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A B S T R A C T  
We present an overview of Candide, a system for automatic  
translat ion of French text  to English text.  Candide uses 
methods of information theory and statistics to develop a 
probabili ty model of the translation process. This model, 
which is made to accord as closely as possible with a large 
body of French and English sentence pairs, is then used to 
generate English translations of previously unseen French 
sentences. This paper provides a tutorial  in these methods, 
discussions of the training and operation of the system, and 
a summary of test  results. 

1. I n t r o d u c t i o n  
Candide is an experimental  computer program, now in its 
fifth year of development at IBM, for translation of French 
text  to Enghsh text. Our goal is to perform fuRy-automatic, 
high-quality text - to- text  translation. However, because we 
are still far from achieving this goal, the program can be used 
in both fully-automatic and translator 's-assistant  modes. 

Our approach is founded upon the statistical analysis of lan- 
guage. Our chief tools axe the source-channel model of com- 
munication, parametric  probabili ty models of language and 
translation, and an assortment of numerical algorithms for 
training such models from examples. This paper presents el- 
ementary expositions of each of these ideas, and explains how 
they have been assembled to produce Caadide. 

In Section 2 we introduce the necessary ideas from informa- 
tion theory and statistics. The reader is assumed to know el- 
ementary probabili ty theory at the level of [1]. In Sections 3 
and 4 we discuss our language and translation models. In 
Section 5 we describe the operation of Candide as it trans- 
lates a French document.  In Section 6 we present results of 
our internal evaluations and the AB.PA Machine Translation 
Project  evaluations. Section 7 is a summary and conclusion. 

2 .  Stat is t ical  Trans la t ion  
Consider the problem of translating French text to English 
text.  Given a French sentence f ,  we imagine that  it was 
originally rendered as an equivalent Enghsh sentence e. To 
obtain the French, the Enghsh was t ransmit ted over a noisy 
communication channel, which has the curious property that  
English sentences sent into it emerge as their French trans- 
lations. The central assumption of Candide's  design is that  
the characteristics of this channel can be determined experi- 
mentally, and expressed mathematically. 
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Figure 1: The Source-Channel Formalism of Translation. 
Here f is the French text  to be translated,  e is the putat ive 
original English rendering, and 6 is the English translation. 

This formalism can be exploited to yield French-to-English 
translations as follows. Let us write P r (e  I f )  for the probabil- 
ity that  e was the original English rendering of the French f. 
Given a French sentence f, the problem of automatic  transla- 
tion reduces to finding the English sentence tha t  maximizes 
P.r(e I f) .  That  is, we seek 6 = argmsx e Pr (e  I f) .  

By virtue of Bayes' Theorem, we have 

= argmax Pr(e If )  = argmax Pr(f  I e)Pr(e)  (1) 
e e 

The term P r ( f l e  ) models the probabili ty that  f emerges 
from the channel when e is its input. We call this function 
the translation model; its domain is all pairs (f, e) of French 
and English word-strings. The term Pr (e )  models the a priori 
probability that  e was supp led  as the channel input. We call 
this function the language model. Each of these fac tors - - the  
translation model and the language model - - independent ly  
produces a score for a candidate English translat ion e. The 
translation model ensures that  the words of e express the 
ideas of f,  and the language model ensures that  e is a gram- 
matical  sentence. Candide sehcts  as its translat ion the e that  
maximizes their product.  

This discussion begs two impor tant  questions. First ,  where 
do the models P r ( f [  e) and Pr (e )  come from? Second, even 
if we can get our hands on them, how can we search the set of 
all English strings to find 6? These questions are addressed 
in the next two sections. 

2.1. P robab i l i ty  Models  

We begin with a brief detour into probabili ty theory. A prob- 
ability model is a mathematical  formula that  purports  to ex- 
press the chance of some observation. A parametric model is 
a probability model with adjustable parameters,  which can 
be changed to make the model bet ter  match some body of 
data. 

