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ABSTRACT 
Frequency information on co-occurrence patterns can be automati- 
cally collected from a syntactically analyzed corpus; this information 
can then serve as the basis for selectional constraints when analyz- 
ing new text from the same domain. Better coverage of the domain 
can be obtained by appropriate generalization of the specific word 
patterns which are collected. We report here on an approach to au- 
tomatically make suitable generalizations: using the co-occurrence 
data to compute a confusion matrix relating individual words, and 
then using the confusion matrix to smooth the original frequency 
data. 

1. INTRODUCTION 
Semantic (selectional) constraints are necessary for the accu- 
rate analysis of natural language text. Accordingly, the acqui- 
sition of these constraints is an essential yet time-consuming 
part of porting a natural language system to a new domain. 
Several research groups have attempted to automate this pro- 
cess by collecting co-occurrence patterns (e.g., subject-verb- 
object patterns) from a large training corpus. These patterns 
are then used as the source of selectional constraints in ana- 
lyzing new text. 

However, the patterns collected in this way involve specific 
word combinations from the training corpus. Unless the train- 
ing corpus is very large, this will provide only limited cover- 
age of the range of acceptable semantic combinations, even 
within a restricted domain. In order to obtain better coverage, 
it will be necessary to generalize from the patterns collected 
so that patterns with semantically related words will also be 
considered acceptable. In most cases this has been done by 
manually assigning words to semantic classes and then gen- 
eralizing from specific words to their classes. This approach 
still implies a substantial manual burden in moving to a new 
domain, since at least some of the semantic word classes will 
be domain-specific. 

In order to fully automate the process of semantic constraint 
acquisition, we would like to be able to automatically identify 
semantically related words. This can be done using the co- 
occurrence data, by identifying words which occur in the 
same contexts (for example, verbs which occur with the same 
subjects and objects). From the co-occurrence data one can 
compute a similarity relation between words, and then cluster 

words of high similarity. This approach was taken by Sekine 
et al. at UMIST, who then used these clusters to generalize 
semantic patterns [6]. A similar approach to word clustering 
was reported by Hirschman et al. in 1975 [5]. 

For our current experiments, we have adopted a slightly dif- 
ferent approach. We compute from the co-occurrence data a 
confusion matrix, which also measures the interchangeability 
of words in particular contexts. We then use the confusion 
matrix directly to generalize the semantic patterns. 

2. THE NATURE OF THE CONSTRAINTS 
The constraints we wish to acquire are local semantic con- 
straints; more specifically, constraints on which words can 
occur together in specific syntactic relations. These include 
head-argument relations (e.g., subject-verb-object) and head- 
modifier relations. Some constraints may be general (domain 
independent), but others will be specific to a particular do- 
main. Because it is not practical to state all the allowable 
word combinations, we normally place words into (seman- 
tic) word classes and then state the constraints in terms of 
allowable combinations of these classes. 

When these constraints were encoded by hand, they were nor- 
mally stated as absolute constraints--aparticular combination 
of words was or was not acceptable. With corpus-derived 
constraints, on the other hand, it becomes possible to think 
in terms of a probabilistic model. For example, based on 
a training corpus, we would estimate the probability that a 
particular verb occurs with a particular subject and object (or 
with subject and object from particular classes), or that a verb 
occurs with a particular modifier. Then, using the (obviously 
crude) assumption of independent probabilities, we would es- 
timate the probability of a particular sentence derivation as 
the product of the probabilities of all the operations (adding 
arguments to heads, adding modifiers to heads) required to 
produce the sentence, and the probability of a sentence as the 
sum of the probabilities of its derivations. 

3. ACQUIRING SEMANTIC PATTERNS 
Based on a series of experiments over the past year (as reported 
at COLING-92) we have developed the following procedure 
for acquiring semantic patterns from a text corpus: 
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1. Using unsupervised training methods, create a stochas- 
tic grammar from a (non-stochastic) augmented context- 
free grammar. Use this stochastic grammar to parse the 
training corpus, taking only the most probable parse(s) 
of each sentence. 

2. Regularize the parses to produce something akin to an 
LFG f-structure, with explicitly labeled syntactic rela- 
tions such as SUBJECT and OBJECT. l 

3. Extract from the regularized parse a series of triples of 
the form 

head syntactic-relation arg 

where arg is the head of the argument or modifier. We 
will use the notation < wi r wj > for such a triple, and 
< r w i > for a relation-argument pair. 

4. Compute the frequency F of each head and each triple 
in the corpus. If a sentence produces N parses, a triple 
generated from a single parse has weight 1/N in the total. 

