
ISSUES AND METHODOLOGY FOR TEMPLATE DESIGN

FOR INFORMATION EXTRACTION

Boyan Onyshkevych

Department o f Defense
Attn: R525

Fort George G. Meade, MD 20755
baonysh@afterl ife .nese.mil

ABSTRACT

The goal of Information Extraction tasks is to identify, categorize,
classify, relate, and normalize specific information of interest
found in free text, and to make that information available to a
back-end data base, data fusion, or other application. A data struc-
ture referred to as a template is typically used for capturing such
information, particularly in cases where the amount and complex-
ity of information is substantial. The design of the template for
such/m application (or exercise) thus defines the task itself and
therefore crucially affects the success of the Information Extrac-
tion attempt.

This paper discusses template structure and methodological issues
which arise in the template design process, within the context of a
discussion of the design process itself; this paper is based on the
template design process for TIPSTER/MUC5 and certain subse-
quent Information Extraction exercises. The first section of this
paper addresses the issue of selection of the appropriate data rep-
resentation (text annotation vs. flat template representation vs.
object-oriented template). The second section outlines a set of
high-level design considerations (desiderata) that have emerged;
these desiderata feed into the discussion of design elements and a
procedural review of the design process (design iterations, use of
those linguistic analysis tools, etc.)

1. Data Structure Selection

Although the selection of an appropriate data structure for repre-
senting extracted data may be influenced by the data structure
requirements of the back-end application, the use of straightfor-
ward deterministic data format converters can further decouple
those two data structure requirements. Thus a data structure can be
selected to be appropriate for the data extraction task itself.

The data structures for Information Extraction fall into three broad
categories: text annotation, fiat data templates, and object-oriented
templates. The appropriateness of those three formats to a particu-
lar task is primarily based on the richness of the required data
complex.

If a task calls for a small number of primitive data types, with no
requirements for representing interrelations among primitive data
types, text annotation may be the simplest representation. This
data structure is renderable as tagging delimited text segments

with appropriate tags from SGML or another mark-up language
(or, equivalently, by an auxiliary file for each document with the
tag associated with an offset into that document file). For exam-
ple, the data from the task of finding company and product names
in a text may be most appropriately represented by an annotation
scheme. However, if the task also requires the identification of
coreferences among names or references in a text and/or associa-
tion of other attributes of those elements, a template structure may
be more appropriate.

Flat templates, such as those used in MUC3/MUC4, associate
related data elements (either strings from the text, categorization
of data, or normalized data). Each such template thus represents a
data complex of related information; each complex of data from
the text will result in another template (with the same structure)
being instanfiated. A fiat template's structure is thus a set of slots
(naming the attribute), each with zero, one, or more possible fills
(such as strings from the text, numbers, or symbols from a pre-
defined se0.

The MUC3/MUC4 templates were flat data structures with 24
slots; there was a requirement to represent relationships between
data elements in different slots, which led to some awkwardness.
For example, in order to correlate the name of a terrorist target
with the nationality of that target, a "cross-reference" notation had
to be introduced.

In response to such difficulties and because of the richness of the
required data complex, the data structure for tasks such as the
TIPSTER/MUC5 task is most appropriately object-oriented. In
other words, instead of using one template to capture all the rele-
vant information, there are multiple sub-template types (object
types), each representing related information, as well as the rela-
tionships to other objects. A completed (or instantiated) template
is a set of filled-in objects of different types, representing the rele-
vant information from a particular document. Each object thus
captures information about one thing (entity), an event, or an
interrelation between other objects, A filled-in template for a par-
ticular document may, therefore, have zero, one, or more object
instanfiations of a given type, A completed template will typically
have multiple objects of various types, interconnected by pointers
from object to associated object. If there is no information in the
document to fill in a given object, that object is not incorporated
into the completed template. If a given document is not relevant
to the domain, no objects are instantiated (possibly beyond a
"header" object which holds the document number, date of analy-
sis, etc.

171

2. Design Desiderata

The design of the template needs to balance a number of (often
conflicting) goals, as reflected by these desiderata, which apply
primarily to object-oriented templates but also have applicability
to fiat-structure templates as well. Some of these desiderata reflect
well-known, good data-base design practices, whereas others are
particular to Information Extraction.

