
The Importance of Proper Weighting Methods
Chris Buckley

D e p a r t m e n t of C o m p u t e r Sc ience

C o r n e l l U n i v e r s i t y

I t h a c a , N Y 14853

A B S T R A C T

The impor tance of good weighting methods in information
retrieval - - methods tha t stress the most useful features of a
document or query representat ive - - is examined. Evidence
is presented tha t good weighting methods are more impor tan t
than the feature selection process and it is suggested tha t the
two need to go hand- in-hand in order to be effective. The
paper concludes with a me thod for learning a good weight
for a t e rm based upon the characterist ics of tha t term.

1. I N T R O D U C T I O N

Other than experimental results, the first part of this
paper contains little new material. Instead, it's an at-
tempt to demonstrate the relative importance and dif-
ficulties involved in the common information retrieval
task of forming documents and query representatives and
weighting features. This is the sort of thing that tends
to get passed by word of mouth if at all, and never gets
published. However, there is a tremendous revival of in-
terest in information retrieval; thus this a t tempt to help
all those new people just starting in experimental infor-
mation retrieval.

A common approach in many areas of natural language
processing is to

1. Find "features" of a natural language excerpt

2. Determine the relative importance of those features
within the excerpt

3. Submit the weighted features to some task-
appropriate decision procedure

This presentation focuses on the second sub:task above:
the process of weighting features of a natural language
representation. Features here could be things like sin-
gle word occurrences, phrase occurrences, other relation-
ships between words, occurrence of a word in a title,
part-of-speech of a word, automatically or manually as-
signed categories of a document, citations of a document,
and so on. The particular overall task addressed here is
that of information retrieval - finding textual documents
(from a large set of documents) that are relevant to a

user's information need. Weighting features is something
that many information retrieval systems seem to regard
as being of minor importance as compared fo finding the
features in the first place; but the experiments described
here suggest that weighting is considerably more impor-
tant than additional feature selection.

This is not an argument that feature selection is unim-
portant, but that development of feature selection and
methods of weighting those features need to proceed
hand-in-hand if there is to be hope of improving perfor-
mance. There have been many papers (and innumerable
unpublished negative result experiments) where authors
have devoted tremendous resources and intellectual in-
sights into finding good features to help represent a doc-
ument, but then weighted those features in a haphaz-
ard fashion and ended up with little or no improvement.
This makes it extremely difficult for a reader to judge
the worthiness of a feature approach, especially since
the weighting methods are very often not described in
detail.

Long term, the best weighting methods will obviously
be those that can adapt weights as more information be-
comes available. Unfortunately, in information retrieval
it is very difficult to learn anything useful from one query
that will be applicable to the next. In the routing or rele-
vance feedback environments, weights can be learned for
a query and then applied to that same query. But in gen-
eral there is not enough overlap in vocabulary (and uses
of vocabulary) between queries to learn much about the
usefulness of particular words. The second half of this
paper discusses an approach that learns the important
characteristics of a good term. Those characteristics can
then be used to properly weight all terms.

Several sets of experiments are described, with each set
using different types of information to determine the
weights of features. All experiments were done with
the SMART information retrieval system, most using the
T R E C / T I P S T E R collections of documents, queries, and
relevance judgements. Each run is evaluated using the
" l l -point recall-precision average" evaluation method
that was standard at the TREC 1 conference.

349

The basic SMART approach is a completely automatic
indexing of the full text of both queries and documents.
Common meaningless words (like ' the ' or ' about ') are re-
moved, and all remaining words are s temmed to a root
form. Term weights are assigned to each unique word
(or other feature) in a vector by the statist ical/ learning
processes described below. The final form of a represen-
tative for a document (or query) is a vector

D~ = (w~,l, w~,2,. . . , wi,~)

where D~ represents a document (or query) text and w~,k
is a term weight of term Tk attached to document Di.
The similarity between a query and document is set to
the inner-product of the query vector and document vec-
tor; the information retrieval system as a whole will re-
turn those documents with the highest similarity to the
query.