Let us write c for a body of da ta  to be modeled, and 0 for a 
vector of parameters.  The quanti ty Prs (c ) ,  computed accord- 
ing to some formula involving c and 0, is called the hkelihood 
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of c. It is the model's assignment of probability to the obser- 
vation sequence c, according to the current parameter values 
0. Typically the formula for the hkehhood includes some con- 
attaints on the dements of 0 to ensure that Pr0(c) reaUy is a 
probability dis t r ibut ion-- that  is, it is always a real vahe in 
[0, 1], and for fixed 0 the sum ~ c  Pr0(c) over all possible c 
vectors is 1. 

Consider the problem of training this parametric model to the 
data c; that is, adjusting the 0 to maximize Pr0(c). Finding 
the maximizing 0 is an exercise in constrained optimization. 
If the expression for Pr0(c) is of a suitable (simple) form, the 
maximizing parameter vector 0 can be solved for directly. 

The key elements of this problem are 

• a vector 0 of adjustable parameters, 

• constraints on these parameters to ensure that we have 
a model, 

• a vector c of observations, and 

• the adjustment of 0, subject to constraints, to maximize 
the likelihood Pr0(c). 

We often seek more than a probability model of some ob- 
served data c. There may be some hidden statistics h, which 
are related to c, but which are never directly revealed; in gen- 
eral h itself is restricted to some set 7f of admissible values. 
For instance, c may be a large corpus of grammatical text, 
and h an assignment of parts-of-speech to each of its words. 

model Pr(e). Consider the translation model. As any first- 
year language student knows, word-for-word translation of 
English to French does not work. The dictionary equivalents 
of the Enghsh words can move forward or backward in the 
sentence, they may disappear completely, and new French 
words may appear to arise spontaneously. 

Guided by this observation, our approach has been to write 
down an enormous parametric expression, Pr0(f  I e), for the 
translation model. To give the reader some idea of the scale of 
the computation, there is a parameter, ~(/[e), for the prob- 
ability that any given English word e will translate as any 
given French word f .  There are parameters for the prob- 
ability that any f may arise spontaneously, and that  any e 
may simply disappear. There are parameters that words may 
move forward or backward 1, 2, 3, . . .  positions. And so on. 

We use a similar approach to write an expression for Pr0(e). 
In this case the parameters express things like the probabil- 
ity that a word e / m a y  appear in a sentence after some word 
sequence e ta2 . . ,  e~-t. In general, the parameters are of the 
form Pr(e/Iv), where the vector v is a combination of observ- 
able statistics like the identities of nearby words, and hidden 
statistics like the grammatical structure of the sentence. We 
refer to v as a historyd, from which we predict e¢. 

The parameter values of both models are determined by EM 
training. For the translation model, the training data  con- 
sists of English-French sentence pairs (e, f), where e and f 
are translations of one another. For the language model, it 
consists exclusively of Enghsh text. 

In such cases, we proceed as follows. First we write down a 
parametric model Pr0(c, h). Then we at tempt to adjust the 
parameter vector 0 to maximize the likelihood Pr0(c), where 
this latter is obtained as the sum ~ h e ~  Pr0(c, h). 

Unfortunately, when we at tempt to solve this more compli- 
cated problem, we often discover that we cannot find a closed- 
form solution for 0. Instead we obtain formulae that express 
each of the desired parameters in terms of all the others, and 
also in terms of the observation vector c. 

Nevertheless, we can frequently apply an iterative technique 
called the Ezpectation-Mazimization or EM Algorithm; this 
is a recipe for computing a sequence 0z, 02, .. • of parameter 
vectors. It can be shown [2] that under suitable conditions, 
each iteration of the algorithm is guaranteed to produce a 
better model of the training vector c; that  is, 

Pr0,+l(c) > Pr0,(c), (2) 

with strict inequality everywhere except at stationary points 
of Pr0(c). When we adjust the model's parameters this way, 
we say it has been EM-trained. 

Training a model with hidden statistics is just  like training 
one that lacks them, except that it is not possible to find 
a maximizing t~ in just  one go. Training is now an itera- 
t ire process, involving repeated passes over the observation 
vector. Each pass yields an improved model of that data. 

