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ABSTRACT 
Our work focuses on identifying various types of lexical data in 
large corpora through statistical analysis. In this paper, we 
present a method for grouping adjectives according to their mean- 
ing, as a step towards the automatic identification of adjectival 
scales. We describe how our system exploits two sources of 
linguistic knowledge in a corpus to compute a measure of 
similarity between two adjectives, using statistical techniques and 
a clustering algorithm for grouping. We evaluate the significance 
of the results produced by our system for a sample set of adjec- 
fives. 

1. I N T R O D U C T I O N  

A linguistic scale is a set of words, of the same gram- 
matical category, which can be ordered by their semantic 
strength or degree of informativeness [1]. For example, 
"lukewarm," "wa rm " ,  "ho t "  fall along a single adjec- 
tival scale since they indicate a variation in the intensity of 
temperature of the modified noun. Linguistic properties of 
scales derive both from conventional logical entailment on 
the linear ordering of their elements and from Gricean 
scalar implicature [1]. Despite these properties and their 
potential usefulness in both understanding and generating 
natural language text, dictionary entries are largely incom- 
plete for adjectives in this regard. Yet, if systems are to use 
the information encoded in adjectival scales for generation 
or interpretation (e.g. for selecting an adjective with a par- 
ticular degree of semantic strength, or for handling nega- 
tion), they must have access to the sets of words compris- 
ing a scale. 

While linguists have presented various tests for accepting 
or rejecting a particular scalar relationship between any 
two adjectives (e.g., [2], [3]), the common problem with 
these methods is that they are designed to be applied by a 
human who incorporates the two adjectives in specific sen- 
tential frames (e.g. " X  is warm, even hot") and assesses 
the semantic validity of the resulting sentences. Such tests 
cannot be used computationally to identify scales in a 
domain, since the specific sentences do not occur fre- 
quently enough in a corpus to produce an adequate 
description of the adjectival scales in the domain [4]. As 
scales vary across domains, the task of compiling such 
information is compounded. 

In this paper we describe a technique for automatically 
grouping adjectives according to their meaning based on a 
given text corpus, so that all adjectives placed in one group 
describe different values of the same property. Our method 
is based on statistical techniques, augmented with linguis- 
tic information derived from the corpus, and is completely 
domain independent. It demonstrates how high-level 
semantic knowledge can be computed from large amounts 
of low-level knowledge (essentially plain text, part-of- 
speech rules, and optionally syntactic relations). While our 
current system does not distinguish between scalar and 
non-scalar adjectives, it is a first step in the automatic 
identification of adjectival scales, since the scales can be 
subsequently ordered and the non-scalar adjectives filtered 
on the basis of independent tests, done in part automati- 
cally and in part by hand in a post-editing phase. The result 
is a semi-automated system for the compilation of adjec- 
tival scales. 

In the following sections, we first describe our algorithm in 
detail, present the results obtained, and finally provide a 
formal evaluation of the results. 

2. ALGORITHM 

Our algorithm is based on two sources of linguistic data: 
data that help establish that two adjectives are related, and 
data that indicate that two adjectives are unrelated. We 
extract adjective-noun pairs that occur in a modification 
relation in order to identify the distribution of nouns an 
adjective modifies and, ultimately, determine which adjec- 
tives it is related to. This is based on the expectation that 
adjectives describing the same property tend to modify the 
same set of nouns. For example, temperature is normally 
defined for physical objects and we can expect to find that 
adjectives conveying different values of temperature will 
all modify physical objects. Therefore, our algorithm finds 
the distribution of nouns that each adjective modifies and 
categorizes adjectives as similar if they have similar dis- 
tributions. 

Second, we use adjective-adjective pairs occurring as pre- 
modifiers within the same NP as a strong indication that 
the two adjectives do not belong in the same group. There 
are three cases: 

I. If  both adjectives modify the head noun and 
the two adjectives are antithetical, the NP 
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would be self-contradictory, as in the scalar 
sequence hot cold or the non-scalar red 
black. 

2. For non-antithetical scalar adjectives which 
both modify the head noun, the NP would 
violate the Gricean maxim of Manner 
[1] since the same information is conveyed 

by the strongest of the two adjectives (e.g. 
hot warm). 

