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A B S T R A C T  

The  impor tance  of good weighting methods  in information 
retrieval - -  methods  tha t  stress the  most  useful features of a 
document  or query representat ive - -  is examined.  Evidence 
is presented tha t  good weighting methods  are more impor tan t  
than  the feature selection process and it  is suggested tha t  the  
two need to go hand- in-hand in order to be effective. The  
paper  concludes with a me thod  for learning a good weight 
for a t e rm based upon the  characterist ics of tha t  term.  

1. I N T R O D U C T I O N  

Other than experimental results, the first part of this 
paper contains little new material. Instead, it's an at- 
tempt to demonstrate the relative importance and dif- 
ficulties involved in the common information retrieval 
task of forming documents and query representatives and 
weighting features. This is the sort of thing that  tends 
to get passed by word of mouth if at all, and never gets 
published. However, there is a tremendous revival of in- 
terest in information retrieval; thus this a t tempt  to help 
all those new people just starting in experimental infor- 
mation retrieval. 

A common approach in many areas of natural language 
processing is to 

1. Find "features" of a natural language excerpt 

2. Determine the relative importance of those features 
within the excerpt 

3. Submit the weighted features to some task- 
appropriate decision procedure 

This presentation focuses on the second sub:task above: 
the process of weighting features of a natural language 
representation. Features here could be things like sin- 
gle word occurrences, phrase occurrences, other relation- 
ships between words, occurrence of a word in a title, 
part-of-speech of a word, automatically or manually as- 
signed categories of a document, citations of a document, 
and so on. The particular overall task addressed here is 
that of information retrieval - finding textual documents 
(from a large set of documents) that  are relevant to a 

user's information need. Weighting features is something 
that many information retrieval systems seem to regard 
as being of minor importance as compared fo finding the 
features in the first place; but the experiments described 
here suggest that  weighting is considerably more impor- 
tant than additional feature selection. 

This is not an argument that feature selection is unim- 
portant,  but that  development of feature selection and 
methods of weighting those features need to proceed 
hand-in-hand if there is to be hope of improving perfor- 
mance. There have been many papers (and innumerable 
unpublished negative result experiments) where authors 
have devoted tremendous resources and intellectual in- 
sights into finding good features to help represent a doc- 
ument, but then weighted those features in a haphaz- 
ard fashion and ended up with little or no improvement. 
This makes it extremely difficult for a reader to judge 
the worthiness of a feature approach, especially since 
the weighting methods are very often not described in 
detail. 

Long term, the best weighting methods will obviously 
be those that  can adapt weights as more information be- 
comes available. Unfortunately, in information retrieval 
it is very difficult to learn anything useful from one query 
that  will be applicable to the next. In the routing or rele- 
vance feedback environments, weights can be learned for 
a query and then applied to that same query. But in gen- 
eral there is not enough overlap in vocabulary (and uses 
of vocabulary) between queries to learn much about the 
usefulness of particular words. The second half of this 
paper discusses an approach that  learns the important 
characteristics of a good term. Those characteristics can 
then be used to properly weight all terms. 

Several sets of experiments are described, with each set 
using different types of information to determine the 
weights of features. All experiments were done with 
the SMART information retrieval system, most using the 
T R E C / T I P S T E R  collections of documents, queries, and 
relevance judgements. Each run is evaluated using the 
" l l -point  recall-precision average" evaluation method 
that  was standard at the TREC 1 conference. 
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The basic SMART approach is a completely automatic  
indexing of the full text of both queries and documents. 
Common meaningless words (like ' the '  or ' about ' )  are re- 
moved, and all remaining words are s temmed to a root 
form. Term weights are assigned to each unique word 
(or other feature) in a vector by the statist ical/ learning 
processes described below. The final form of a represen- 
tative for a document (or query) is a vector 

D~ = (w~,l, w~,2,. . . ,  wi,~) 

where D~ represents a document (or query) text and w~,k 
is a term weight of term Tk attached to document Di. 
The similarity between a query and document is set to 
the inner-product of the query vector and document vec- 
tor; the information retrieval system as a whole will re- 
turn those documents with the highest similarity to the 
query. 

2.  A D - H O C  W E I G H T S  

Document or query weights can be based on any num- 
ber of factors; two would be statistical occurrence infor- 
mation and a history of how well this feature (or other 
similar features) have performed in the past. In many 
situations, it 's impossible to obtain history information 
and thus initial weights are often based purely on sta- 
tistical information. A major  class of statistical weight- 
ing schemes is examined below, showing that  there is an 
enormous performance range within the class. Then the 
process of adding additional features to a document  or 
query representative is examined in the context of these 
weighting schemes. These are issues tha t  are somewhat  
subtle and are often overlooked. 

