joint ventures
domain, companies are the primary candidates for basic enti-
ties. In the long run, they get formed, split, merge, and go out
of business, but for many analytical purposes, and in partieu-
lax for the purposes implicit in the MUC-5 task, we can think
of them as permanent. I t is companies that enter into joint
venture relationships and through such relationships bring
about the one crucial exception to the rough-and-ready rule
jus t mentioned: the creation of new, joint venture compa-
nies. In the same domain, facilities and people axe also good
candidates for basic entities.

The basic entities may be represented by structured objects
with a number of slots, as follows:

<TEMPLATE> :ffi

COMPANY: <COMPANY-l>

° ° o . ° o ° o

<COMPANY-I>:
Name: ''General Motors''
Nationality: U.S.
° o ° , ° . o °

or by an atomic element such as an identifier, a set fill, a
number, or a string:

<TEMPLATE> :=

o . o o . , o

COMPANY: ''General M o t o r s ' '

The difference in outcome between these two cases is tha t
in the former you have to look elsewhere for the information
about the entity, whereas in the la t ter you don' t . In gen-
eral, i t ' s bet ter not to have to, so unless there is a good deal
of information tha t needs to be recorded about the type of
enti ty in question, it is be t ter to use an atomic element to
represent such entities. Again, within the joint venture do-
main, companies are good candidates for representation as
s t ructured objects, since we need to know their aliases, lo-
cation, nationality, officers, etc. On the other hand, within
tha t same domain, it may be tha t the only information we
need to record about a person, aside from his relation to a
company, is his name, so in that case i t is be t ter to represent
the person (atomically) by his name.

1 For more on this, see next section.

N a t u r a l K i n d s It is better if the types of basic entities, es-
pecially those represented by structured objects, are 'natural
kinds', that is, if they correspond to fairly natural, intuitive
ways of classifying and characterizing the domain of inter-
est. For example, companies, people, facilities are natural
kinds in this sense. Ordered pairs of Industry Types and
Product/Services axe not. Rather than have basic entities of
unnatural kinds, one may opt for more, or more complex, slot
fills in objects of more natural varieties. Still, it should be
remarked that one's eommonsense demarcation of a domain
into basic entities is always subject to revision by the particu-
lar analytical demands of the task at hand. Thus, in the case
of WBMH, while units (e.g., divisions, battalions, etc.) are
a perfectly natural kind of entity, deployments, that is rel-
atively short-lived activities involving elements from units,
may be less natural but they axe at least equally central.

A s s o c i a t i n g P r o p e r t i e s w i t h t h e R i g h t O b j e c t s I t is
important to determine whether the property encoded in the
slot of an object is really a property of that object, rather
than of some other related object. For example, in the Tip-
ster templates, Total Capitalization was viewed as a property
of the Contribution object, whereas it is really a property of
the Tie-Up Relationship, and thus should be associated with
that object. This misplacement of properties seems especially
likely when the entities in question axe types of relationships
or activities, as they are in this ease. We return to the issue
of representing relations below.

3. Temporal Granularity
We have noted that the issue of what kinds of changes are of
interest relative to a given task is centrally important to the
design of templates for the task. The resolution of this issue
is a crucial determinant, in particular, of what we call the
temporal granularity of the representation. Certain proper-
ties of and relations among entities are relatively permanent;
others are relatively short-lived. But what counts as per-
manent and what as short-lived is itself dependent on our
interests and purposes, both theoretical and practical. An
analysis of the kinds of changes that are of interest should
determine, even if only roughly, a temporal interval or length
of t ime as its focus or window. See Fig. 1. Note that there
is a mutual dependence here: Properties and relations that
are apt to change within that time interval are temporary;
those that are likely to hold throughout the designated in-
terval are, with respect to this task, permanent. Thus, the
fixing of a temporal granularity allows the resolution of many
problems in template design by defining limits on what we
have to specify.

For example, in the joint ventures domain, we are interested
in the formation (or dissolution) of tie-up relations among
companies. Thus such relations are temporary, whereas sub-
sidiary relations are permanent. If we were interested in
buy-outs, subsidiary relations would be viewed as temporary,
changes in such relationships being an important focus for
the task. In the domain of troop movements or deployments,
locations and associated equipment are temporary, whereas
a unit 's place in the command hierarchy is permanent, even
though on the scale of decades (or even much less), that might
change.

178

Temporary I
Properties

Focus of Task

Permanent Properties

/Tom mu~lcatlon-Ev~t

Source-Ent Target-Ent Purposive-Event
/ I \

Entl Ent2 Basic-Event
/ \

Ent3 Ent4

Figure 3: Typical Event Structure

Figure I: Temporal Granularity and Focus

Note that temporal granularity is task-relative rather than
message-relative. The messages may have been written from
very different temporal perspectives, with very different in-
terests and purposes. We need to extract the information
from them in a form that is appropriate for the task at hand.