Now we relate these methods to the problem at hand, which 
is to develop a translation model Pr ( f  ] e), and a language 

2.2.  Decoding 
We do not actually search the infinite set of all English word 
strings to find the 6 that maximizes equation (1). Even if we 
restricted ourselves to word strings of length h or less, for any 
realistic length and English vocabulary C, this is far too large 
a set to search exhaustively. Instead we adapt the well-known 
stack decoding algorithm [5] of speech recognition. Though 
we will say more about decoding in Section 6 below, most 
of our research effort has been devoted to the two modeling 
problems. 

This is not without reason. The translation scheme we have 
just  described can fail in only two ways. The first way is a 
search error, which means that our decoding procedure did 
not yield the fi that maximizes Pr ( f  I e)Pr(e  ). The second 
way is a modeling error, which means that  the best English 
translation, as supplied by a competent human, did not max- 
imize this same product. Our tests show that  only 5% of our 
system's errors are search errors. 

3. Language Modeling 
Let e be a string of English words el . . .  eL. A language model 
Pr(e) gives the probability that e would appear in grammat- 
ical English text. 

By the laws of conditional probability we may write 

Pr(e)  = P r ( e t . . . e L )  
= Pr(et )  Pr(e21et) Pr(esle~e=)-- .  Pr(eLle~ . . .  ez_t). 
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Given this decomposition the language modeler 's  job  is to 
est imate each of the f distributions on the right hand side. 

If IEI is the size of the English vocabulary, then the number 
of different histories e t . . .  eh- t  in the kth conditional grows 
as IEI h-t. This presents problems both in practice and in 
pr incip le- - the  former because we don' t  have enough storage 
to write down all the different histories, the la t ter  because 
even if we could, any one history would be exceedingly rare, 
making it impossible to est imate probabilities accurately. 

For these reasons, Candide has used the so-called trigram 
model as its workhorse. In this model, we use the approxi- 
mation 

Pr(ek I e t . . .  e~_t) ~ Pr(e~ I eh-2ek-~) 
for each term on the right hand side above. That  is, we limit 
the history to two words. Each triple (ek-2ek- lek)  is called 
a trigram. 

It  remains to est imate the Pr(e~leh_2eh_t ). One solu- 
tion is to use maximum-likelihood tr igram probabilities, 
T(eklek_2e~-t). These are obtained by scanning the training 
corpus c, counting the incidence of each trigram, and using 
these counts to form the appropriate conditional estimates. 

But even for this modest  history size, we frequently encounter 
tr igrams during translat ion tha t  do not appear during train- 
ing. This is not surprising, since there are IC[ s = 1.773 x l0 ts 
possible different trigrams, yet we can encounter no more 
than Icl of them during training. There are 75,349,888 dis- 
t inct tr igrams in our training corpus, of which 53,737,350 
occur exactly once. 

For this reason, we employ the technique of deleted interpola- 
tion [6]: we express Pr (ek[ek-2e~- t )  as a linear combination 
of the tr igram probabili ty T(ek l ek -2ek- t ) ,  the bigram prob- 
ability B(ekleh_t), the unigram probability U(ek), and the 
uniform probabili ty 1/IEI. The distributions B and U are 
obtained by counting the incidence of bigrams and unigrams 
in the same training corpus c. But there are fewer distinct 
bigrams, so we have a higher chance of seeing any given one 
in our training data,  and a still higher chance of seeing any 
given unigram. The resulting formula for Pr(eklek_2ek_t) is 
called the smoothed trigrarn model. 

Even the smoothed tr igram model leaves much to be desired, 
since it does not account for semantic and syntactic depen- 
dencies among words that  do not lie within the same trigram. 
This has led us to use a link grammar model. This is a train- 
able, probabilistic grammar that  a t tempts  to capture all the 
information present in the tr igram model, and also to make 
the long-range connections among words needed to advance 
beyond it. Link grammars are discussed in detail  in [7]. 

4.  Trans l a t ion  Mode l ing  
This section describes the dements  of our translation model, 
P r ( f  [ e). We have two distinct translation models, both de- 
scribed here: an EM-trained model, and a maximum-entropy 
model. 

As we explain in Section 4.2 below, the EM-trained model 
is developed through a succession of five provisional models. 