DESCRIPTIVE ADEQUACY - the requirement for a tem-
plate to represent all of the information necessary for the
task or application at hand. At times the inclusion of one
type of information requires the inclusion of other, sup-
porting, information (for example, measurements require
specification of units, and temporally dynamic relations
require temporal parametrization).

CLARITY - the ability to represent information in the tem-
plate unambiguously, and for that information to be manip-
ulable by computer applications without further inference.
Depending on the application, any ambiguity in the text
may result in either representation of that ambiguity in the
template, or representation of default (or inferred) values,
or omission of that ambiguous information altogether.

DETERMINACY - the requirement that there be only one
way of representing a given item or complex of informa-
tion within the template. Significant difficulties may arise
in the information extraction application if the same inter-
pretation of a text can legally produce differing structures.

PERSPICUITY - the degree to which the design is concep-
tually clear to the human analysts who will input or edit
information in the template or work with the results; this
desideratum becomes slightly less important if more
sophisticated human-machine interfaces are utilized, or if a
human is not "in the loop". Using object types which
reflect conceptual objects (or Platonic ideals) that are
familiar to the analysts facilitates understanding of those
objects, thus the template. Perspicuity is facilitated by
enforcing separation of event, entity, and relational infor-
mation; for example, instead of having a buyer object and
a seller object in a sales event (where both are compa-
nies), having a company object more closely parallels the
conceptual kind (the roles of the companies would be
reflected by the semantics of the slots that point to them in
the s a l e s event object).

MONOTONICITY -a requirement that the template design
monotonically (or incrementally) reflects the data content.
Given an instantiated template, the addition of an item of
information should only result in the addition of new
object instantiations or new fills in existing objects, but
should not result in the removal or restructuring of existing
objects or slot fills. Violation of this desideratum may lead
to "keystone" effects, where one missing item of informa-
tion results in a radically different template structure.

SINGULARITY - this requirement states that a real-world
entity or event maps to only one element in the template,
and that if it plays multiple roles, pointers are used to that

one element. When viewing an instantiated template as a
graph (objects and fillers as nodes, slots as arcs), singular-
ity states that there should be only one node representing a
specific real-world entity, relation, or event. Note that in
some eases, where time is a critical parameter and the tem-
plate tracks a dynamic situation, time may be associated
with a particular entity, event, or relation; objects with dif-
ferent time indicators effectively identify different refer-
ents and thus map to different objects (the ACTIVITY
object in the TIPSTER Joint Venture template illustrates
this). Unlike this recommendation against one-to-many
mapping, the converse situation may occur, but needs to be
carefully monitored to minimize monotonicity violations.
For example, if a group of 39 companies together plays a
certain role, it may be impractical and unnecessary to inde-
pendently represent each one; but one may need to be sin-
gled out and hence be separately represented.

° APPLICATION CONSIDERATIONS - the particular task
or application may impose structural or semantic con-
straints on the template design; for example, a requirement
for use of a particular evaluation methodology or system
for evaluation may impose practical limits on embedded-
ness and linking.

One other consideration comes into play when there is a current or
potential requirement for multiple template designs in similar or
disparate domains.

• REUSABILITY - elements (objects) of a template are
potentially reusable in other domains; eventually a library
of such objects can be built up, facilitating template build-
ing for new domains or requirements.

3. Design Elements

In addition to any ancillary supporting materials required by the
domain (such as gazetteers or name lists), three definitional docu-
ments or knowledge sources provide the information necessary to
define the syntax and semantic of the template and to define the
process of filling it.

3.1. Template Definition

The basic syntactic definition of the template defines the structure
of the template, including specification of all object slots and type
definition of legal slot fillers. For those slots which are filled by
pointers, an indication of the legal types of the pointer referents is
included; similarly, for slots which contain set fills (or classifica-
tions or categorizations from a finite set of categories), the set of
possible fills is defined by enumeration. For TIPSTER and some
other subsequent Information Extraction tasks, a BNF-like tem-
plate definition language is utilized (see Appendix below).