4. Representing Relations
A relation can be represented in one of two ways, as a sep-
arate object in its own right, or as a property of one of its
arguments. See Fig. 2

For example, the subsidiary relation could be represented by
its own Entity Relationship object, or it could be represented
by a Parent Company slot in the Entity object.

The following criteria seem useful in deciding which of these
options to adopt:

I. If the relation is of primary interest in the task, option
(a) may be the best choice.

2. If a lot of other information needs to be recorded about
that relation, option (a) is a good choice; if only the two
arguments need to be recorded, option (b) is probably
better.

3. If the relation is permanent relative to the temporal
granularity of the information task, then option (b) is a
good choice.

4. If some other relation, Relation2, depends on Relationl,
in the sense that the former cannot exist without the
latter existing, then Relation2 is a good candidate for
being represented via option (b).

With respect to the second criterion, if in addition to the
two arguments, we want to specify the time, the location,

ao bo

Relation Entity1

/ \
Entity1 Entity2 Relation: EnUty2

Figure 2: Representing Relations

and various other aspects of the relation, then option (a) is
indicated. With respect to the third criterion, if the relation
is at least as permanent as the entities, then option (b) is a
good choice. These two criteria overlap to some extent. If
the relation is permanent, there is likely no need to record its
time.

In the specific case of the Subsidiary relation in Tipster, it is
not the relation of primary interest (Tie-Ups are), there are
no other properties that need to be specified for the relation
other than the parent and child companies, and the relation
is permanent with respect to the temporal focus of the task.
Therefore, option (b) seems appropriate.

The Tipster template presents an apposite example of crite-
rion 4 as well. A Contribution, as conceptualized in the tem-
plate, is a relationship, just as a Tie-Up-Relationship is, so it
certainly could qualify for object status. However, it is depen-
dent on a Tie-Up-Relationship; a Contribution relationship
among companies can't exist without a Tie-Up-Relationship
among them. This indicates option (b) is appropriate.

5. Events
We can classify events, and the relations among entities that
they involve, in di~erent ways for different purposes. On the
basis of an examination of a variety of templates, we hypoth-
esize that there axe three central event types. First, there are
those that directly relate two or more basic entities, such as
a company manufacturing a product or a terrorist organiza-
tion attacking a target or a vendor supplying a buyer with a
part. These very same events, however--especially if, as in
the examples just mentioned, they involve purposive agents--
can also be classified in terms of their purpose or aim. This
type of classification typically involves further reference to
an activity or condition, as when a company manufactures a
product in order to enter a new market or when two compa-
nies form a joint venture for the purpose of carrying out some
activity. Third, there is the specially important type of event
involving communicative relations among basic entities, to-
gether with a content communicated, itself comprising some
further activity or event of any of the three types. Thus, a
typical event structure might be represented as in Fig. 3.

Of course, in many cases there would be equations identifying
the various entities involved. Thus, GM might announce it
is forming a joint venture with Toyota for the manufacture
of cars by GM in 3apan, where Source-Ent = Entl = Ent3
= GM. We also note that a Communication-Event can have
a Basic-Event for its third argument.

179

Relation

/ \
Eventl Event2

Figure 4: Relations Between Events

In addition to these three event types, there are relations be-
tween events that we may need to represent, such as causality
or the subevent (part-whole) relation, as in Fig. 4. Thus, a
shooting event could cause a dying event, and a t roop move-
ment might be part of a larger at tack.

In general, the template structure should be no deeper than
this. I t is bet ter for the trees to be very broad (i.e., for
individual objects to have lots of slots) than to be very deep.

6. Entity Snapshots
In many applications, there are a large number of tempo-
rary or transient properties of entities that are of pr imary
concern. If we design the template around the enduring ba-
sic entities themselves, i t might seem that these temporary
properties should be demoted to mere slots rather than be
represented as entities in their own right. These slots, on
the other hand, would also have to allow multiple entries
and each entry would have to have t ime stamps. A way to
eliminate this complexity is to have as first-class objects, in
addition to Entities, Enti ty Snapshots. An Enti ty Snapshot
is an Entity at a part icular point or interval in time. As such,
an Entity Snapshot would have a pointer to the Enti ty that
it is a snapshot of. I t would also carry all the temporary in-
formation about the Entity. The t ime of the snapshot would
also be one of the slots.

In the WBMH domain, these Enti ty Snapshots, under the
name Enti ty Information, are p r i m a r y objects of interest.
They represent deployments, or "target opportunit ies". Such
temporary properties of Entities as Equipment, Location, Di-
rection, and so on, are really to be associated with deploy-
ments, Snapshots, rather than Entities or Units.