2. A D - H O C W E I G H T S

Document or query weights can be based on any num-
ber of factors; two would be statistical occurrence infor-
mation and a history of how well this feature (or other
similar features) have performed in the past. In many
situations, it 's impossible to obtain history information
and thus initial weights are often based purely on sta-
tistical information. A major class of statistical weight-
ing schemes is examined below, showing that there is an
enormous performance range within the class. Then the
process of adding additional features to a document or
query representative is examined in the context of these
weighting schemes. These are issues tha t are somewhat
subtle and are often overlooked.

2 .1 . T f * I d f W e i g h t s

Over the past 25 years, one class of term weights has
proven itself to be useful over a wide variety of collec-
tions. This is the class of tf*idf (term frequency times in-
verse document frequency) weights [1, 6, 7], that assigns
weight wik to term Tk in d o c u m e n t /) i in proportion to
the frequency of occurrence of the term in D~, and in
inverse proportion to the number of documents to which
the term is assigned. The weights in the document are
then normalized by the length of the document, so that
long documents are not automatical ly favored over short
documents. While there have been some post-facto the-
oretical justifications for some of the tf*idf weight vari-
ants, the fact remains tha t they are used because they
work well, ra ther than any theoretical reason.

Table 1 presents the evaluation results of running a num-
ber of tf*idf variants for query weighting against a num-
ber of variants for document weighting (the runs pre-
sented here are only a small subset of the variants ac-

tually run). All of these runs use the same set of fea-
tures (single terms), the only differences are in the term
weights. The exact variants used aren ' t important; what
is important is the range of results. Disregarding one ex-
tremely poor document weighting, the range of results
is from 0.1057 to 0.2249. Thus a good choice of weights
may gain a system over 100%. As points of compari-
son, the best official TREC run was 0.2171 (a system
incorporating a very large amount of user knowledge to
determine features) and the median TREC run in this
category was 0.1595. The best run (DOCW T = lnc,
Q W T = ltc), is about 24% bet ter than the most gener-
ally used tf*idf run (DOCWT = Q W T = ntc).

24%is a substantial difference in performance, in a field
where historically an improvement of 10% is considered
quite good. The magnitude of performance improvement
due to considering additional features such as syntactic
phrases, titles and parts of speech is generally quite small
(0 - 10%). Adding features and using good weights can
of course be done at the same time; but the fact that
somewhat subtle differences in weighting s t rategy can
overwhelm the effect due to additional features is worri-
some. This means the experimenter must be very careful
when adding features that they do not change the ap-
propriateness of the weighting strategy.

2 . 2 . A d d i n g N e w F e a t u r e s

Suppose an experimenter has determined a good weight-
ing s trategy for a basic set of features used to describe a
query or document and now wishes to extend the set of
features. In the s tandard tf*idf, cosine-normalized class
of weights, it is not as simple as it may first appear. The
obvious first step, making sure the weights before nor-
malization of the new set of features and the old set are
commensurate, is normally straightforward. But then
problems occur because of the cosine normalization. For
example, suppose there were two documents in a collec-
tion, one of them much longer then the other:

• Di = (w1,1, wl,2, wl,3)

• D2 = (w2,1,w~,2,...w2,100)

Now suppose the new approach adds a reasonably con-
stant five features onto each document representative.
(Examples of such features might be title words, or cat-
egories the document is in.) If the new features are just
added on to the list of old features, and then the weights
of the features are normalized by the total length of the
document, then there are definite problems. Not only
does the weight of the added features vary according
to the length of the document (that could very well be
what is wanted), but the weight of the old features have

350

changed. A query that does not take advantage of the
new features will suddenly find it much more difficult
to retrieve short documents like D1. D1 is now much
longer than it was, and therefore the values of Wl,k have
all decreased because of normalization.