Before we describe them, we introduce the notion of align- 
ment. 

4 . 1 .  A l i g n m e n t  
Consider a pair of French and English sentences (e, f )  that  are 
translations of one another. Although we argued above tha t  
word-for-word translat ion will not work to develop f from e, 
it  is clear that  there is some relation between the individual 
words of the two sentences. A typical assignment of relations 
is depicted in Figure 2. 

Thet dog2 

I 
Let chien2 

ares myt  homework5 

as manger mess devoirse 

Figure 2: Alignment of a French-English Sentence Pair. The 
subscripts give the position of each word in the sentence. 

We call such a set of connections between sentences an align- 
ment. Formally we express it  as a set a of pairs (j,  i), where 
each pair stands for a connection between the j t h  word of f 
and the i th word of e. Our intention is to connect f~ and 
ei when ei was one of the words expressing in English the 
concept that  f j  (possibly along with other words of f )  ex- 
presses in French. In its most general form, an alignment 
may consist of any set a of (j,  i) pairs .  But for shnplicity, we 
restrict ourselves to alignments in which each French word is 
connected to a unique English word. 

We cannot hope to discover alignments with certainty. Our 
strategy is to train a parametric model for the joint  distrib- 
ution Pr(f ,  a [ e), where the alignment a is hidden. In prin- 
ciple, the desired conditional P r ( f  I e)  may then be obtained 
as ~ a P r ( f ,  a l e ) ,  where the sum is taken over all possi- 
ble alignments of e and f. In practice this is possible only 
for our first two models. For the remaining models, we ap- 
proximate P r ( f  I e) as follows. During training, we find the 
single most probable alignment &, and sum Pr(f ,  a I e) over 
a small neighborhood of &. During decoding, we simply use 
Pr(f, ale). 

4 . 2 .  E M - T r a i n e d  Mode l s  
We now sketch the structure of five models of increasing com- 
plexity, the last of which is our EM-trained translation model. 
For an in-depth treatment,  the reader is referred to [3]. 

1. W o r d  T r a n s l a t i o n  This is our simplest model, intended 
to discover probable individual-word translations. The free 
parameters of this model are word translation probabilities 
t(fj  I ei). Each of these parameters  is initialized to 1/I.FI, 
where Y is our French vocabulary. Thus we make no initial 
assumptions about appropriate French-English word pair- 
ings. The iterative training procedure automatically finds 
appropriate translations, and assigns them high probability. 

2. L o c a l  A l i g n m e n t  To make our model more realistic, 
we introduce an alignment variable aj for each position j 
of f; aj  is the position in e to which the j t h  word of f is 
aligned. (French words that  appear  to arise spontaneously 
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are said to align to the null word, in position 0 ofe . )  Formally, 
we insert a parameter  Pr(a~ I J, re, l) into our expression for 
Pr(f ,  a l e  ). This expresses the probability that  position 
in an arbi t rary French sentence of length ra is aligned with 
position aj in any English sentence of length l that  is its 
translation. The identities of the words in these positions do 
not influence the alignment probabilities. 

3. F e r t i l i t i e s  As we observed earlier, a single English word 
may yield 0, I or more French words, for instance as when not 
translates to ne...pus. This idea is implicit in our notion of 
alignment, but not explicitly related to word identities. To 
capture this phenomenon explicitly, this model introduces 
the notion of fertility. The fertility ~(el) is the number of 
French words in f that  ei generates in translation. Fertility is 
incorporated into this model through the parameters ~b(nlel), 
the probabili ty that  ~b(ei) equals n. 

4. C l a s s - B a s e d  A l i g n m e n t  In the preceding model, 
though the fertilities are conditioned upon word identities, 
the alignment parameters  are not. We have already pointed 
out how unrealistic this is, since it aligns positionsin the (e, f)  
pair with no regard for the words found there. This model 
remedies the problem by expressing alignments in terms of 
parameters  that  depend upon the classes of words that  lie at 
the aligned positions. Each word f in our French vocabulary 
.T is placed in one of approximately 50 classes; likewise for 
each e in the English vocabulary S. The assignment of words 
to classes is made automatically through another statistical 
training procedure [3]. 

