
Automatic Grammar Induction and Parsing Free Text:
A Transformation-Based Approach

E r i c B r i l l *

D e p a r t m e n t o f C o m p u t e r a n d I n f o r m a t i o n S c i e n c e

U n i v e r s i t y o f P e n n s y l v a n i a

br i l l @ u n a g i . c i s . u p e n n . e d u

A B S T R A C T

In this paper we describe a new technique for parsing free text: a
transformational grammar I is automatically learned that is capable
of accurately parsing text into binary-branching syntactic trees with
nonterminals unlabelled. The algorithm works by beginning in a
very naive state of knowledge about phrase structure. By repeatedly
comparing the results of bracketing in the current state to proper
bracketing provided in the training corpus, the system learns a set of
simple structural transformations that can be applied to reduce error.
After describing the algorithm, we present results and compare these
results to other recent results in automatic grammar induction.

1. I N T R O D U C T I O N

There has been a great deal of interest of late in the automatic
induction of natural language grammar. Given the difficulty
inherent in manually building a robust parser, along with the
availability of large amounts of training material, automatic
grammar induction seems like a path worth pursuing. A
number of systems have been built which can be trained au-
tomatically to bracket text into syntactic constituents. In [10]
mutual information statistics are extracted from a corpus of
text and this information is then used to parse new text. [13]
defines a function to score the quality of parse trees, and then
uses simulated annealing to heuristically explore the entire
space of possible parses for a given sentence. In [3], distri-
butional analysis techniques are applied to a large corpus to
learn a context-free grammar.

The most promising results to date have been based on the
inside-outside algorithm (i-o algorithm), which can be used
to train stochastic context-free grammars. The i-o algorithm
is an extension of the finite-state based Hidden Markov Model
(by [1]), which has been applied successfully in many areas,
including speech recognition and part of speech tagging. A
number of recent papers have explored the potential of using
the i-o algorithm to automatically learn a grammar [9, 15, 12,
6, 7, 14].

Below, we describe a new technique for grammar induction. 2

*The author would like to thank Mark Liberman, Meiting Lu, David
Magerman, Mitch Marcus, Rich Pito, Giorgio Satta, Yves Schabes and Tom
Veatch. This work was supported by DARPA and AFOSR jointly under grant
No. AFOSR-90-0066, and by A'RO grant No. DAAL 03-89-C0031 PRI.

INot in the traditional sense of the term.
2A similar method has been applied effectively in part of speech tagging;

The algorithm works by beginning in a very naive state of
knowledge about phrase structure. By repeatedly comparing
the results of parsing in the current state to the proper phrase
structure for each sentence in the training corpus, the system
learns a set of ordered transformations which can be applied
to reduce parsing error. We believe this technique has ad-
vantages over other methods of phrase structure induction.
Some of the advantages include: the system is very simple,
it requires only a very small set of transformations, learning
proceeds quickly and achieves a high degree of accuracy, and
only a very small training corpUs is necessary. In addition,
since some tokens in a sentence are not even considered in
parsing, the method could prove to be considerably more re-
sistant to noise than a CFG-based approach. After describing
the algorithm, we present results and compare these results to
other recent results in automatic phrase structure induction.

2. T H E A L G O R I T H M

The learning algorithm is trained on a small corpus of partially
bracketed text which is also annotated with part of speech in-
formation. All of the experiments presented below were done
using the Penn Treebank annotated corpus[11]. The learner
begins in a naive initial state, knowing very little about the
phrase structure of the target corpus. In particular, all that is
initially known is that English tends to be right branching and
that final punctuation is final punctuation. Transformations
are then learned automatically which transform the output
of the naive parser into output which better resembles the
phrase structure found in the training corpus. Once a set of
transformations has been learned, the system is capable of
taking sentences tagged with parts of speech and returning a
binary-branching structure with nonterminals unlabelled 3.

2.1. The Initial State O f The Parser

Initially, the parser operates by assigning a right-linear struc-
ture to all sentences. The only exception is that final punctu-
ation is attached high. So, the sentence "The dog and old cat
ate ." would be incorrectly bracketed as:

((The (dog (and (old (cat.ate))))) .)

see [5, 4].
3This is the same output given:by systems described in [10, 3, 12, 14]

237

The parser in its initial state will obviously not bracket sen-
tences with great accuracy. In some experiments below, we
begin with an even more naive initial state of knowledge:
sentences are parsed by assigning them a random binary-
branching structure with final punctuation always attached
high.