3. Finally, if one adjective modifies the other, 
the modifying adjective has to qualify the 
modified one in a different dimension. For 
example, in light blue shirt, blue is a value of 
the property color, while light indicates the 
shade*. 

The use of linguistic data, in addition to statistical 
measures, is a unique property of our work and sig- 
nificantly improves the accuracy of our results. One other 
published model for grouping semantically related words 
[5], is based on a statistical model of bigrams and trigrams 

and produces word groups using no linguistic knowledge, 
but no evaluation of the results is performed. 

Our method works in three stages. First, we extract linguis- 
tic data from the parsed corpus in the form of syntactically 
related word pairs; in the second stage, we compute a 
measure of similarity between any two adjectives based on 
the information gathered in stage one; and in the last stage, 
we cluster the adjectives into groups according to the 
similarity measure, so that adjectives with a high degree of 
similarity fall in the same cluster (and, consequently, ad- 
jectives with a low degree of similarity fall in different 
clusters). 

2.1. Stage One: Extracting Word Pairs 

During the first stage, the system extracts adjective-noun 
and adjective-adjective pairs from the corpus. To deter- 
mine the syntactic category of each word, and identify the 
NP boundaries and the syntactic relations between each 
word, we used the Fidditch parser [6]**. For each NP, we 
then determine its minimal NP, that part of an NP consist- 
ing of the head noun and its adjectival pre-modifiers. We 
match a set of regular expressions, consisting of syntactic 
categories and representing the different forms a minimal 
NP can take, against the NPs. From the minimal NP, we 
produce the different pairs of adjectives and nouns. 

The resulting adjective-adjective and adjective-noun pairs 
are filtered by a morphology component, which removes 
pairs that contain erroneous information (such as mistyped 

*Note that sequences such as blue-green are usually hyphenated and 
thus better considered as a compound. 

**We thank Diane Litman and Donald Hindle for providing us with 
access to the parser at AT&T Bell Labs. 

words, proper names, and closed-class words which may 
be mistakenly classified as adjectives (e.g. possessive 
pronouns)). This component also reduces the number of 
different pairs without losing information by transforming 
words to an equivalent, base form (e.g. plural nouns are 
converted to singular) so that the expected and actual fre- 
quencies of each pair are higher. Stage one then produces 
as output a simple list of adjective-adjective pairs that oc- 
curred within the same minimal NP and a table with the 
observed frequencies of every adjective-noun combination. 
Each row in the table contains the frequencies of modified 
nouns for a given adjective. 

2.2. Stage Two: Computing Similarities 
Between Adjectives 

This stage processes the output of stage one, producing a 
measure of similarity for each possible pair of adjectives. 
The adjective-noun frequency table is processed first; for 
each possible pair in the table we compare the two dis- 
tfibutions of nouns. 

We use a robust non-parametric method to compute the 
similarity between the modified noun distributions for any 
two adjectives, namely Kendall's x coefficient [7] for two 
random variables with paired observations. In our case, the 
two random variables are the two adjectives we are com- 
paring, and each paired observation is their frequency of 
co-occurrence with a given noun. Kendall's x coefficient 
compares the two variables by repeatedly comparing two 
pairs of their corresponding observations. Formally, if 
(Xi,Yi) and (Xj,Y~) are two pairs of observations for the 
adjectives X and ~Y on the nouns i and j respectively, we 
call these pairs concordant if Xi>X/and Yi>Yj or i f  Xi<Xj 

and Yi<Yj; otherwise these pairs are discordant***. If  the 
distributions for the two adjectives are similar, we expect a 
large number of concordances, and a small number of dis- 
cordances. 

Kendall's x is defined as 

= Pc-Pd 

where Pc and Pd are the probabilities of observing a con-" 
cordance or discordance respectively, x ranges from -1 to 
+1, with +1 indicating complete concordance, -1 complete 
discordance, and 0 no correlation between X and Y. 

An unbiased estimator of x is the statistic 

T -  C-Q 

where n is the number of paired observations in the sample 
and C and Q are the numbers of observed concordances 
and discordances respectively [8]. We compute T for each 
pair of adjectives, adjusting for possible ties in the values 

***We discard pairs of observations where Xi=X j or Yi=Yj. 

273 



of each variable. We determine concordances and discor- 
dances by sorting the pairs of observations (noun fre- 
quencies) on one of the variables (adjectives), and comput- 
ing how many of the (~) pairs of paired observations agree 

or disagree with the expected order on the other adjective. 
We normalize the result to the range 0 to 1 using a simple 
linear transformation. 