For example, the sentence 

Mary likes young linguists from Limerick. 

would produce the regularized syntactic structure 

(s like (subject (np Mary)) 
(object (np linguist (a-pos young) 

(from (np Limerick))))) 

from which the following four triples are generated: 

like subject Mary 
like object linguist 
linguist a-pos young 
linguist from Limerick 

Given the frequency information F,  we can then estimate the 
probability that a particular head wi appears with a particular 
argument or modifier < v wj >:2 

F ( <  wi r wj >) 

F(wi  appears as a head in a parse tree) 

This probability information would then be used in scoring 
alternative parse trees. For the evaluation below, however, 
we will use the frequency data F directly. 

1 But with somewhat more regulafization than is done in LFG; in particular, 
passive structures are converted to corresponding active forms. 

2Note that F(wl appears as a head in a parse tree) is different from 
F(wi appears as a head in a triple) since a single head in a parse tree may 
produce several such triples, one for each argument or modifier of that head. 

Step 3 (the triples extraction) includes a number of special 
c a s e s :  

(a) 

(h) 

(c) 

(d) 

(e) 

if a verb has a separable particle (e.g., "out" in 
"carry out"), this is attached to the head (to create 
the head carry-out) and not treated as a separate 
relation. Different particles often correspond to 
very different senses of a verb, so this avoids 
conflating the subject and object distributions of 
these different senses. 

if the verb is "be", we generate a relation be- 
complement between the subject and the predi- 
cate complement. 

triples in which either the head or the argument 
is a pronoun are discarded 

triples in which the argument is a subordinate 
clause are discarded (this includes subordinate 
conjunctions and verbs taking clausal arguments) 

triples indicating negation (with an argument of 
"not" or "never") are ignored 

4. GENERALIZING SEMANTIC PATTERNS 

The procedure described above produces a set of frequencies 
and probability estimates based on specific words. The "tradi- 
tional" approach to generalizing this information has been to 
assign the words to a set of semantic classes, and then to col- 
lect the frequency information on combinations of semantic 
classes [7,3]. 

Since at least some of these classes will be domain specific, 
there has been interest in automating the acquisition of these 
classes as well. This can be done by clustering together words 
which appear in the same context. Starting from the file of 
triples, this involves: 

1. collecting for each word the frequency with which it 
occurs in each possible context; for example, for a noun 
we would collect the frequency with which it occurs as 
the subject and the object of each verb 

2. defining a similarity measure between words, which re- 
flects the number of common contexts in which they 
appear 

3. forming clusters based on this similarity measure 

Such a procedure was performed by Sekine et al. at UMIST 
[6]; these clusters were then manually reviewed and the re- 
sulting clusters were used to generalize selectional patterns. 
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A similar approach to word cluster formation was described 
by Hirschman et al. in 1975 [5]. 

Cluster creation has the advantage that the clusters are 
amenable to manual review and correction. On the other 
hand, our experience indicates that successful cluster gener- 
ation depends on rather delicate adjustment of the clustering 
criteria. We have therefore elected to try an approach which 
directly uses a form of similarity measure to smooth (gener- 
alize) the probabilities. 

Co-occurrence smoothing is a method which has been recently 
proposed for smoothing n-gram models [4] .3 The core of this 
method involves the computation of a co-occurrence matrix 
(a matrix of confusion probabilities) Pc(wj ]wi), which in- 
dicates the probability of word wj occurring in contexts in 
which word wi occurs, averaged over these contexts. 

Pc(wj [w,) = E P(wj ls)P(slw,) 
$ 

~ P(w~ Is)P(w~ls)P(s) 
P(wi) 

where the sum is over the set of all possible contexts s. For 
an n-gram model, for example, the context might be the set 
of n - 1 prior words. This matrix can be used to take a basic 
trigram model PB (wn Iw,~-2, w n - 0  and produce a smoothed 
model 

Ps(w.lw.-2,  w, -x )  = ~ Pc(w.lw'.)PB(w'. 1~.-2, Wn-1) 

We have used this method in a precisely analogous way to 
compute smoothed semantic triples frequencies, Fs. In triples 
of the form wordl relation word2 we have initially chosen to 
smooth over wordl , treating relation and word2 as the context. 

Pc(wilw}) = ~ P(wil < r wj > ) .  P ( <  r wj > Iw~) 
r~Wj 

~w F ( <  wi r wj >) 
:  z;E>3 

F ( <  w~ r wj >) 

F(w~ appears as a head of a triple) 

! r s (<  wi r > )  = Pc(wil  ) . .r(< >) 

In order to avoid the generation of confusion table entries 
from a single shared context (which quite often is the result 
of an incorrect parse), we apply a filter in generating Pc: 
for i ¢ j ,  we generate a non-zero Pc(wj Iwi) only if the wi 
and wj appear in at least two common contexts, and there 
is some common context in which both words occur at least 

3We wish to thank Richard Schwartz of BBN for referring us to this 
method and article. 

twice. Furthermore, if the value computed by the formula 
for Pc is less than some threshold ~'c, the value is taken 
to be zero; we have used rc = 0.001 in the experiments 
reported below. (These filters are not applied for the case 
i = j;  the diagonal elements of the confusion matrix are 
always computed exactly.) Because these filters may yeild an 
un-normalized confusion matrix (i.e., ~ o j  Pc(wj Iwi) < 1), 

we renormalize the matrix so that ~ w  Pc(wj Iwi) = 1. 