2.2. Structural Transformations

The next stage involves learning a set of transformations that
can be applied to the output of the naive parser to make these
sentences better conform to the proper structure specified in
the training corpus. The list of possible transformation types
is prespecified. Transformations involve making a simple
change triggered by a simple environment. In the current
implementation, there are twelve allowable transformation
types:

• (1-8) (Addldelete) a (le f t lv ight) parenthesis to the
(le f t I right) of part of speech tag X.

• (9-12) (Add[delete) a (lef t[r ight) parenthesis between
tags X and Y.

To carry out a transformation by adding or deleting a paren-
thesis, a number of additional simple changes must take place
to preserve balanced parentheses and binary branching. To
give an example, to delete a left paren in a particular envi-
ronment, the following operations take place (assuming, of
course, that there is a left paren to delete):

1. Delete the left paren.

2. Delete the right paren that matches the just deleted paren.

3. Add a left paren to the left of the constituent immediately
to the left of the deleted left paren.

4. Add a right paren to the right ofthe constituent immedi-
ately to the right of the deleted paren.

5. If there is no constituent immediately to the right, or none
immediately to the left, then the transformation fails to
apply.

Structurally, the transformation can be seen as follows. If we
wish to delete a left paren to the right of constituent X 4, where
X appears in a subtree of the form:

X
A

YY Z

4To the fight of the rightmost terminal dominated by X if X is a
nonterminal.

carrying out these operations will transform this subtree intoS:

Z

X YY

Given the sentence6:

The dog barked.

this would initially be bracketed by the naive parser as:

((The (dog barked)) .)

If the transformation delete a left paren to the right of a
determiner is applied, the structure would be transformed to
the correct bracketing:

(((The dog) barked) .)

To add a right parenthesis to the right of YY, YY must once
again be in a subtree of the form:

X
A

YY Z

If it is, the following steps are carried out to add the right
paren:

1. Add the right paren.

2. Delete the left paren that now matches the newly added
paren.

3. Find the right paren that used to match the just deleted
paren and delete it.

4. Add a left paren to match the added right paren.

5The twelve transformations can be decomposedinto two structural trans-
formations, that shown here and its converse, along with six triggering
environments.

6Input sentences are also labelled with parts of speech.

238

This results in the same structural change as deleting a left
paren to the right of X in this particular structure.

Applying the transformation add a right paren to the right o f
a noun to the bracketing:

((The (dog barked)) .)

will once again result in the correct bracketing:

(((The dog) barked) .)

2.3. Learning Transformations

Learning proceeds as follows. Sentences in the training set
are first parsed using the naive parser which assigns right lin-
ear structure to all sentences, attaching final punctuation high.
Next, for each possible instantiation of the twelve transforma-
tion templates, that particular transformation is applied to the
naively parsed sentences. The resulting structures are then
scored using some measure of success which compares these
parses to the correct structural descriptions for the sentences
provided in the training corpus. The transformation which
results in the best scoring structures then becomes the first
transformation of the ordered set of transformations that are
to be learned. That transformation is applied to the right-
linear structures, and then learning proceeds on the corpus of
improved sentence bracketings. The following procedure is
carried out repeatedly on the training corpus until no more
transformations can be found whose application reduces the
error in parsing the training corpus:

1. The best transformation is found for the structures output
by the parser in its current state. 7

2. The transformation is applied to the output resulting from
bracketing the corpus using the parser in its current state.

3. This transformation is added to the end of the ordered
list of transformations.

4. Go to 1.

After a set of transformations has been learned, it can be used
to effectively parse fresh text. To parse fresh text, the text is
first naively parsed and then every transformation is applied,
in order, to the naively parsed text.

One nice feature of this method is that different measures of
bracketing success can be used: learning can proceed in such

7The state of the parser is defined as naive initial-state knowledge plus all
transformations that currently have been learned.

a way as to try to optimize any specified measure of success.
The measure we have chosen for our experiments is the same
measure described in [12], which is one of the measures that
arose out of a parser evaluation workshop [2]. The measure
is the percentage of constituents (strings of words between
matching parentheses) from sentences output by our system
which do not cross any constituents in the Penn Treebank
structural description of the sentence. For example, if our
system outputs:

(((The big) (dog ate)) .)

and the Penn Treebank bracketing for this sentence was:

(((The big dog) ate) .)

then the constituent the big would be judged correct whereas
the constituent dog ate would not.