As part of a support effort to TIPSTER, the Computing Research
Laboratory of New Mexico State University produced a graphical
interface-driven tool to support the definition of a template; the
tool produces not only a BNF definition for the new template
design, but also compilable source code for a MOTIF-based tool
for manually filling in templates (along with supporting routines).

172

3.2. Rules of Interpretation

The semantics of the template are defined in another document
(this was called the Template Fill Rules document in TIPSTER).
In addition to providing definitions of various terms or concepts,
the Rules of Interpretation (ROI) document presents report ing
conditions. The document needs to specify when anything at all is
to be instantiated for a given document. Then reporting (i.e.,
instantiation) conditions need to be specified for each object type.
The conditions specify when there is enough information in the
text to instantiate the particular object; this may be defined in
terms of how information appears in the text (e.g., centrally vs.
peripherally), or a specification of a minimum number of slots that
need to be filled in order for the object to be valid. The semantics
of each object type is also specified in the ROI.

For each given slot, then, the reporting conditions are specified.
The ROI defines the semantics of each slot, as well as detailing the
specification of legal fills (and the translation from text to fill for-
mat). For set fills, the ROI defines each symbol from the set and
specified reporting conditions. For string fills, the extent of the
string (i.e., what elements from the text get included in the string?)
is defined along with any normalization that is to be done on the
string.

3.3. Case Law

Since the definitions in the ROI are not likely to capture every
possible eventuality (even the most diligent case), they are supple-
mented by a set of examples. These examples may either be incor-
porated into the ROI document in each appropriate section, or
compiled into a separate document or collection. The template
designer should not expect that this collection becomes fixed,
because as new language usage, new types of information, or pre-
viously unseen reportable event types occur, the case law collec-
tion needs to be increased to document the analyst's handling of
the new data and to ensure conformity for future occurrences. The
examples that need to be added to this collection include any situ-
ations where it is not perfectly clear how the rules in the ROI
apply, as well as cases which are fairly complex and where having
a guide helps the analyst in constructing the template. Violations
of the desiderata above (particularly determinacy) increase the
need for a case law collection.

4. Design Methodology

The design process of an appropriate template structure for a com-
plex task is necessarily an iterative one. After an initial sketch, the
template elements should undergo tuning based on corpus analy-
sis. Then the template is subjected to iterarive refinement based
on difficulties and novel inputs encountered while filling a number
of templates manually.

4.1. Template Sketch

An initial template sketch is devised to reflect the task require-
ments as understood by the customer, and constructed adhering to
the desiderata above. If available and appropriate, objects from a
template object library (or from previous template designs) are

utilized in this initial template draft, with unnecessary slots being
pruned.

In the object-oriented data structure paradigm, objects typically
fall into one of three types: entities, events, and relations.

• E n t i t y objects represent a conceptual object and its
attributes; the objects typically represent some type of real-
world entity such as a person, an organization, a product, a
company, etc. Entity objects may also be used to represent
such things as times and locations (in isolation) that other
entities, events, or relations may point to; for example, a
location object may include various types of information
about a place (coordinates, name, elevation, etc.) and may
be pointed to by an organization as its location, by a trans-
portation event as the destination, etc.

• Even t objects represent real-world actions or processes.
The event object will typically have pointers to objects rep-
resenting the participants in the event, and may include
slots representing the parameters or results of the event. A
typical example may be a sal.es event object with pointers
to the buyer and se].].er (each represented by an object).

• Relation objects reflect relations between entities, or rela-
tions between events; relations between an event and an
entity are typically reflected by a pointer in a slot on an
event object. Relations are often collapsible into a slot/
pointer representation, but there are some compelfing rea-
sons to retain them as separate objects instead. An example
of an entity/entity relation is the relation between a p e r -
son object and a company object which specifies the role
(such as P r e s i d e n t or CgO) that the person has in that
company. In a task setting where tracking the changes in
leadership of companies is important, instead of maintain-
ing an of t '±cers slot on a compeuay, (or a p o s i t 2 o n slot
on a p e r s o n object) a relation object is preferred, with
pointers to company and person, an indicator of the posi-
tion, and a time stamp (to capture change).

