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In this paper we describe a new technique for parsing free text: a 
transformational grammar I is automatically learned that is capable 
of accurately parsing text into binary-branching syntactic trees with 
nonterminals unlabelled. The algorithm works by beginning in a 
very naive state of knowledge about phrase structure. By repeatedly 
comparing the results of bracketing in the current state to proper 
bracketing provided in the training corpus, the system learns a set of 
simple structural transformations that can be applied to reduce error. 
After describing the algorithm, we present results and compare these 
results to other recent results in automatic grammar induction. 

1. I N T R O D U C T I O N  

There has been a great deal of  interest of late in the automatic 
induction of  natural language grammar. Given the difficulty 
inherent in manually building a robust parser, along with the 
availability of  large amounts of  training material, automatic 
grammar induction seems like a path worth pursuing. A 
number of  systems have been built which can be trained au- 
tomatically to bracket text into syntactic constituents. In [ 10] 
mutual information statistics are extracted from a corpus of 
text and this information is then used to parse new text. [13] 
defines a function to score the quality of  parse trees, and then 
uses simulated annealing to heuristically explore the entire 
space of  possible parses for a given sentence. In [3], distri- 
butional analysis techniques are applied to a large corpus to 
learn a context-free grammar. 

The most promising results to date have been based on the 
inside-outside algorithm (i-o algorithm), which can be used 
to train stochastic context-free grammars. The i-o algorithm 
is an extension of  the finite-state based Hidden Markov Model 
(by [1]), which has been applied successfully in many areas, 
including speech recognition and part of  speech tagging. A 
number of  recent papers have explored the potential of  using 
the i-o algorithm to automatically learn a grammar [9, 15, 12, 
6, 7, 14]. 

Below, we describe a new technique for grammar induction. 2 
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INot in the traditional sense of the term. 
2A similar method has been applied effectively in part of speech tagging; 

The algorithm works by beginning in a very naive state of  
knowledge about phrase structure. By repeatedly comparing 
the results of  parsing in the current state to the proper phrase 
structure for each sentence in the training corpus, the system 
learns a set of  ordered transformations which can be applied 
to reduce parsing error. We believe this technique has ad- 
vantages over other methods of  phrase structure induction. 
Some of  the advantages include: the system is very simple, 
it requires only a very small set of  transformations, learning 
proceeds quickly and achieves a high degree of  accuracy, and 
only a very small training corpUs is necessary. In addition, 
since some tokens in a sentence are not even considered in 
parsing, the method could prove to be considerably more re- 
sistant to noise than a CFG-based approach. After describing 
the algorithm, we present results and compare these results to 
other recent results in automatic phrase structure induction. 

2.  T H E  A L G O R I T H M  

The learning algorithm is trained on a small corpus of  partially 
bracketed text which is also annotated with part of  speech in- 
formation. All of  the experiments presented below were done 
using the Penn Treebank annotated corpus[11]. The learner 
begins in a naive initial state, knowing very little about the 
phrase structure of  the target corpus. In particular, all that is 
initially known is that English tends to be right branching and 
that final punctuation is final punctuation. Transformations 
are then learned automatically which transform the output 
of  the naive parser into output which better resembles the 
phrase structure found in the training corpus. Once a set of 
transformations has been learned, the system is capable of 
taking sentences tagged with parts of  speech and returning a 
binary-branching structure with nonterminals unlabelled 3. 

2.1. The Initial State O f  The Parser 

Initially, the parser operates by assigning a right-linear struc- 
ture to all sentences. The only exception is that final punctu- 
ation is attached high. So, the sentence "The dog and old cat 
ate ." would be incorrectly bracketed as: 

( ( The ( dog ( and ( old ( cat.ate ) ) ) ) ) .  ) 

see [5, 4]. 
3This is the same output given:by systems described in [10, 3, 12, 14] 
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The parser in its initial state will obviously not bracket sen- 
tences with great accuracy. In some experiments below, we 
begin with an even more naive initial state of knowledge: 
sentences are parsed by assigning them a random binary- 
branching structure with final punctuation always attached 
high. 

2.2. Structural Transformations 

The next stage involves learning a set of transformations that 
can be applied to the output of the naive parser to make these 
sentences better conform to the proper structure specified in 
the training corpus. The list of possible transformation types 
is prespecified. Transformations involve making a simple 
change triggered by a simple environment. In the current 
implementation, there are twelve allowable transformation 
types: 

• (1-8) (Addldelete) a ( le f t lv ight)  parenthesis to the 
( le f t  I right ) of part of speech tag X. 

• (9-12) (Add[delete) a ( lef t[r ight)  parenthesis between 
tags X and Y. 