Below are the first seven transformations found from one
run of training on the Wall Street Journal corpus, which was
initially bracketed using the right-linear initial-state parser.

1. Delete a left paren to the left of a singular noun.

2. Delete a left paren to the left of a plural noun.

3. Delete a left paren between two proper nouns.

4. Delet a left paren to the right of a determiner.

5. Add a right paren to the left of a comma.

6. Add a right paren to the left of a period.

7. Delete a right paren to the left of a plural noun.

The first four transformations all extract noun phrases from the
right linear initial structure. The sentence "The cat meowed
" would initially be bracketed as: 8

((The (cat meowed)) .)

Applying the first transformation to this bracketing would
result in:

(((The cat) meowed) .)

8These examples are not actual sentences in the corpus. We have chosen
simple sentences for clarity.

239

Applying the'fifth transformation to the bracketing:

((We (ran (, (and (they walked))))) .)

would result in

improve performance in the test corpus. One way around this
overtraining would be to set a threshold: specify a minimum
level of improvement that must result for a transformation to
be learned. Another possibility is to use additional training
material to prune the set of learned transformations.

(((We ran) (, (and (they walked)))) .)

3. RESULTS
In the first experiment we ran, training and testing were
done on the Texas Instruments Air Travel Information Sys-
tem (ATIS) corpus[8]. 9 In table 1, we compare results we
obtained to results cited in [12] using the inside-outside algo-
rithm on the same corpus. Accuracy is measured in terms of
the percentage of noncrossing constituents in the test corpus,
as described above. Our system was tested by using the train-
ing set to learn a set of transformations, and then applying
these transformations to the test set and scoring the resulting
output. In this experiment, 64 transformations were learned
(compared with 4096 context-free rules and probabilities used
in the i-o experiment). It is significant that we obtained com-
parable performance using a training corpus only 21% as large
as that used to train the inside-outside algorithm.

Method # of Training Accuracy
Corpus Sentences

Inside-Outside 700 90.36%
Transformation-Learner 150 91.12%

Table 1: Comparing two learning methods on the ATIS cor-
pus.

After applying all learned transformations to the test corpus,
60% of the sentences had no crossing constituents, 74% had
fewer than two crossing constituents, and 85% had fewer than
three. The mean sentence length of the test corpus was 11.3.
In figure 1, we have graphed percentage correct as a func-
tion of the number of transformations that have been applied
to the test corpus. As the transformation number increases,
overtraining sometimes occurs. In the current implementa-
tion of the learner, a transformation is added to the list if it
results in any positive net change in the training set. To-
ward the end of the learning procedure, transformations are
found that only affect a very small percentage of training sen-
tences. Since small counts are less reliable than large counts,
we cannot reliably assume that these transformations will also

9In all experiments described in this paper, results are calculated on a
test corpus which was not used in any way in either training the learning
algorithm or in developing the system.

Cb

0

9.

o
13..

tO

o

0 10 20 30 40 50 60

RuleNumber

Figure 1: Results From the ATIS Corpus, Starting With Right-
Linear Structure

We next ran an experiment to determine what performance
could be achieved if we dropped the initial right-linear as-
sumption. Using the same training and test sets as above,
sentences were initially assigned a random binary-branching
structure, with final punctuation always attached high. Since
there was less regular structure in this case than in the right-
linear case, many more transformations were found, 147 trans-
formations in total. When these transformations were applied
to the test set, a bracketing accuracy of 87.13% resulted.

The ATIS corpus is structurally fairly regular. To determine
how well our algorithm performs on a more complex corpus,
we ran experiments on the Wall Street Journal. Results from
this experiment can be found in table 2.1° Accuracy is again
measured as the percentage of constituents in the test set which
do not cross any Penn Treebank constituents. 1~ As a point
of comparison, in [14] an experiment was done using the i-
o algorithm on a corpus of WSJ sentences of length 1-15.
Training was carried out on 1,095 sentences, and an accuracy
of 90.2% was obtained in bracketing a test set.

l°For sentences of length 2-15, the initial right-linear parser achieves 69%
accuracy. For sentences of length 2-20, 63% accuracy is achieved and for
sentences of length 2-25, accuracy is 59%.