After the similarities h/ave been computed for any pair of 
adjectives, we utilize the knowledge offered by the ob- 
served adjective-adjective pairs; we know that the adjec- 
tives which appear in any such pair cannot be part of the 
same group, so we set their similarity to 0, overriding the 
similarity produced by "r. 

2.3. Stage Three: Clustering The Adjectives 

In stage three we first convert the similarities to dis- 
similarities and then apply a non-hierarchical clustering al- 
gorithm. Such algorithms are in general stronger than 
hierarchical methods [9]. The number of clusters produced 
is an input parameter. We define dissimilarity as (1 - 
similarity), with the additional provision that pairs of ad- 
jectives with similarity 0 are given a higher dissimilarity 
value than 1. This ensures that these adjectives will never 
be placed in the same cluster; recall that they were deter- 
mined to be definitively dissimilar based on linguistic data. 

The algorithm uses the exchange method [10] since the 
more commonly used K-means method [9] is not ap- 
plicable; the K-means method, like all centroid methods, 
requires the measure d between the clustered objects to be 
a distance; this means, among other conditions, that for 
any three objects x, y, and z the triangle inequality applies. 
However, this inequality does not necessarily hold for our 
dissimilarity measure. If  the adjectives x and y were ob- 
served in the same minimal NP, their dissimilarity is quite 
large. If  neither z and x nor z and y were found in the same 
minimal NP, then it is quite possible that the sum of their 
dissimilarities could be less than the dissimilarity between 
x and y. 

The algorithm tries to produce a partition of the set of 
adjectives in such a way that adjectives with high dis- 
similarities are placed in different clusters. This is ac- 
complished by minimizing an objective function • which 
scores a partition P. The objective function we use is 

~(~ = E [-~- E d(x,y)] 
C e P  IClx,ye C 

The algorithm starts by producing a random partition of 
the adjectives, computing its • value and then computing 
for each adjective the improvement in • for every cluster 
where it can he moved; if there is at least one move for an 
adjective that leads to an overall improvement of ~ ,  then 
the adjective is moved to the cluster that yields the best 
improvement and the next adjective is considered. This 
procedure is repeated until no more moves lead to an im- 
provement of ~ .  

This is a hill-climbing method and therefore is guaranteed 

antitrust new 
big old 
economic political 
financial potential 
foreign real 
global serious 
international severe 
legal staggering 
little technical 
major unexpected 
mechanical 

Figure 1: Adjectives to be grouped. 

to converge, but it may lead to a local minimum of ~ ,  
inferior to the global minimum that corresponds to the op- 
timal solution. To alleviate this problem, the partitioning 
algorithm is called repeatedly with different random start- 
ing partitions and the best solution in these runs is kept. It 
should be noted that the problem of computing the optimal 
solution is NP-complete, as a generalization of the basic 
NP-complete clustering problem [11 ]. 

3. R E S U L T S  

We tested our system on a 8.2 million word corpus of 
stock market reports from the AP news wire****. A subset 
of 21 of the adjectives in the corpus (Figure 1) was 
selected for practical reasons (mainly for keeping the 
evaluation task tractable). We selected adjectives that have 
one modified noun in common (problem) to ensure some 
semantic relatedness, and we included only adjectives that 
occurred frequently so that our similarity measure would 
be meaningful. 

The partition produced by the system for 9 clusters appears 
in Figure 2. Since the number of clusters is not determined 
by the system, we present the partition with a similar num- 
ber of clusters as humans used for the same set of adjec- 
tives (the average number of clusters in the human-made 
models was 8.56). 