Similarly, if the number of new added features tends to
be much more for longer documents than short (for ex-
ample, a very loose definition of phrase), a query com-
posed of only old features will tend to favor short doc-
uments more than long (at least, more than it did orig-
inally). Since the original weighting scheme was a sup-
posedly good one, these added features will hurt perfor-
mance on the original feature portion of the similarity.
The similarity on the added feature portion might help,
but it will be difficult to judge how much.

These normalization effects can be very major effects.
Using a loose definition of phrase on CACM (a small
test collection), adding phrases in the natural fashion
above will hurt performance by 12~0. However, if the
phrases are added in such a way that the weights of the
original single terms are not affected by normalization,
then the addition of phrases improves performance by
9%.

One standard approach when investigating the useful-
ness of adding features is to ensure that the weights of
the old features remain unchanged throughout the inves-
tigation. In this way, the contribution of the new features
can be isolated and studied separately at the similarity
level. [Note that if this is done, the addition of new fea-
tures may mean the re-addition of old features, if the
weights of some old features are supposed to be modi-
fied.] This is the approach we've taken, for instance with
the weighting of phrases in TREC. The single term in-
formation and the phrase information are kept separate
within a document vector. Each of the separate sub-
vectors is normalized by the length of the single term
sub-vector. In this way, the weights of all terms are kept
commensurate with each other, and the similarity due
to the original single terms is kept unchanged.

The investigation of weighting strategies for additional
features is not a simple task, even if separation of old
features and new features is done. For example, Joel
Fagan in his excellent study of syntactic and statisti-
cal phrases[2], spent over 8 months looking at weighting
strategies. But if it 's not designed into the experiment
from the beginning, it will be almost impossible.

2.3. R e l e v a n c e F e e d b a c k

One opportunity for good term weighting occurs in the
routing environment. Here, a query is assumed to repre-
sent a continuing information need, and there have been

a number of documents already seen for each query, some
subset of which has been judged relevant. With this
wealth of document features and information available,
the official TREC routing run that proved to be the most
effective was one that took the original query terms and
assigned weights based on probability of occurrence in
relevant and non-relevant documents[3, 51. Once again,
weighting, rather than feature selection, worked very
well. (However, in this case the feature selection process
did not directly adversely affect the weighting process.
Instead, it was mostly the case that the additional fea-
tures from relevant documents were simply not chosen
or weighted optimally.)

In this run, using the RPI feedback model developed
by Fuhr[3], relevance feedback information was used for
computing the feedback query term weight q~ of a term
as p~(1 -ri)/[ri(1 -Pi)] - 1 Here Pi is the average docu-
ment term weight for relevant documents, and ri is the
corresponding factor for nonrelevant items. Only the
terms occurring in the query were considered here, so
no query expansion took place. Having derived these
query term weights, the query was run against the docu-
ment set. Let di denote the document term weight, then
the similarity of a query to a document is computed by
S(q, d) = ~](log(qi * di + 1))

3. L E A R N I N G W E I G H T S B Y T E R M
F E A T U R E S

The ad-hoc tf*idf weights above use only collection
statistics to determine weights. However, if previous
queries have been run on this collection, the results
from those queries can be used to determine what term
weighting factors are important for this collection. The
final term weight is set to a linear combination of
term weight factors, where the coemcient of each fac-
tor is set to minimize the squared error for the previous
queries[4, 5]. The offcial TREC runs using this approach
were nearly the top results; which was somewhat sur-
prising given the very limited and inaccurate training
information which was available.