2 .1 .  T f  * I d f  W e i g h t s  

Over the past  25 years, one class of term weights has 
proven itself to be useful over a wide variety of collec- 
tions. This is the class of tf*idf (term frequency times in- 
verse document frequency) weights [1, 6, 7], that  assigns 
weight wik to term Tk in d o c u m e n t / ) i  in proportion to 
the frequency of occurrence of the term in D~, and in 
inverse proportion to the number of documents to which 
the term is assigned. The weights in the document are 
then normalized by the length of the document,  so that  
long documents are not automatical ly favored over short 
documents. While there have been some post-facto the- 
oretical justifications for some of the tf*idf weight vari- 
ants, the fact remains tha t  they are used because they 
work well, ra ther  than any theoretical reason. 

Table 1 presents the evaluation results of running a num- 
ber of tf*idf variants for query weighting against a num- 
ber of variants for document weighting (the runs pre- 
sented here are only a small subset of the variants ac- 

tually run). All of these runs use the same set of fea- 
tures (single terms), the only differences are in the term 
weights. The exact variants used aren ' t  important;  what 
is important  is the range of results. Disregarding one ex- 
tremely poor document weighting, the range of results 
is from 0.1057 to 0.2249. Thus a good choice of weights 
may gain a system over 100%. As points of compari- 
son, the best official TREC run was 0.2171 (a system 
incorporating a very large amount  of user knowledge to 
determine features) and the median TREC run in this 
category was 0.1595. The best run (DOCW T  = lnc, 
Q W T  = ltc), is about  24% bet ter  than the most gener- 
ally used tf*idf run (DOCWT = Q W T  = ntc). 

24%is a substantial  difference in performance, in a field 
where historically an improvement of 10% is considered 
quite good. The magnitude of performance improvement 
due to considering additional features such as syntactic 
phrases, titles and parts  of speech is generally quite small 
(0 - 10%). Adding features and using good weights can 
of course be done at the same time; but the fact that  
somewhat subtle differences in weighting s t rategy can 
overwhelm the  effect due to additional features is worri- 
some. This means the experimenter must be very careful 
when adding features that  they do not change the ap- 
propriateness of the weighting strategy. 

2 . 2 .  A d d i n g  N e w  F e a t u r e s  

Suppose an experimenter has determined a good weight- 
ing s trategy for a basic set of features used to describe a 
query or document and now wishes to extend the set of 
features. In the s tandard tf*idf, cosine-normalized class 
of weights, it is not as simple as it may first appear.  The 
obvious first step, making sure the weights before nor- 
malization of the new set of features and the old set are 
commensurate,  is normally straightforward. But  then 
problems occur because of the cosine normalization. For 
example, suppose there were two documents in a collec- 
tion, one of them much longer then the other: 

• Di = (w1,1, wl,2, wl,3) 

• D2 = (w2,1,w~,2,...w2,100) 

Now suppose the new approach adds a reasonably con- 
stant five features onto each document representative. 
(Examples of such features might be title words, or cat- 
egories the document is in.) If  the new features are just 
added on to the list of old features, and then the weights 
of the features are normalized by the total  length of the 
document,  then there are definite problems. Not only 
does the weight of the added features vary according 
to the length of the document (that could very well be 
what is wanted), but the weight of the old features have 
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changed. A query that  does not take advantage of the 
new features will suddenly find it much more difficult 
to retrieve short documents like D1. D1 is now much 
longer than it was, and therefore the values of Wl,k have 
all decreased because of normalization. 

Similarly, if the number of new added features tends to 
be much more for longer documents than short (for ex- 
ample, a very loose definition of phrase), a query com- 
posed of only old features will tend to favor short doc- 
uments more than long (at least, more than it did orig- 
inally). Since the original weighting scheme was a sup- 
posedly good one, these added features will hurt perfor- 
mance on the original feature portion of the similarity. 
The similarity on the added feature portion might help, 
but it will be difficult to judge how much. 

These normalization effects can be very major effects. 
Using a loose definition of phrase on CACM (a small 
test collection), adding phrases in the natural fashion 
above will hurt performance by 12~0. However, if the 
phrases are added in such a way that  the weights of the 
original single terms are not affected by normalization, 
then the addition of phrases improves performance by 
9%. 

One standard approach when investigating the useful- 
ness of adding features is to ensure that  the weights of 
the old features remain unchanged throughout the inves- 
tigation. In this way, the contribution of the new features 
can be isolated and studied separately at the similarity 
level. [Note that  if this is done, the addition of new fea- 
tures may mean the re-addition of old features, if the 
weights of some old features are supposed to be modi- 
fied.] This is the approach we've taken, for instance with 
the weighting of phrases in TREC. The single term in- 
formation and the phrase information are kept separate 
within a document vector. Each of the separate sub- 
vectors is normalized by the length of the single term 
sub-vector. In this way, the weights of all terms are kept 
commensurate with each other, and the similarity due 
to the original single terms is kept unchanged. 

The investigation of weighting strategies for additional 
features is not a simple task, even if separation of old 
features and new features is done. For example, Joel 
Fagan in his excellent study of syntactic and statisti- 
cal phrases[2], spent over 8 months looking at weighting 
strategies. But if it 's not designed into the experiment 
from the beginning, it will be almost impossible. 