Before presenting a formal evaluation of the results, we 
note that this partition contains interesting data. First, the 
results contain two clusters of gradable adjectives which 
fall in the same scale. Groups 5 and 8 contain adjectives 
that indicate the size, or scope, of a problem; by augment- 
ing the system with tests to identify when an adjective is 
gradable, we could separate out these two groups from 
other potential scales, and perhaps consider combining 
them. Second, groups 1 and 6 clearly identify separate sets 
of non-gradable, non-scalar adjectives; the former group 
contains adjectives that describe the geographical scope of 
the problem, while the latter contains adjectives that 

.... We thank Karen Kukich and Frank Smadja for providing us access 
to the corpus. 
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Answer should be Yes Answer should be No 

The system says Yes a b 

The system says No c d 

1. foreign global international 

2. old 

3. potential 

Table 1: Contingency table model for evaluation. 

4. E V A L U A T I O N  

4. new real unexpected 

5. little staggering 

6. economic financial mechanical political technical 

7. antitrust 

8. big major serious severe 

9. legal 

Figure 2: Partition found for 9 clusters. 

specify the nature of the problem. It is interesting to note 
here that the expected number of adjectives per cluster is 

~=2 .33 ,  and the clustering algorithm employed dis- 

courages long groups; nevertheless, the evidence for the 
adjectives in group 6 is strong enough to allow the creation 
of a group with more than twice the expected number of 
members. Finally, note that even in group 4 which is the 
weakest group produced, there is a positive semantic cor- 

To evaluate the performance of our system we compared 
its output to a model solution for the problem designed by 
humans. Nine human judges were presented with the set of 
adjectives to be partitioned, a description of the domain, 
and a simple example. They were told that clusters should 
not overlap but they could select any number of clusters• 

For our scoring mechanism, we converted the comparison 
of two partitions to a series of yes-no questions, each of 
which has a correct answer (as dictated by the model) and 
an answer assigned by the system. For each pair of adjec- 
tives, we asked if they fell in the same cluster ( "yes" )  or 
not ("no") .  Since human judges did not always agree, we 
used fractional values for the correctness of each answer 
instead of 0 ("incorrect") and 1 ("correct").  We used 
multiple human models for the same set of adjectives and 
defined the correctness of each answer as the relative fre- 
quency of the association between the two adjectives 
among the human models. We then sum these correctness 
values; in the case of perfect agreement between the 
models, or of only one model, the measures reduce to their 
original definition. 

Then, the contingency table model [12], widely used in 
Information Retrieval, is applicable. Referring to the clas- 
sification of the yes-no answers in Table 1, the following 

relation between the adjectives new and unexpected. To 
summarize, the system seems to be able to identify many 
of the existent semantic relationships among the adjectives, 
while its mistakes are limited to creating singleton groups 
containing adjectives that are related to other adjectives in 
the test set (e.g., missing the semantic associations be- 
tween new-old and potential-real) and "recognizing" a 
non-significant relationship between real and 
new-unexpected in group 4. 

We produced good results with relatively little data; the 
accuracy of the results can be improved if a larger, 
homogeneous corpus is used to provide the raw data. Fur- 
thermore, some of the associations between adjectives that 
the system reports appear to be more stable than others, 
e.g. when we vary the number of clusters in the partition. 
We have noticed that adjectives with a higher degree of 
semantic content (e.g. international or severe) appear to 
form more stable associations than relatively semantically 
empty adjectives (e.g. little or real). This observation can 
be used to actually filter out the adjectives which are too 
general to be meaningfully clustered in groups. 

measures are defined : 

a 
• Recall = • 100% 

a + c  

a 
• Precision = a ~ "  100% 

b 
• Fallout = • 100% 

b+d 

In other words, recall is the percentage of correct "yes"  
answers that the system found among the model "yes"  
answers, precision is the percentage of correct "yes"  
answers among the total of "yes"  answers that the system 
reported, and fallout is the percentage of incorrect "~e.s.'.' 
answers relative to the total number of " n o "  answers 
We also compute a combined measure for recall and preci- 
sion, the F-measure [13], which always takes a value be- 
tween the values of recall and precision, and is higher 
when recall and precision are closer; it is defined as 

*****Another measure used in information retrieval, overgenera t ion ,  is 
in our case always equal to (100 - precision)%, 
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Recall Precision Fallout F-measure (15=1) 

7 clusters 50.78% 43.56% 7.48% 46.89% 

8 clusters 37.31% 38.10% 6.89% 37.70% 

9 clusters 49.74% 46.38% 6.54% 48.00% 

10 clusters 35.23% 41.98% 5.54% 38.31% 

Table 2: Evaluation results. 