This approach to learning solves the major problem of
learning in an ad-hoc environment: the fact that there is
insufficient information about individual terms to learn
reasonable weights. Most document terms have not oc-
curred in previous queries, and therefore there is no ev-
idence that can be directly applied. Instead, the known
relevance information determines the importance of fea-
tures of each term. The particular features used in
TREC 1 were combinations of the following term fac-
tors:

t f: within-document frequency of the term

351

logidf: log ((N + l) / n) , where N is the number of doc-
uments in the collection and n is the number
of documents containing the term

l o g n u m t e r m s : log (number of different terms of the
document)

i m a x t f : 1 / (maximum within-document frequency of
a term in the document)

After using the relevance information, the final weight
for a term in a T R E C 1 document was

W(t ,) = 0.00042293 +

0.00150083 * t f* logidf* imaxtf +

-0.00150665 • t f* imaxtf +

0.00010465 * logidf +

-0.00122627 * lognumterms • imaxtf.

There is no reason why the choice of factors used in
TREC 1 is optimal; slight variations had been used for
an earlier experiment. Exper imentat ion is progressing
on the choice of factors, especially when dealing with
both single terms and phrases. However, even so, the
T R E C 1 evaluation results were very good. If the mini-
mal learning information used by this approach is avail-
able, the results suggest it should be preferred to the
ad-hoc weighting schemes discussed earlier.

4. CONCLUSION

Tile sets of experiments described above focus on feature
weighting and emphasize that feature weighting seems to
be more important than feature selection. This is not to
say that good feature selection is not needed for opt imal
performance, but these experiments suggest that good
weighting is of equal importance. Feature selection is
sexy, and weighting isn't , but optimal performance seems
to demand that weighting schemes and feature selection
need to be developed simultaneously.

R e f e r e n c e s
1. Buckley, C. and Salton, G. and Allan, J., "Automatic

Retrieval With Locality Information Using SMART."
Proceedings of the First TREC Conference, 1993.

2. Fagan, J., Experiments in Automatic Phrase Indexing
for Document Retrieval: A Comparison of Syntactic and
Nonsyntactic Methods, Doctoral Dissertation, Cornell
University, Report TR 87-868, Department of Computer
Science, Ithaca, NY, 1987.

3. Fuhr, N., "Models for Retrieval with Probabilistic Index-
ing." Information Processing and Management 25(1),
1989, pp. 55-72.

4. Fuhr, N. and Buckley, C., "A Probabilistic Learning Ap-
proach for Document Indexing." ACM Transactions on
Information Systems 9(3), 1991, pages 223-248.

352

5. Fuhr, N. and Buckley, C., "Optimizing Document In-
dexing and Search Term Weighting Based on Probabilis-
tic Models" Proceedings of the First TREC Conference,

"1993.

6. Salton, G. and Buckley, C., "Term Weighting Ap-
proaches in Automatic Text Retrieval." Information
Processing and Management 24(5), 1988, pages 513-523.

7. Salton, G. and Yang, C.S., "On the Specification of Term
Values in Automatic Indexing." Journal of Documenta-
tion 29(4), 1973, pages 351-372.

Query "a ntc nnc atc btc ltc lnc

.P_9-¢
ntc 1813 1594 1834 1540 1908 1738
nnc 1818 1453 1916 1595 1993 1607
atc 1558 1473 1682 1437 1757 1499
anc 1892 1467 1908 1645 2000 1396
btc 1241 1179 1454 1231 1493 1237
bnc 1569 1130 1577 1421 1689 1057
ltc 1909 1815 1986 1726 2061 1843
lnc 2221 1857 2126 1887 2249 1716
nnn 0062 0051 0059 0067 0061 0050

Table 1: Comparison of tf * idf variants.
All weights expressed as triplets:
{tf contribution} {idf contribution} {normalization}

• tf:

- n : Normal t f (ie, number of times term occurs
in vector)

- 1 : Log. 1.0 + In (tf).

- a : Augmented. normalized between 0.5 and
1.0 in each vector. 0.5 + 0 .5 . t f /MaxTf lnVector

- b : Binary (ie, always 1)

• idf:

- n : None (ie, always 1)

- t : Tradit ional (log ((N + l) / n)) where N is
number of documents in collection and n is
number of documents

• normalization:

- n : None

- c : Cosine.