5. N o n - D e f i c i e n t  A l i g n m e n t  The preceding two models 
suffer from a problem we call deficiency: they assign non-zero 
probabil i ty to "alignments" that  do not correspond to strings 
of French words at all. For instance, two French words may 
be assigned to lie at the same position in the sentence. Words 
may be placed before the s tar t  of the sentence, or after its 
end. This model eliminates such spurious alignments. 

These five models are trained in succession on the same data,  
with the final parameter  values of one model serving as the 
star t ing point for the next. For the current version of Can- 
dide, we used a corpus of 2,205,733 English-French sentence 
pairs, drawn mostly from the Hansards, which are the pro- 
ceedings of the Canadian Parliament.  The entire compu- 
tat ion took a to ta l  of approximately 3600 processor-hours 
distr ibuted over fifteen IBM Model 530H POWERstat ions .  

The reader may be wondering why we have five translation 
models instead of one. This is because the EM algorithm, 
though guaranteed to converge to a local maximum, need 
not converge to a global one. A weakness of the algorithm is 
that  it may yield a parameter  vector 8 that  is indeed a local 
maximum, but  which does not model the da ta  well. 

I t  so happens though tha t  model 1 has a special form that  en- 
sures that  EM training is guaranteed to converge to a global 
maximum. By using model l ' s  final parameter  vector as the 
initial vector for model 2, we are assured that  we are at a 
reasonably good star t ing point for training the latter.  By 
extension of this argument, we proceed through the training 
of each model in succession, with some confidence that  each 
model 's  s tar t ing point is a good one. 

4.3. Context Sensitive Models 
All of the preceding translation models make one impor tant  
simplification: each English word acts independently of all 
the others in the sentence to generate the French words to 
which it is aligned. But it is easy to convince oneself that  this 
approach is inadequate; clearly run will t ranslate differently 
in Let's run the program! and Let's run the race!. Intuitively, 
we would like to make the translation of a word depend upon 
context in which it appears. 

For this reason, we have constructed translation models that  
take context into account. Our instinct is to make the trans- 
lation of a word depend upon its neighbors, say writing 
t ( f j  [ ei ei:~l . . . )  for the word-translation probabilities. But 
this is impractical, because of the same difficulties tha t  con- 
front language models with long histories. 

To overcome this, we employ a technique--maximum-entropy 
model ing-- tha t  deals with small chosen subsets of a poten- 
tially large number of conditioning variables. We begin with 
a large set Q = {bl( f ,e ,e)  b2(f,e,e) b s ( f , e , e ) . . . )  of binary- 
valued functions. Each such function asks some yes/no ques- 
tion about the French word f ,  the English word e, and the 
context e in which e appears. 

The training procedure works iteratively to find a small sub- 
set Q'  = {bhl(fj ,el ,e) bh2(f j ,ei ,e) . . .b~,~(f j ,el ,e))  that  
disambiguates the senses of the English word in context.  For- 
mally, it develops a distribution t ( f j  I el Q ' )  that  tells us if 
f j  is a good translation of e~ in the context e. Since this pro- 
cedure is costly in computer time, we develop such models 
only for the 2,000 most common English words. For more 
information about maximum-entropy modeling, the reader is 
referred to [4]. 

5. Analysis-Transfer-Synthesis 
Although we try to obtain accurate est imates of the parame- 
ters of our translation models by training on a large amount 
of text,  this da ta  is not used as effectively as it  might be. For 
instance, the word-translation probabilit ies ~(parle I speaks) 
and t(parlent I speak) must be learned separately, though they 
express the underlying equivalence of the infinitives parler 
and to speak. 

For this reason, we have adopted for Candide a variation of 
the analysis-transfer-synthesis paradigm. In this paradigm, 
translation takes place not between raw French and English 
texts, but  between intermediate forms of the two languages. 
Note that  because translation is effected between interme- 
diate French and intermediate English, all our models are 
trained upon intermediate text  as well. For training, each 
(e, f)  pair of our da ta  is subjected to an analysis step: the 
French is rendered into an intermediate French f ' ,  the Eng- 
lish into intermediate English e ' .  The English transformation 
is constructed to ensure tha t  it  is invertible; its inverse, from 
intermediate English to s tandard  English, is usually called 
synthesis. 