In the template, a given event, entity, or relation from the domain
may either be represented by an appropriate object, as described
above, or may be collapsed into a slot value (attribute) of another
object. Typically if only one or two elements of information about
a particular entity, event, or relation are needed, it is more expedi-
ent and concise to collapse that potential object into a single or
multiple-valued slot. For example, if an object representing a com-
pany captures the headquarters location by the place-name only,
(and no further geographic or gazetteer information is necessary),
then a slot on the company object with a simple string fill is prefer-
able to a pointer to a separate location object which just represents
the name of the location.

Two or even three elements of associated information can be
treated as a composite slot fill instead of a two- or three-slot
object. One strong reason to maintain a cluster of associated infor-
marion as a separate object (even if it only consists of one, two, or
three elements) is the singularity desideratum. For example, a per-
son may have multiple roles in a particular template, and the only
information that is maintained about that individual is the name. In
this case it may be worthwhile to maintain a distinct p e r s o n
object with that information, even if it only has one slot. This
mechanism explicitly indicates coreference of the multiple person

173

references; in the various roles, instead of relying on string equality
to indicate coreference. Perspicuity may be increased by this
approach, despite the proliferation of objects, because of the intui-
tive correlation of one template object with one real-world object.

4.2. Co r lms -Based Tuning

This initial template is augmented or further pruned to reflect the
data. If a certain item of information is not found in a substantial
sample of the text corpus, and it is not a critical datum, pruning is
indicated. Data categorization or association of multiple data ele-
ments is often more complicated than initially envisioned; for
example, the list (with percentages) of owners of a company is not
static, therefore either a reference time is specified by fiat, or that
information is associated with a time data element.

Tools such as KWIC, mutual information, or n-gram analysis can
be utilized to identify the typical context of relevant information
elements in a text corpus. For example, KWIC on 'joint venture'
helps idenlify the different activities or situations that joint ven-
tures appear in, thus identifying possible renderable data elements
relating information about joint ventures in a template.

The steps below identify one possible path in tuning a draft tem-
plate to the corpus.

• Identify the key entity types in your requirement; find out
typical ways that those data elements are expressed in the
text. For example, if companies are key entities, the corpus
may reveal that companies may be referred to by name (in
which case markers such as Inc. and Ltd. identify some
occurrences) or by definite reference ("the company" or
"the manufacturer" may identify such). It is not necessary
to identify all the different ways the entity can be refer-
enced at this stage; however, in some cases it will be possi-
ble to easily enumerate a large percentage of the ways in
which something is referenced.

• Using these tags or markers, find the references in a non-
trivial set of documents (100 or more) to that entity. Evalu-
ate the context in which these references occur; which of
the semantic contexts are of relevance to the domain? Any
contexts that have not been addressed but are of interest or
are necessary for coherence of the representation need to
be added to the template definition. This analysis will help
evolve the event and relation object definitions. For exam-
ple, in the Joint Venture template, such analysis of the cor-
pus revealed examples where the joint venture "expanded"
or "increased", and the decision was made to add that situ-
ation to the status set fill list.

• Now given the contexts identified above (and marked, for
example, by specific verbs), search the corpus for the
occurrences of those markers and identify the contexts. An
examination of those text fragments will reveal two things:
1) other ways that the entities may be referenced in the text
(such as indefinite or generic references) and 2) other
entity types that can participate in the same contexts as the
entities of interest. An evaluation of the former will help
determine the reporting conditions for the entity, while an
evaluation of the latter is necessary to determine which of

the new entity types should be reported. For example, in
the Joint Venture corpus, this analysis reveals that consor-
tia appear in the same roles as companies and govern-
ments, and a de terminat ion was needed as to their
reportability and the categorization of that type of entity.

This process may be iterated, and repeated on each entity/
event or entity/relation of interest in the template.

Techniques for identifying information particular to the
given domain include finding differentials between the
word or n-gram frequency lists for the domain corpus and
for a general corpus. Any term that appears more in the
domain corpus (vs. a general corpus) needs to be evaluated
for inclusion in the template; in some cases the terms iden-
tify relevant concepts, in others these concepts are beyond
the scope of what needs to be tracked. However, some of
the concepts or terms that are of, relevance (such as tempo-
ral expressions or common actions) will be equally fre-
quent in various corpus types, in which case this technique
will not identify them. This technique is similar to New
Mexico State University's statistical filter for TIPSTER.