6.1. Entities from Entity Snapshots
Often the first way one might think of an entity is in terms of
its structure and propert ies at a part icular moment in time.
One later realizes that in fact the entity maintains its identity
over t ime as its internal s t ructure changes. In this case we
should reconceptualize the entity as being a mapping from in-
stants or temporal intervals into its s t ructure and properties
at that time.

For example, one's first intuition about the nature of a de-
par tment may be that it is a set of employees. Later one re-
alizes it should have been conceptualized as a mapping from
times to sets of employees. In this case, it is a good idea to
have both Departments and Depar tment Snapshots, where
the set of employees is a property of the Department Snap-
shot.

There are a number of interesting problems of analysis that

revolve around the relationship between entities and entity
snapshots. Sometimes one is of pr imary interest, sometimes
the other. For example, in Desert Shield, units were of inter-
est; in particular a major focus of concern was the calculation
of unit strengths. In Desert Storm, however, deployments
were of primary interest, since it was deployments that pre-
sented the immediate danger. 2 In general, we want to be able
to infer the identity of different deployments across time, to
infer their membership in units, to derive some of their prop-
erties from default properties of their units, and to determine
properties of units, such as unit s trength and readiness, from
properties of deployments.

7. S lot F i l l s
Slot fills should be uncomplicated. They should take one of
the following forms:

(a) Atomic elements, such as identifiers, numbers,
strings.

(b) Pointers to s t ructured objects.

(c) Tuples whose elements are of types a and b.

(d) Sets whose elements are of types a, b, or c.

o r

It is probably confusing to have tuples with more than three
elements. Thus, the maximum complexity of a slot fill would
be

{(A1, B1, C1), (A2, B2, C 2) , . . . }

Many set fills of type (d) whose elements are of type (c)
may be thought of as functions. For example, if we had
a set of pairs of companies and ownership percentages, we
could think of i t as representing a function from companies
to ownership percentages. However, not all set fills of this
type are conveniently thought of as functions. If we have an
Officers slot for the Company object, whose filler is a set of
tuPles of the form (Position Person), then an entry might be:

{ (PRES, "White") ,
(CEO, "White") ,
(SREXEC, "Brown"),
(SREXEC, "Green")}

This is a not function in either position or name.

7.1. Objects or Tuples
It is of course possible, and often good programming practice,
to implement tuples as s t ructured objects:

Tuple :
g:

B:
C:

2This pair of examples also illustrates that different but inti-
mately related tasks can have different temporal granularlties.

180

But in the presentation of the templates, it is often better
from the user's point of view to represent them as tuples,
rather than multiplying kinds of objects. This is an instance
of the prindple that the user shouldn't have to go looking
too fax afield for information. As you follow a complex path
of pointers, it can be easy to forget what the type of an
object is and where it fits into the web of relationships you're
interested in.

References
1. Sundheim, B., ed. Proceedings, Fourth Message Under-

standing Conference (MUC-4), McLean, VA, June, 1992.
Distributed by Morgan Kanfmann Publishers, Inc., San
Mateo, CA.

2. Sundheim, B., ed. Proceedings, Fifth Message Under-
standing Conference (MUC-5), Baltimore, MD, August,
1993.

8 . B a c k p o i n t e r s

Memory is cheap. Time, especially the user's time, is expen-
sive. Therefore, a user should be able to browse through a
database, easily traveling from any node to any related node.
In a troop movement domain, sometimes the user will want
to ask the two questions,

1. What activities axe going on in Sector A?

2. What units axe involved in these activities?

and sometimes he will want to ask:

1. What activities is Unit A involved in?

2. What is the location of these activities?

Therefore, for every pointer from one object to another, there
should be a backpointer.

It might be objected that backpointers amount to storing in-
formation redundantly, but that 's rather like saying two-way
streets axe redundant because you can always get back to
where you started by some other route. However, backpoint-
ers should be considered secondary. They do not need to be
part of the template definition. It should just be assumed
that the backpointers will be constructed as weU. (More-
over, in evaluations, backpointers should not be scored. This
was one of the chief difficulties in the scoring of the Tipster
templates.)

9 . S u m m a r y

We have reported on research directed at elucidating gen-
erally applicable principles of template design. The guiding
perspective of the research reported here is that template
design is a special case of knowledge representation in a con-
strained representation language. Thus it is no surprise that
many of the main issues in knowledge representation, issues
of choice of ontology, of the nature of relations and of events,
arise here as well. We have also paid attention to issues of
readability as well, for if the templates produced, either by
hand or by program, axe not easily intelligible, their accuracy
and completeness will be of little use.

1 0 . A c k n o w l e d g e m e n t s

The D A S H project has been sponsored by the Office of P~e-
search and development, under Contract No. 93-F149300-
000. We would especially like to thank William Schulthels of
ORD for his active and extremely useful participation in the
research. We would also like to thank Boyan Onyshkevych,
especially for discussions about the Tipster template, and
Mabry Tyson.

181