2.3. R e l e v a n c e  F e e d b a c k  

One opportunity for good term weighting occurs in the 
routing environment. Here, a query is assumed to repre- 
sent a continuing information need, and there have been 

a number of documents already seen for each query, some 
subset of which has been judged relevant. With this 
wealth of document features and information available, 
the official TREC routing run that  proved to be the most 
effective was one that  took the original query terms and 
assigned weights based on probability of occurrence in 
relevant and non-relevant documents[3, 51. Once again, 
weighting, rather than feature selection, worked very 
well. (However, in this case the feature selection process 
did not directly adversely affect the weighting process. 
Instead, it was mostly the case that  the additional fea- 
tures from relevant documents were simply not chosen 
or weighted optimally.) 

In this run, using the RPI feedback model developed 
by Fuhr[3], relevance feedback information was used for 
computing the feedback query term weight q~ of a term 
as p~(1 -ri)/[ri(1 -Pi)] - 1 Here Pi is the average docu- 
ment term weight for relevant documents, and ri is the 
corresponding factor for nonrelevant items. Only the 
terms occurring in the query were considered here, so 
no query expansion took place. Having derived these 
query term weights, the query was run against the docu- 
ment set. Let di denote the document term weight, then 
the similarity of a query to a document is computed by 
S(q, d) = ~](log(qi * di + 1)) 

3. L E A R N I N G  W E I G H T S  B Y  T E R M  
F E A T U R E S  

The ad-hoc tf*idf weights above use only collection 
statistics to determine weights. However, if previous 
queries have been run on this collection, the results 
from those queries can be used to determine what term 
weighting factors are important  for this collection. The 
final term weight is set to a linear combination of 
term weight factors, where the coemcient of each fac- 
tor is set to minimize the squared error for the previous 
queries[4, 5]. The offcial TREC runs using this approach 
were nearly the top results; which was somewhat sur- 
prising given the very limited and inaccurate training 
information which was available. 

This approach to learning solves the major problem of 
learning in an ad-hoc environment: the fact that  there is 
insufficient information about individual terms to learn 
reasonable weights. Most document terms have not oc- 
curred in previous queries, and therefore there is no ev- 
idence that  can be directly applied. Instead, the known 
relevance information determines the importance of fea- 
tures of each term. The particular features used in 
TREC 1 were combinations of the following term fac- 
tors: 

t f: within-document frequency of the term 
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logidf:  log ( ( N + l ) / n ) ,  where N is the number of doc- 
uments in the collection and n is the number  
of documents  containing the term 

l o g n u m t e r m s :  log (number of different terms of the 
document)  

i m a x t f :  1 / (maximum within-document frequency of 
a term in the document) 

After using the relevance information, the final weight 
for a term in a T R E C  1 document was 

W(t , )  = 0.00042293 + 

0.00150083 * t f*  logidf* imaxtf  + 

-0.00150665 • t f*  imaxtf  + 

0.00010465 * logidf + 

-0.00122627 * lognumterms • imaxtf.  

There  is no reason why the choice of factors used in 
TREC 1 is optimal;  slight variations had been used for 
an earlier experiment.  Exper imentat ion is progressing 
on the choice of factors, especially when dealing with 
both single terms and phrases. However, even so, the 
T R E C  1 evaluation results were very good. If the mini- 
mal learning information used by this approach is avail- 
able, the results suggest it should be preferred to the 
ad-hoc weighting schemes discussed earlier. 

4. CONCLUSION 

Tile sets of experiments  described above focus on feature 
weighting and emphasize that  feature weighting seems to 
be more important  than feature selection. This is not to 
say that  good feature selection is not needed for opt imal  
performance, but these experiments suggest that  good 
weighting is of equal importance.  Feature selection is 
sexy, and weighting isn't ,  but optimal  performance seems 
to demand that  weighting schemes and feature selection 
need to be developed simultaneously. 
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Query "a ntc nnc atc btc ltc lnc 

.P_9-¢ 
ntc 1813 1594 1834 1540 1908 1738 
nnc 1818 1453 1916 1595 1993 1607 
atc 1558 1473 1682 1437 1757 1499 
anc 1892 1467 1908 1645 2000 1396 
btc 1241 1179 1454 1231 1493 1237 
bnc 1569 1130 1577 1421 1689 1057 
ltc 1909 1815 1986 1726 2061 1843 
lnc 2221 1857 2126 1887 2249 1716 
nnn 0062 0051 0059 0067 0061 0050 

Table 1: Comparison of tf  * idf variants. 
All weights expressed as triplets: 
{tf contribution} {idf contribution} {normalization} 

• tf: 

- n : Normal  t f  (ie, number  of times term occurs 
in vector) 

- 1 : Log. 1.0 + In (tf). 

- a : Augmented.  normalized between 0.5 and 
1.0 in each vector. 0.5 + 0 .5 .  t f /MaxTf lnVector  

- b : Binary (ie, always 1) 

• idf: 

- n : None (ie, always 1) 

- t : Tradit ional  (log ( ( N + l ) / n ) )  where N is 
number  of documents  in collection and n is 
number  of documents  

• normalization: 

- n : None 

- c :  Cosine. 