To carry out a transformation by adding or deleting a paren- 
thesis, a number of additional simple changes must take place 
to preserve balanced parentheses and binary branching. To 
give an example, to delete a left paren in a particular envi- 
ronment, the following operations take place (assuming, of 
course, that there is a left paren to delete): 

1. Delete the left paren. 

2. Delete the right paren that matches the just deleted paren. 

3. Add a left paren to the left of the constituent immediately 
to the left of the deleted left paren. 

4. Add a right paren to the right ofthe constituent immedi- 
ately to the right of the deleted paren. 

5. If there is no constituent immediately to the right, or none 
immediately to the left, then the transformation fails to 
apply. 

Structurally, the transformation can be seen as follows. If we 
wish to delete a left paren to the right of constituent X 4, where 
X appears in a subtree of the form: 

X 
A 

YY Z 

4To the fight of the rightmost terminal dominated by X if X is a 
nonterminal. 

carrying out these operations will transform this subtree intoS: 

Z 

X YY 

Given the sentence6: 

The dog barked. 

this would initially be bracketed by the naive parser as: 

( ( The ( dog barked ) ) .  ) 

If  the transformation delete a left paren to the right of  a 
determiner is applied, the structure would be transformed to 
the correct bracketing: 

( ( ( The dog ) barked ) .  ) 

To add a right parenthesis to the right of YY, YY must once 
again be in a subtree of the form: 

X 
A 

YY Z 

If  it is, the following steps are carried out to add the right 
paren: 

1. Add the right paren. 

2. Delete the left paren that now matches the newly added 
paren. 

3. Find the right paren that used to match the just deleted 
paren and delete it. 

4. Add a left paren to match the added right paren. 

5The twelve transformations can be decomposedinto two structural trans- 
formations, that shown here and its converse, along with six triggering 
environments. 

6Input sentences are also labelled with parts of speech. 
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This results in the same structural change as deleting a left 
paren to the right of  X in this particular structure. 

Applying the transformation add a right paren to the right o f  
a noun to the bracketing: 

( ( The ( dog barked ) ) .  ) 

will once again result in the correct bracketing: 

( ( ( The dog ) barked ) .  ) 

2.3. Learning Transformations 

Learning proceeds as follows. Sentences in the training set 
are first parsed using the naive parser which assigns right lin- 
ear structure to all sentences, attaching final punctuation high. 
Next, for each possible instantiation of the twelve transforma- 
tion templates, that particular transformation is applied to the 
naively parsed sentences. The resulting structures are then 
scored using some measure of  success which compares these 
parses to the correct structural descriptions for the sentences 
provided in the training corpus. The transformation which 
results in the best scoring structures then becomes the first 
transformation of  the ordered set of  transformations that are 
to be learned. That transformation is applied to the right- 
linear structures, and then learning proceeds on the corpus of  
improved sentence bracketings. The following procedure is 
carried out repeatedly on the training corpus until no more 
transformations can be found whose application reduces the 
error in parsing the training corpus: 

1. The best transformation is found for the structures output 
by the parser in its current state. 7 

2. The transformation is applied to the output resulting from 
bracketing the corpus using the parser in its current state. 

3. This transformation is added to the end of the ordered 
list of  transformations. 

4. Go to 1. 

After a set of  transformations has been learned, it can be used 
to effectively parse fresh text. To parse fresh text, the text is 
first naively parsed and then every transformation is applied, 
in order, to the naively parsed text. 

One nice feature of  this method is that different measures of 
bracketing success can be used: learning can proceed in such 

7The state of the parser is defined as naive initial-state knowledge plus all 
transformations that currently have been learned. 

a way as to try to optimize any specified measure of  success. 
The measure we have chosen for our experiments is the same 
measure described in [12], which is one of  the measures that 
arose out of  a parser evaluation workshop [2]. The measure 
is the percentage of  constituents (strings of  words between 
matching parentheses) from sentences output by our system 
which do not cross any constituents in the Penn Treebank 
structural description of  the sentence. For example, if our 
system outputs: 

( ( ( The big ) ( dog ate ) ) .  ) 

and the Penn Treebank bracketing for this sentence was: 

( ( ( The big dog ) ate ) .  ) 

then the constituent the big would be judged correct whereas 
the constituent dog ate would not. 

Below are the first seven transformations found from one 
run of  training on the Wall Street Journal corpus, which was 
initially bracketed using the right-linear initial-state parser. 