The aim of these transformations is three-fold: to suppress 
lexicai variations that  conceal regularities between the two 
languages, to reduce the size of both  vocabularies, and to 
reduce the burden on the alignment model  by making coor- 
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dinating phrases resemble each other as closely as possible 
with respect to length and  word order. 

Both the English and the French analysis steps consist of 
five classes of operations: segmentation, name and number 
detection, case and spelling correction, morphological analy- 
sis, and linguistic normalization. During segmentation, the 
French is divided (if possible) into shorter phrases that  rep- 
resent distinct concepts. This does not modify the text, but  
the translation model, used later, respects this division by 
ignoring alignments that  cross segment boundaries. 

During name and number detection, numbers and proper 
names- -word  strings such as Ethiopie, Grande Bretagne and 
$.85 era--are  removed from the French text  and replaced by 
generic name and number markers. Removing names and 
numbers greatly reduces the size of £ and .T. The excised 
texts are t ranslated by rule and kept in a table, to be substi- 
tuted back into the English sentence during synthesis. 

During c a s e  and spelling correction, we correct any obvi- 
ous spelling errors, and suppress the case variations in word 
spellings that  arise from the conventions of English and 
French typography. 

During morphological analysis, we first use a hidden Maxkov 
model [8] to assign part-of-speech labels to the French, then 
use these labels to replace inflected verb forms with their in- 
fiuitives, preceded by an appropriate tense marker. We also 
put nouns into singular form and precede them by number 
markers, and perform a variety of other morphological trans- 
formations. 

Finally, during linguistic normalization we perform a series of 
word reorderings, insertions and rewritings intended to reg- 
ularize each language, and to make the two languages more 
closely resemble each other. For example, the contractions 
au and du are rewritten as d le and de le. Constructions such 
as il y a and he.. .pus are replaced with one-word tokens. The 
English possessive construction is made to resemble French 
by removing t h e ' s  or 'sutfix, reordering noun phrases, and 
inserting an additional token. Thus my aunt's pen becomes 
intermediate English dummy-article pen ' s  my aunt; note the 
similarity to the French le stylo de ma tante. 

6. Operat ion of Candide 
In previous sections we have indicated how the parameters  
of Candide's  various models are determined via the EM algo- 
ri thm and ma~c_imum-entropy methods. We now outline the 
steps involved in the execution of Candide as it translates a 
French passage into English. The process of translation, di- 
vided into analysis, transfer, and synthesis stages, is depicted 
in Figure 3. 

In the analysis stage, the French input string f is converted 
into f~, as discussed above. The output  of this stage is de- 
noted in Figure 3 as Intermediate French. 

The transfer stage constitutes the decoding process sketched 
in Section 2.2 above. Decoding consists of two steps. In the 
first step, Candide develops a set H* of candidate decodings, 
using coarse versions of our translation and language models 

to select its elements. In the second step, the system expands 
H* and rescores the enlarged set using more sophist icated 
models. We now describe both steps in greater detail.  

In the first step, Candide applies a variation of the stack 
decoding algorithm to generate candidate decodings. Decod- 
ing proceeds left-to-right, one intermediate English word at a 
time. At  each stage we maintain a ranked set H (~) of par t ia l  
hypotheses for the intermediate English ~ .  

In general, the elements of H (~) are partial decodings of f~; 
that  is, only the leading i words of ~t have been filled in, 
and these account for only some of the words of f~. To ad- 
vance the decoding, some elements of H (i) are selected to be 
extended by one word. The translation and language mod- 
els work together to generate the i + 1st word; the result- 
ing partial  decodings are ranked; this ranked set is H (~+l). 
An hypothesis is complete when all words of f~ have been 
accounted for. Note that  while the intermediate English is 
generated left-to-right, the t reatment  of intermediate French 
words does not necessarily proceed left-to-right, due to the 
word-reordering property of the channel. This is one of the 
key ways that  translation differs from speech- -a  difference 
that  greatly complicates the decoding process. 