11 In all of our experiments carried out on the Wall Street Journal, the test
set was a randomly selected set of 500 sentences.

240

Sent.
Length

2-15
2-15
2-15
2-20
2-25

Training # of %
Corpus Sents Transformations Accuracy

250 83 88.1
500 163 89.3
1000 221 91.6
250 145 86.2
250 160 83.8

punctuation attached high. In this experiment, 325 transfor-
mations were found using a 250-sentence training corpus, and
the accuracy resulting from applying these transformations to
a test set was 84.72%.

Finally, in figure 2 we show the sentence length distribution
in the Wall Street Journal corpus.

Table 2: WSJ Sentences

In the corpus used for the experiments of sentence length 2-
15, the mean sentence length was 10.80. In the corpus used
for the experiment of sentence length 2-25, the mean length
was 16.82. As would be expected, performance degrades
somewhat as sentence length increases. In table 3, we show
the percentage of sentences in the test corpus which have no
crossing constituents, and the percentage that have only a very
small number of crossing constituents 12.

Sent. # Training % of
Length Corpus Sents 0-error

sents
2-15 500 53.7
2-15 1000 62.4
2-25 250 29.2

% of % of
<l-error <2-error

sents sents
72.3 84.6
77.2 87.8
44.9 59.9

0
0
o

0
0
O0

o 8

0
0

0
i i i i ,

0 20 40 60 80 1 O0

Sentence Length

Table 3: WSJ Sentences

In table 4, we show the standard deviation measured from
three different randomly chosen training sets of each sample
size and randomly chosen test sets of 500 sentences each, as
well as the accuracy as a function of training corpus size.

Sent. # Training % Std.
Length Corpus Sents Correct Dev.

2-20 0 63.0 0.69
2-20 10 75.8 2.95
2-20 50 82.1 1.94
2-20 100 84.7 0.56
2-20 250 86.2 0.46
2-20 750 87.3 0.61

Table 4: More WSJ Results

We also ran an experiment on WSJ sentences of length 2-15
starting with random binary-branching structures with final

12For sentences o f length 2-15, the initial r ight l inear parser parses 17%
of sentences with no c ross ing errors, 35% with one or fewer errors and 50%
with two or fewer. For sentences o f length 2-25, 7% of sentences are parsed
with no cross ing errors, 16% with one or fewer, and 24% with two or fewer.

Figure 2: The Distribution of Sentence Lengths in the WSJ
Corpus.

While the numbers presented above allow us to compare
the transformation learner with systems trained and tested
on Comparable corpora, these results are all based upon the
assumption that the test data is tagged fairly reliably (manu-
ally tagged text was used in all of these experiments, as well
in the experiments of [12, 14].) When parsing free text, we
cannot assume that the text will be tagged with the accuracy
of a human annotator. Instead, an automatic tagger would
have to be used to first tag the text before parsing. To ad-
dress this issue, we ran one experiment where we randomly
induced a 5% tagging error rate beyond the error rate of the
human annotator. Errors were induced in such a way as to
preserve the unigram part of speech tag probability distribu-
tion in the corpus. The experiment was run for sentences of
length 2-15, with a training set of 1000 sentences and a test
set of 500 sentences. The resulting bracketing accuracy was
90.1%, compared to 91.6% accuracy when using an unadul-
terated corpus. Accuracy only degraded by a small amount
when using the corpus with adulterated part of speech tags,
suggesting that high parsing accuracy rates could be achieved
if tagging of the input was done automatically by a tagger.

241

4. CONCLUSIONS
In this paper, we have described a new approach for learning
a gran~nar to automatically parse free text. The method can
be used to obtain good parsing accuracy with a very small
training set. Instead of learning a traditional grammar, an or-
dered set of structural transformations is learned which can be
applied to the output of a very naive parser to obtain binary-
branching trees with unlabelled nonterminals. Experiments
have shown that these parses conform with high accuracy to
the structural descriptions specified in a manually annotated
corpus. Unlike other recent attempts at automatic grammar
induction which rely heavily on statistics both in training and
in the resulting grammar, our learner is only very weakly sta-
tistical. For training, only integers are needed and the only
mathematical operations carried out are integer addition and
integer comparison. The resulting grammar is completely
symbolic. Unlike learners based on the inside-outside algo-
rithm which attempt to find a grammar to maximize the prob-
ability of the training corpus in hopes that this grammar will
match the grammar that provides the most accurate structural
descriptions, the transformation-based learner can readily use
any desired success measure in learning.