1. Delete a left paren to the left of  a singular noun. 

2. Delete a left paren to the left of  a plural noun. 

3. Delete a left paren between two proper nouns. 

4. Delet a left paren to the right of  a determiner. 

5. Add a right paren to the left of  a comma. 

6. Add a right paren to the left of  a period. 

7. Delete a right paren to the left of  a plural noun. 

The first four transformations all extract noun phrases from the 
right linear initial structure. The sentence "The cat meowed 
" would initially be bracketed as: 8 

( ( The ( cat meowed ) ) .  ) 

Applying the first transformation to this bracketing would 
result in: 

( ( ( The cat ) meowed ) .  ) 

8These examples are not actual sentences in the corpus. We have chosen 
simple sentences for clarity. 
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Applying the'fifth transformation to the bracketing: 

( ( We ( ran ( ,  ( and ( they walked ) ) ) ) ) .  ) 

would result in 

improve performance in the test corpus. One way around this 
overtraining would be to set a threshold: specify a minimum 
level of  improvement that must result for a transformation to 
be learned. Another possibility is to use additional training 
material to prune the set of  learned transformations. 

( ( ( We ran ) ( ,  ( and ( they walked ) ) ) ) .  ) 

3. RESULTS 
In the first experiment we ran, training and testing were 
done on the Texas Instruments Air Travel Information Sys- 
tem (ATIS) corpus[8]. 9 In table 1, we compare results we 
obtained to results cited in [ 12] using the inside-outside algo- 
rithm on the same corpus. Accuracy is measured in terms of  
the percentage of  noncrossing constituents in the test corpus, 
as described above. Our system was tested by using the train- 
ing set to learn a set of  transformations, and then applying 
these transformations to the test set and scoring the resulting 
output. In this experiment, 64 transformations were learned 
(compared with 4096 context-free rules and probabilities used 
in the i-o experiment). It is significant that we obtained com- 
parable performance using a training corpus only 21% as large 
as that used to train the inside-outside algorithm. 

Method # of  Training Accuracy 
Corpus Sentences 

Inside-Outside 700 90.36% 
Transformation-Learner 150 91.12% 

Table 1: Comparing two learning methods on the ATIS cor- 
pus. 

After applying all learned transformations to the test corpus, 
60% of  the sentences had no crossing constituents, 74% had 
fewer than two crossing constituents, and 85% had fewer than 
three. The mean sentence length of  the test corpus was 11.3. 
In figure 1, we have graphed percentage correct as a func- 
tion of  the number of  transformations that have been applied 
to the test corpus. As the transformation number increases, 
overtraining sometimes occurs. In the current implementa- 
tion of  the learner, a transformation is added to the list if it 
results in any positive net change in the training set. To- 
ward the end of  the learning procedure, transformations are 
found that only affect a very small percentage of  training sen- 
tences. Since small counts are less reliable than large counts, 
we cannot reliably assume that these transformations will also 

9In all experiments described in this paper, results are calculated on a 
test corpus which was not used in any way in either training the learning 
algorithm or in developing the system. 
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Figure 1: Results From the ATIS Corpus, Starting With Right- 
Linear Structure 

We next ran an experiment to determine what performance 
could be achieved if we dropped the initial right-linear as- 
sumption. Using the same training and test sets as above, 
sentences were initially assigned a random binary-branching 
structure, with final punctuation always attached high. Since 
there was less regular structure in this case than in the right- 
linear case, many more transformations were found, 147 trans- 
formations in total. When these transformations were applied 
to the test set, a bracketing accuracy of  87.13% resulted. 

The ATIS corpus is structurally fairly regular. To determine 
how well our algorithm performs on a more complex corpus, 
we ran experiments on the Wall Street Journal. Results from 
this experiment can be found in table 2.1° Accuracy is again 
measured as the percentage of  constituents in the test set which 
do not cross any Penn Treebank constituents. 1~ As a point 
of  comparison, in [14] an experiment was done using the i- 
o algorithm on a corpus of  WSJ sentences of  length 1-15. 
Training was carried out on 1,095 sentences, and an accuracy 
of  90.2% was obtained in bracketing a test set. 

l°For sentences of length 2-15, the initial right-linear parser achieves 69% 
accuracy. For sentences of length 2-20, 63% accuracy is achieved and for 
sentences of length 2-25, accuracy is 59%. 

11 In all of our experiments carried out on the Wall Street Journal, the test 
set was a randomly selected set of 500 sentences. 
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Sent. 
Length 

2-15 
2-15 
2-15 
2-20 
2-25 

# Training # of % 
Corpus Sents Transformations Accuracy 

250 83 88.1 
500 163 89.3 
1000 221 91.6 
250 145 86.2 
250 160 83.8 

punctuation attached high. In this experiment, 325 transfor- 
mations were found using a 250-sentence training corpus, and 
the accuracy resulting from applying these transformations to 
a test set was 84.72%. 

Finally, in figure 2 we show the sentence length distribution 
in the Wall Street Journal corpus. 

Table 2: WSJ Sentences 

In the corpus used for the experiments of sentence length 2- 
15, the mean sentence length was 10.80. In the corpus used 
for the experiment of sentence length 2-25, the mean length 
was 16.82. As would be expected, performance degrades 
somewhat as sentence length increases. In table 3, we show 
the percentage of sentences in the test corpus which have no 
crossing constituents, and the percentage that have only a very 
small number of crossing constituents 12. 