The ranking of hypotheses is according to the product  
Pr(f~ I e~)Pr(e~). In the interest of speed, and because we 
must deal with part ial  rather than complete sentences, we 
employ the EM-tralned translation model and the smoothed 
tr igram language model. The output  of this step is a ranked 
set H* of the 140 best intermediate English sentences. 

During the second step, called perturbation search, we enlarge 
H* by considering sequences of single-word deletions, inser- 
tions or replacements to its elements. Then we rerank the 
enlarged set using the link grammar language model and the 
maximum-entropy translation model. The highest-scoring in- 
termediate English sentence that  we encounter during pertur-  
bation search is the output  ~ of the transfer stage. 

The final stage, synthesis, converts the intermediate English 
~ into a plain English sentence ~. 

7. P e r f o r m a n c e  

We evaluate our system in two ways: through part icipation 
in the ARPA evaluations, and through our own internal tests. 

The ARPA evaluation methodology, devised and executed by 
PRO, is detailed in [9]; we recount it  here briefly. AReA pro- 
vides us with a set of French passages, which we process in 
two ways. First,  the passages are t ranslated without any hu- 
man intervention. This is the fully-automatic mode. Second, 
each of the same passages is t ranslated by two different hu- 
mans, once with and once without the aid of Transman, our 
translation assistance tool. Transman presents the user with 
an automated dictionary, a text  editor, and parallel views of 
the French source and the English fully-automatic transla- 
tion. The passages are ordered in such a way as to suppress 
the influence of differing levels of translat ion skill, and the 
times of all the human translations are recorded. 

PRO scores all the resulting English texts  for fluency and ad- 
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Figure 3: Steps in the Execution of Candide 

equacy, reporting these as numbers between 0 and 1. Flu- 
ency is intended to measure the well-formedness of translated 
sentences; adequacy is intended to measure to what extent 
the meaning of each source text  is present in the transla- 
tions. The advantage afforded by Transman is determined 
by computing the ratio tTrartsman/tmanual for each passage, 
where the numerator  is the time to translate the passage with 
Transman's  aid, and the denominator is the time for unaided 
manual translation. 

The means of all these statist ics are presented in Table 1. 
As a benchmark, this table includes a line reporting :fluency 
and adequacy results in these tests for Systran, a commercial 
fully-automatic French-English translation system, consid- 
ered by some to be the world's best. 

Our in-house evaluation methodology consists of fully- 
automatic  translation of 100 sentences of 15 words or less; 
each translat ion is judged either correct or incorrect. These 
sentences are drawn from the same domain as our training 
d a t a - - t h e  Hansard corpus - -bu t  they are of course not sen- 
tences that  we trained on. Our 1992 system produced 45 
correct translations; our 1993 system produced 62 correct 
translations. 

Fluency Adequacy Time Ratio 
1992 1993 1992 1993 1992 1993 

Systran .466 .540 .686 .743 
Candide .511 .580 .575 .670 

Transman .819 .838 .837 .850 .688 .625 
Manual .833 .840 

Table 1: AB.PA Evaluation Results. The Systran line reports 
results for Systran French-to-English fully-automatic trans- 
lations. The Candide line reports results for our system's  
fully-automatic translations; the Transman line reports re- 
suits for our system's  machine-assisted translations. 

8. S u m m a r y  
We began with a review of the source-channel formalism of 
information theory, and how it may be applied to translation. 
Our approach reduces to formulating and training two para- 
metric probabili ty models: the language model Pr(e) ,  and 
the translation model P r ( f  I e). We described the structure 
of both models, and how they are trained. 

We explained the use of the analysis- transfer-synthesis  par- 
adigm, and sketched the system's operation. Finally, we gave 
performance results for Candide, in both its human-assisted 
and fully-automatic operating modes. 

In our opinion, the most promising avenues for exploration 
are: the continued elaboration of the link grammar language 
model, more sophisticated translat ion models, the maximum- 
entropy modeling technique, and a more systematic approach 
to French and English morphological and syntactic analysis. 
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