We have already begun the next step in this project: auto-
matically labelling the nonterminal nodes. The parser will
first use the "transformational grammar" to output a parse
tree without nonterminal labels, and then a separate algo-
rithm will be applied to that tree to label the nonterminals.
The nonterminal-node labelling algorithm makes use of ideas
suggested in [3], where nonterminals are labelled as a func-
tion of the labels of their daughters. In addition, we plan to
experiment with other types of transformations. Currently,
each transformation in the learned list is only applied once
in each appropriate environment. For a transformation to be
applied more than once in one environment, it must appear
in the transformation list more than once. One possible ex-
tension to the set of transformation types would be to allow
for transformations of the form: add/delete a paren as many
times as is possible in a particular environment. We also plan
to experiment with other scoring functions and control strate-
gies for finding transformations and to use this system as a
postprocessor to other grammar induction systems, learning
transformations to improve their performance. We hope these
future paths will lead to a trainable and very accurate parser
of free text.

References
1. Baker, J. (1979) Trainable grammars for speech recognition. In

Jared J. Wolf and Dennis H. Klatt, eds. Speech communication
papers presentedat the 97th Meeting of the Acoustical Society
of Ameriea, MIT.

2. Black, E., Abney, S., Flickenger, D., Gdaniec, C., Grishman,
R., Harrison, E, Hindle, D., Ingria, R., Jelinek, E, Klavans, J.,
Liberman, M., Marcus, M., Roukos, S., Santorini, B. and Strza-
lkowski, T. (1991) A Procedure for Quantitatively Comparing

the Syntactic Coverage of English Grammars. Proceedings of
the DARPA Workshop on Speech and Natural Language.

3. Brill, E. and Marcus, M. (1992) Automatically acquiring phrase
structure using distributional analysis. Proceedings of the 5th
DARPA Workshop on Speech and Natural Language. Hard-
man, N.Y.

4. Brill, E. and Marcus, M. (1992) Tagging an Unfamiliar Text
With Minimal Human Supervision. American Association for
Artificial Intelligence (AAAI) Fall Symposium on Probabilis-
tic Approaches to Natural Language, Cambridge, Ma. AAAI
Technical Report.

5. Brill, E. (1992) A Simple Rule-Based Part of Speech Tagger.
Proceedings of the Third Conference on Applied Computa-
tional Linguistics (ACL). Trento, Italy.

6. Briscoe, T and Waegner, N. (1992) Robust Stochastic Parsing
Using the Inside-Outside Algorithm. In Workshop notes from
the AAAI Statistically-Based NLP Techniques Workshop.

7. Carroll, G. and Chamiak, E. (1992) Learning Probabilistic De-
pendency Grammars from Labelled Text. In: Working Notes
of the AAAI Fall Symposium on Probabilistic Approaches to
Natural Language. Cambridge, Ma.

8. Hemphill, C., Godfrey, J. and Doddington, G. (1990). The
ATIS spoken language systems pilot corpus. In 1990 DARPA
Speech and Natural Language Workshop.

9. Lari, K. and Young, S. (1990) The estimation of stochas-
tic context-free grammars using the inside-outside algorithm.
Computer Speech and Language.

10. Magerman, D. and Marcus, M. (1990) Parsing a natural lan-
guage using mutual information statistics, Proceedings, Eighth
National Conference on Artificial Intelligence (AAA190).

11. Marcus, M., Santorini, B., and Marcinkiewicz, M. (1993)
Building a large annotated corpus of English: the Penn Tree-
bank. To appear in Computational Linguistics.

12. Pereira, E and Schabes, Y. (1992) Inside-outside reestimation
from partially bracketed corpora. Proceedings of the 20th Meet-
ing of the Association for Computational Linguistics. Newark,
De.

13. Sampson, G. (1986) A stochastic approach to parsing. In Pro-
ceedings of COL1NG 1986, Bonn.

14. Schabes, Y., Roth, M. and Osborne, R. (1993) Parsing the
Wall Street Journal with the Inside-Outside algorithm. 1993
European ACL.

15. Sharman, R., Jelinek, E and Mercer, R. (1990) Generating a
grammar for statistical training. Proceedings of the 1990 Darpa
Speech and Natural Language Workshop.

242