Sent. # Training % of 
Length Corpus Sents 0-error 

sents 
2-15 500 53.7 
2-15 1000 62.4 
2-25 250 29.2 

% of % of 
<l-error <2-error 

sents sents 
72.3 84.6 
77.2 87.8 
44.9 59.9 

0 
0 
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Table 3: WSJ Sentences 

In table 4, we show the standard deviation measured from 
three different randomly chosen training sets of each sample 
size and randomly chosen test sets of 500 sentences each, as 
well as the accuracy as a function of training corpus size. 

Sent. # Training % Std. 
Length Corpus Sents Correct Dev. 

2-20 0 63.0 0.69 
2-20 10 75.8 2.95 
2-20 50 82.1 1.94 
2-20 100 84.7 0.56 
2-20 250 86.2 0.46 
2-20 750 87.3 0.61 

Table 4: More WSJ Results 

We also ran an experiment on WSJ sentences of length 2-15 
starting with random binary-branching structures with final 

12For sentences o f  length 2-15,  the initial r ight  l inear parser  parses 17% 
of  sentences with no c ross ing  errors,  35% with one or  fewer  errors and 50% 
with two or  fewer. For  sentences  o f  length 2-25,  7% of  sentences are parsed 
with no cross ing  errors,  16% with one  or  fewer, and  24% with two or fewer. 

Figure 2: The Distribution of Sentence Lengths in the WSJ 
Corpus. 

While the numbers presented above allow us to compare 
the transformation learner with systems trained and tested 
on Comparable corpora, these results are all based upon the 
assumption that the test data is tagged fairly reliably (manu- 
ally tagged text was used in all of these experiments, as well 
in the experiments of [12, 14].) When parsing free text, we 
cannot assume that the text will be tagged with the accuracy 
of a human annotator. Instead, an automatic tagger would 
have to be used to first tag the text before parsing. To ad- 
dress this issue, we ran one experiment where we randomly 
induced a 5% tagging error rate beyond the error rate of the 
human annotator. Errors were induced in such a way as to 
preserve the unigram part of speech tag probability distribu- 
tion in the corpus. The experiment was run for sentences of 
length 2-15, with a training set of 1000 sentences and a test 
set of 500 sentences. The resulting bracketing accuracy was 
90.1%, compared to 91.6% accuracy when using an unadul- 
terated corpus. Accuracy only degraded by a small amount 
when using the corpus with adulterated part of speech tags, 
suggesting that high parsing accuracy rates could be achieved 
if tagging of the input was done automatically by a tagger. 

241 



4. CONCLUSIONS 
In this paper, we have described a new approach for learning 
a gran~nar to automatically parse free text. The method can 
be used to obtain good parsing accuracy with a very small 
training set. Instead of  learning a traditional grammar, an or- 
dered set of  structural transformations is learned which can be 
applied to the output of  a very naive parser to obtain binary- 
branching trees with unlabelled nonterminals. Experiments 
have shown that these parses conform with high accuracy to 
the structural descriptions specified in a manually annotated 
corpus. Unlike other recent attempts at automatic grammar 
induction which rely heavily on statistics both in training and 
in the resulting grammar, our learner is only very weakly sta- 
tistical. For training, only integers are needed and the only 
mathematical operations carried out are integer addition and 
integer comparison. The resulting grammar is completely 
symbolic. Unlike learners based on the inside-outside algo- 
rithm which attempt to find a grammar to maximize the prob- 
ability of  the training corpus in hopes that this grammar will 
match the grammar that provides the most accurate structural 
descriptions, the transformation-based learner can readily use 
any desired success measure in learning. 

We have already begun the next step in this project: auto- 
matically labelling the nonterminal nodes. The parser will 
first use the "transformational grammar" to output a parse 
tree without nonterminal labels, and then a separate algo- 
rithm will be applied to that tree to label the nonterminals. 
The nonterminal-node labelling algorithm makes use of  ideas 
suggested in [3], where nonterminals are labelled as a func- 
tion of  the labels of  their daughters. In addition, we plan to 
experiment with other types of  transformations. Currently, 
each transformation in the learned list is only applied once 
in each appropriate environment. For a transformation to be 
applied more than once in one environment, it must appear 
in the transformation list more than once. One possible ex- 
tension to the set of  transformation types would be to allow 
for transformations of  the form: add/delete a paren as many 
times as is possible in a particular environment. We also plan 
to experiment with other scoring functions and control strate- 
gies for finding transformations and to use this system as a 
postprocessor to other grammar induction systems, learning 
transformations to improve their performance. We hope these 
future paths will lead to a trainable and very accurate parser 
of  free text. 
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