5. E V A L U A T I O N  

5.1. Evaluation Metric 

We have previously (at COLING-92) described two methods 
for the evaluation of semantic constraints. For the current 
experiments, we have used one of these methods, where the 
constraints are evaluated against a set of manually classified 
semantic triples. 

For this evaluation, we select a small test corpus separate 
from the training corpus. We parse the corpus, regularize 
the parses, and extract triples just as we did for the semantic 
acquisition phase (with the exception that we use the non- 
stochastic grammar in order to generate all grammatically 
valid parses of each sentence). We then manually classify each 
triple as semantically valid or invalid (a triple is counted as 
valid if we believe that this pair of words could meaningfully 
occur in this relationship, even if this was not the intended 
relationship in this particular text). 

We then establish a threshold T for the weighted triples counts 
in our training set, and define 

V+ 

V_ 

i+ 

i_ 

number of triples in test set which were classified 
as valid and which appeared in training set with 
count > T 

number of triples in test set which were classified 
as valid and which appeared in training set with 
count _< T 

number of triples in test set which were classified 
as invalid and which appeared in training set with 
count > T 

number of triples in test set which were classified 
as invalid and which appeared in training set with 
count < T 

and then define 

recall 

error rate 

v+ 

v++v_ 
i+ 

i+ +i_ 
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w Pc(attac&lw) 
harden 
attack 
assault 
dislodge 
torture 
harass 
machinegun 
m a s s a c r e  

reinforce 
board 
abduct 
specialize 
occupy 
engage 
blow-up 
blow 

0.252 
0.251 
0.178 
0.131 
0.123 
0.114 
0.096 
0.094 
0.093 
0.091 
0.086 
0.076 
0.072 
0.068 
0.064 
0.063 

to Pc( terroristlw) 
terrorist 
ally 
job 
world 
ceasefire 
commando 
guerrilla 
urban commando 
coup 
assassin 
individual 
journalist 
offensive 
history 
rebel 
fighter 

0.309 
0.137 
0.119 
0.091 
0.069 
0.058 
0.045 
0.043 
0.043 
0.041 
0.035 
0.029 
0.029 
0.026 
0.025 
0.023 

Figure 1: Verbs closely related to the verb "attack" and nouns closely related to the noun "terrorist", ranked by Pc. ("harden" 
appears at the top of the list for "attack" because both appear with the object "position".) 

At a given threshold T, our smoothing process should increase 
recall but in practice will also increase the error rate. How 
can we tell if our smoothing is doing any good? We can view 
the smoothing process as moving some triples from v_ to v+ 
and from i_ to i+.4 Is it doing so better than some random 
process? I.e., is it preferentially raising valid items above the 
threshold? To assess this, we compute (for a fixed threshold) 
the quality measure 

V~--V+ 

i_ 

where the values with superscript S represent the values with 
smoothing, and those without superscripts represent the values 
without smoothing. If Q > 1, then smoothing is doing better 
than a random process in identifying valid triples. 

5.2. Test Data 

The training corpus was the set of 1300 messages (with a 
total of 18,838 sentences) which constituted the development 
corpus for Message Understanding Conferences - 3 and 4 
[1,2]. These messages are news reports from the Foreign 
Broadcast Information Service concerning terrorist activity in 
Central and South America. The average sentence length is 
about 24 words. In order to get higher-quality parses of these 
sentences, we disabled several of the recovery mechanisms 

4In fact, some triples will move  above the threshold and other will move 
below the threshold, but in the regions we are considering, the net movement  
will be above the threshold. 

normally used in parsing, such as longest-substring parsing; 
with these mechanisms disabled, we obtained parses for 9,903 
of the 18,838 sentences. These parses were then regularized 
and reduced to triples. We generated a total of 46,659 distinct 
triples from this test corpus. 

The test corpus--used to generate the triples which were man- 
ually classified---consisted of 10 messages of similar style, 
taken from one of the test corpora for Message Understanding 
Conference - 3. These messages produced a test set contain- 
ing a total of 636 distinct triples, of which 456 were valid and 
180 were invalid. 