F = ([52+1) × Precision x Recall 

[52 x Precision + Recall 

where 13 is the weight of recall relative to precision; we use 
~=1.0, which corresponds to equal weighting of the two 
measures. 

The results of applying our evaluation method to the sys- 
tem output (Figure 2) are shown in Table 2, which also 
includes the scores obtained for several other sub-optimal 
choices of the number of clusters. We have made these 
observations related to the evaluation mechanism : 

1. Recall is inversely related to fallout and 
precision. Decreasing the number of clusters 
generally increases the recall and fallout and 
simultaneously decreases precision. 

2. We have found fallout to be a better measure 
overall than precision, since, in addition to its 
decision-theoretic advantages [12], it appears 
to be more consistent across evaluations of 
partitions with different numbers of clusters. 
This has also been reported by other resear- 
chers in different evaluation problems [14]. 

3. For comparison, we evaluated each human 
model against all the other models, using the 
above evaluation method; the results ranged 
from 38 to 72% for recall, 1 to 12% for fall- 
out, 38 to 81% for precision, and, covering a 
remarkably short range, 49 to 59% for the 
F-measure, indicating that the performance 
of the system is not far behind human perfor- 
mance. 

Finally, before interpreting the scores produced by our 
evaluation module, we need to understand how they vary 
as the partition gets better or worse, and what are the limits 
of their values. Because of the multiple models used, per- 
fect scores are not attainable. Also, because each pair of 
adjectives in a cluster is considered an observed associa- 
tion, the relationship between the number of associations 
produced by a cluster and the number of adjectives in the 
cluster is not linear (a cluster with k adjectives will 
produce (2k)=O(k 2) associations). This leads to lower 

values of recall, since moving a single adjective out of a 
cluster with k elements in the model will cause the system 
to miss k-1 associations. In general, defining a scoring 
mechanism that compares one partition to another is a hard 
problem. 

To quantify these observations, we performed a Monte 
Carlo analysis[15] for the evaluation metrics, by 
repeatedly creating random partitions of the sample adjec- 
tives and evaluating the results. Then we estimated a 
(smoothed) probability density function for each metric 
from the resulting histograms; part of the results obtained 
are shown in Figure 3 for F-measure and fallout using 9 
clusters. We observed that the system's performance (in- 
dicated by a square in the diagrams) was significantly bet- 
ter than what we would expect under the null hypothesis of 
random performance; the probability of getting a better 
partition than the system's is extremely small for all 
metrics (no occurrence in 20,000 trials) except for fallout, 
for which a random system may be better 4.9% of the time. 
The estimated density functions also show that the metrics 
are severely constrained by the structure imposed by the 
clustering as they tend to peak at some point and then fall 
rapidly. 

5. C O N C L U S I O N S  A N D  F U T U R E  W O R K  

We have described a system for extracting groups of 
semantically related adjectives from large text corpora. 
Our evaluation reveals that it has significantly high perfor- 
mance levels, comparable to human models. Its results can 
be filtered to produce scalar adjectives that are applicable 
in any given domain. 

Eventually, we plan to use the system output to augment 
adjective entries in a lexicon and test the augmented lex- 
icon in an application such as language generation. In 
addition, we have identified many directions for improving 
the quality of our output: 

• Investigating non-linear methods for convert- 
ing similarities to dissimilarities. 

• Experimenting with different evaluation 
models, preferably ones based on the good- 
ness of each cluster and not of each associa- 
tion. 

• Developing methods for automatically select- 
ing the desired number of clusters for the 
produced partition. Although this is a par- 
ticularly hard problem, a steepest-descent 
method based on the tangent of the objective 
function may offer a solution. 

• Investigating additional sources of linguistic 
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Figure 3: Estimated probability densities for F-measure 
and fallout with 9 clusters. 

knowledge, such as the use of  conjunctions 
and adverb-adjective pairs. 

• Augmenting the system with tests particular to 
scalar adjectives; for example, exploiting 
gradability, checking whether two adjectives 
are antonymous (essentially developing tests 
in the opposite direction of  the work by Jus- 
teson and Katz [16]), or comparing the relative 
semantic strength of  two adjectives. 
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