In general, for each newly-identified data type (to include
classes in a set-fill), a decision needs to be made: 1) don't
report it at all; 2) report it by coercing it into an existing
data type, (e.g,, declaring that consortia are the same class
as companies); or 3) expand definition to handle new data
type (e.g., adding a consortia class to the set fill list).

4.3. Iterative Refinement

The template undergoes a cycle of further refinement through
manual filling of the template based on a substantial number of
documents; based on the complexity of the template and diversity
of text types and sources, the number required for this cycle could
be 300 or more. In fact, the template could be subject to modifica-
tion throughout the lifetime of the task (based on novel inputs), but
typically operational stability will require freezing the template
definition; the ROI may be subject to update to reflect the coding
decisions made on novel inputs, particularly if that input may be
expected to reoccur. In an operational environment, such ROI
augmentation may still be conducted to reflect new inputs, so long
as care is taken to avoid any changes affecting previously filled
documents. In fact, in order to maintain consistency (if there are
multiple systems and/or human analysts creating or modifying
template instantiations) such changes to the ROI and especially the
case law collection are desirable.

When a change is made to the template or ROI, the existing body
of filled templates may be affected. In some cases the appearance
of a new type of relevant information may require reworking the
existing template structure or the partitioning reflected in a set fill
list; in such case, the impact on the template corpus is substantial,
and a decision needs to be made whether to update the older ver-
sions (depending on operational need). In other cases, an addition
doesn't impact the corpus at all, for example, when adding a previ-
ously-unseen currency type to the set fill fist of currency types. In
our experience, different analysts interpret rules in the ROI with
different degrees of strictness, which may lead to new information
types escaping unnoticed; for example, some analysts might treat

174

consortia as companies without giving it a second thought,
whereas others would identify that they are not companies, strictly
speaking, and require a ROI or case law clarification of that situa-
tion.

At occasional points in the iteration, the template should be
reviewed in its totality for violations of the desiderata. When vio-
lations are identified, manually running through some (reasonable)
worst-case scenarios will help identify whether those violations
wifl cause problems, thus should be addressed, or whether restruc-
turing would cause more problems (e.g., in perspicuity) than leav-
ing the structure as is.

The corpus-based tuning and iteration process described above
directly addresses the descriptive adequacy desideratum. The
determinacy desideratum can also be addressed by the iteration
process, in particular by using more than one analyst to indepen-
dently create a set of templates for the same set of documents;
some of the discrepancies between the independent codings will
highlight determinacy violations. Additionally, the independent
codings may identify perspicuity violations (where an analyst did
not understand the template structure or notation).

The effects of violations of some of these desiderata in the TIP-
STER templates are discussed in "Template Design for Informa-
tion Extraction" in the proceedings of the TIPSTER program, as
well as in the Proceedings of the Fifth Message Understanding
Conference.

5. Appendix: BNF for Template Definition

Except as specified, the notation below is for the

template definition.

< ... >data object type (i.e., if indicated as a

filler, any instantiation of that data

object type is allowable). Every new

instantiation is named by the type concat-

enated with: '-', the normalized document

number, '-', and a one-up number for

uniqueness. The angle-brackets are

retained in the instantiation, as a type

identifier/delimiter.

:= what follows is the structure of the data

object for template definitions, or the

contents of the instantiated object for

instantiated templates/

: what follows is a specification of the
allowable fillers for this slot in a tem-

plate definition, or the filler of the

slot in an instantiated template.

:: what follows is the set itemization in the

template definition.

{...} choose one of the elements from the ...
list. Note that one of the elements (typi-

cally "OTHER") may be a string fill where

information which does not fit any of the

other classes is represented (as a
string); this set element would be identi-

fied by double quotes in the definition,

and delimited by double quotes in the

fill.

{{...}}

#<... {

^

I

(...)