5.3. Results 

In testing our smoothing procedure, we first generated the 
confusion matrix Pc and examined some of the entries. Fig- 
ure 1 shows the largest entries in Pc for the verb "attack" and 
the noun "terrorist", two very common words in the terrorist 
domain. It is clear that (with some odd exceptions) most of 
the words with high Pc values are semantically related to the 
original word. 

To evaluate the effectiveness of smoothing, we have compared 
three sets of triples frequency data: 

1. the original (unsmoothed) dam 

2. the data as smoothed using Pc 

3. the data as generalized using a manually-prepared classi- 
fication hierarchy for a subset of the words of the domain 
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generalization strategy T v+ v_ i+ i_ recall error rate Q 
1. no smoothing 0 139 317 13 167 30% 7% 
2. confusion matrix 0 237 219 50 130 52% 28% 1.39 
3. classification hierarchy 0 154 302 18 162 34% 10% 1.58 
4. confusion matrix 0.29 154 302 17 163 34% 9% 1.90 

Table 1: A comparison of the effect of different generalization strategies. 

For the: third method, we employed a classification hierar- 
chy which had previously been prepared as part of the in- 
formation extraction system used for Message Understanding 
Conference-4. This hierarchy included only the subset of 
the vocabulary thought relevant to the information extraction 
task (not counting proper names, roughly 10% of the words 
in the vocabulary). From this hierarchy we identified the 13 
classes which were most frequently referred to in the lexico- 
semantic models used by the extraction system. If  the head 
(first element) of a semantic triple was a member of one of 
these classes, the generalization process replaced that word 
by the most specific class to which it belongs (since we have 
a hierarchy with nested classes, a word will typically belong 
to several classes); to make the results comparable to those 
with confusion-matrix smoothing, we did not generalize the 
argument (last element) of the triple. 

The basic results are shown in rows 1, 2, and 3 o f  Table 1. 
For all of these we used a threshold (T) of 0, so a triple with 
any frequency > 0 would go into the v+ or i+ category. In 
each case the quality measure Q is relative to the run without 
smoothing, entry 1 in the table. Both the confusion matrix and 
the classification hierarchy yield Qs substantially above 1, in- 
dicating that both methods are performing substantially better 
than random. The Q is higher with the classification hierar- 
chy, as might be expected since it has been manually checked; 
on the other hand, the improvement in recall is substantially 
smaller, since the hierarchy covers only a small portion of the 
total vocabulary. As the table shows, the confusion matrix 
method produces a large increase in recall (about 73% over 
the base run). 

These comparisons all use a T (frequency threshold) of 0, 
which yields the highest recall and error rate. Different 
recall/error-rate trade-offs can be obtained by varying T. For 
example, entry 4 of the table shows the result for T=0.29, 
the point at which the recall using the confusion matrix and 
the classification hierarchy is the same (the values without 
smoothing and the values using the classification hierarchy 
are essentially unchanged at T=0.29), We observe that, for 
the same recall, the automatic smoothing does as well as the 
manually generated hierarchy with regard to error rate. (In 
fact, the Q value with smoothing (line 4) is much higher than 
with the classification hierarchy (line 3), but this reflects a dif- 

ference of only 1 in i+ and should not be seen as significant.) 

6. D I S C U S S I O N  

We have demonstrated that automated smoothing methods 
can be of some benefit in increasing the coverage of auto- 
matically acquired selectional constraints. This is potentially 
important as a step in developing tools for porting natural 
language systems to new domains. It is still too early to 
assess the relative merits of different approaches to general- 
izing these selectional constraints, given our limited testing 
and the different evaluation metrics of the few others groups 
experimenting with such acquisition procedures. 

Our experimental results are not uniformly positive. We did 
achieve substantially higher recall levels with smoothing. On 
the other hand, over the range of recalls obtainable without 
smoothing, smoothing did not consistently improve the error 
rate. Therefore at present the principal benefit of the smooth- 
ing technique is to raise the recall beyond that possible using 
unsmoothed data. 

In addition, preliminary experiments with smoothing applied 
to the argument position in a triple indicate that the compari- 
son between automated smoothing and manual classification 
hierarchies is not so favorable. This is not too surprising 
because when the classification hierarchy was initially cre- 
ated, its primary use was to specify the allowable values of 
arguments and modifiers in semantic case flames; as a re- 
sult, while the hierarchy is of benefit in generalizing heads 
(as described above), it is more effective in generalizing the 
argument position. 

We recognize that the size of the corpus we have used is quite 
minimal for the task of computing similarities, since to get a 
fully populated similarity matrix we would require each pair 
of semantically related words to occur in several common 
contexts. We hope therefore to repeat these experiments with 
a substantially larger corpus in the near future. A larger 
corpus will also allow us to use larger patterns, including in 
particular subject-verb-object patterns, and thus reduce the 
confusion due to treating different words senses as common 
contexts. 
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