((...))

choose one element from the set named by
...(like {...} except that the list is too

long to fit on the line)

...}#>these delimiters identify a hierar-

chical set fill item. The first term after
#< is the head of the subtree being defined

in this term, and is itself a legal set
fill term. What follows that term is a set

of terms which are also allowable set fill

choices, but are more specific than the

head term. The most specific term speci-

fied by the text needs to be chosen. For

example, the term #<RAM {DRAM, SRAM}#>

means that RAM, DRAM, and SRAM are all
legal fills; if the text specifies DRAM,

then choose DRAM, but if the text specifies

just RAM, then select RAM. In scoring, spe-

cial consideration will be given when an
ancestor of a term is selected instead of

the required one (as opposed to scoring 0

as in the case of a flat set fill). Note

that items in the set (i.e., inside the {

... }) can themselves be hierarchical

item. Note that one of the elements (typi-

cally "OTHER") may be a string fill where

information which does not fit any of the

other classes is represented (as a

string); this set element would be identi-

fied by double quotes in the definition,

and delimited by double quotes in the fill.

one or more of the previous structure; new-

line character separates

multiple structures

zero or more of the previous structure;

newline character separates multiple

structures; if zero, leave blank

zero or one of the previous structure, but

if zero, use the symbol ~-" instead of

leaving position blank

exactly one of the previous structure

OR (refers to specification, not answers

or instantiations)

delimiters, no meaning (don't appear in

instantiations) NB: DOES NOT MEAN

"OPTIONAL'

delimiters, doesn't appear in instantia-

tion, but contents are OPTIONAL but either

all the contents appear, or none of them,

in the case where there are no connectors

(e.g., I) or operators (e.g., + or ^)

within these delimiters: for example, with

A ((B C)) D, only A D and A B C D are

legal. If there is a connector inside these

delimiters, then the either null or one of

the forms are allowed fills: ((A I C))

means that the legal fills are i) empty 2)
A, and 3) C. Note that these delimiters

essentially mean that the contents appear

175

• " I " "

" (,

-) ,

W

[,..]

[[. .]]

zero or one times. Also note that

"OPTIONAL" here means that the position

are left blank if no info, not that scor-

ing treats these terms as optional.

Disjunction of the terms (XOR)

escape for the paren (i.e., the paren

appears in the slot fill in that position)

escape for the right paren

any string (from the text, except for COM-

MENT fields). The quotes remain in the

instantiation around non-null-string

fills.

any string (from the text); the ... may be

a descriptor of the fill. The quotes

remain the instantiation around non-null-

string fills.

normalized form (see discussion for form

specifications).

range; select integer from specified

range; left-pad integer fills with O's, if

necessary, to conform to number of digits

used

This notation is for answer key templates

only (test or development), not for system

answers. The slash indicates a disjunction

(X0R) of allowed answers. Each disjunct

appears on a new line. If the / appears as

the first character of a slot filler, then

a null answer (i.e., no fill) is an allow-

able fill. If multiple fillers are allowed

(by a + or * notation) for the slot, then

the possible fillers are given in disjunc-

tive normal form (variable number of con-

juncts per disjunctive term), for example,
(disregarding the new-lines): / NICHROME

GOLD / NICHROME GOLD TUNGSTEN TITANIUM

would mean that the three allowed answers

are I) (empty string),2) NICHROME GOLD,

and 3) NICHROME GOLD TUNGSTEN TITANIUM. An

object can be indicated as being optional

if (all) pointers to that object appear

after a /. System answers are not allowed

to offer optional or alternate fills

(answers).

6. REFERENCES

1. Proceedings of the TIPSTER Text Program, Phase One.
forthcoming.

2. Proceedings of the Third Message Understanding Confer-
ence (MUC-3). San Francisco: Morgan Kaufrnan, 1991.

3. Proceedings of the Fourth Message Understanding Confer-
ence (MUC-4). San Francisco: Morgan Kaufman, 1992.

4. Proceedings of the Fifth Message Understanding Confer-
ence (MUC-5). forthcoming.

Unless otherwise marked (i.e., by +, -, or ^), a

slot may be left blank if the information is

absent in the text. If a structure descriptor is

not terminated'by +, *, -, or ^, then zero or one

of the structure are allowed. If two (or more)

structure descriptors are given without a connec-

tor between them and without either one being

marked by +, *, -, or ^, then either both appear

or neither appears: [NUMBER] 'C' means that 423 C

is a legal fill, but 423 is not, nor is just C.

176

