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A B S T R A C T  

This paper describes an example-based correction 
component for Japanese word segmentation and part of 
speech labelling (AMED), and a way of combining it with a 
pre-existing rule-based Japanese morphological analyzer and 
a probabilistic part of speech tagger. 

Statistical algorithms rely on frequency of phenomena or 
events in corpora; however, low frequency events are often 
inadequately represented. Here we report on an example- 
based technique used in finding word segments and their part 
of speech in Japanese text. Rather than using hand-crafted 
rules, the algorithm employs example data, drawing 
generalizations during training. 

1. INTRODUCTION 

Probabilistic part of speech taggers have proven to be 
successful in English part of speech labelling [Church 
1988; DeRose, 1988; de Marcken, 1990; Meteer, et. al. 
1991, etc.]. Such stochastic models perform very well 
given adequate amounts of training data representative of 
operational data. Instead of merely stating what is 
possible, as a non-stochastic rule-based model does, 
probabilistic models predict the likelihood of an event. 
In determining the part of speech of a highly ambiguous 
word in context or in determining the part of speech of an 
unknown word, they have proven quite effective for 
English. 

By contrast, rule-based morphological analyzers 
employing a hand-crafted lexicon and a hand-crafted 
connectivity matrix are the traditional approach to 
Japanese word segmentation and part of speech labelling 
[Aizawa and Ebara 1973]. Such algorithms have already 
achieved 90-95% accuracy in word segmentation and 90- 
95% accuracy in part-of-speech labelling (given correct 
word segmentation). The potential advantage of a rule- 
based approach is the ability of a human coding rules that 
cover events that are rare, and therefore may be 
inadequately represented in most training sets. 
Furthermore, it is commonly assumed that large training 
sets are not required. 

A third approach combines a rule-based part of speech 
tagger with a set of correction templates automatically 
derived from a training corpus [Brill 1992]. 

We faced the challenge of processing Japanese text, where 
neither spaces nor any other delimiters mark the 
beginning and end of words. We had at our disposal the 
following: 

A rule-based Japanese morphological processor 
(JUMAN) from Kyoto University. 

- A context-free grammar of Japanese based on part of 
speech labels distinct from those produced by JUMAN. 

- A probabilistic part-of-speech tagger (POST) [Meteer, 
et al., 1991] which assumed a single sequence of words 
as input. 

- Limited human resources for creating training data. 

This presented us with four issues: 

1) how to reduce the cost of modifying the 
rule-based morphological analyzer to 
produce the parts of speech needed by the 
grammar, 

2) how to apply probabilistic modeling to 
Japanese, e.g., to improve accuracy to 
-97%, which is typical of results in 
English, 

3) how to deal with unknown words, where 
JUMAN typically makes no prediction 
regarding part of speech, and 

4) how to estimate probabilities for low 
frequency phenomena. 

Here we report on an example-based technique for 
correcting systemmatic errors in word segmentation and 
part of speech labelling in Japanese text. Rather than 
using handcrafted rules, the algorithm employs example 
data, drawing generalizations during training. In 
motivation, it is similar to one of the goals of Brill 
(1992). 
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2. ARCHITECTURE 
The architecture in Figure 1 was chosen to minimize 
labor and to maximize use of existing software. It 
employs JUMAN first to provide initial word 
segmentation of the text, an annotation-based algorithm 
second to correct both segmentation errors and part of 
speech errors in JUMAN output, and POST third both to 
select among ambiguous alternative segmentations/part- 
of-speech assignments and also to predict the part of 
speech of unknown words. 

Japanese 
Text 

I JUMAN [ 

i 
Word segments 

with Part of 
Speech 

Segment 
Correction 

Model 

Part-of-speecl~ 
Model 

Figure 1: Architecture 

Let us briefly review each component. JUMAN, 
available from Kyoto University makes segmentation 
decisions and part of speech assignments to Japanese text. 
To do this, it employs a lexicon of roughly 40,000 
words, including their parts of speech. Where alternative 
segmentations are possible, the connectivity matrix 
eliminates some possibilities, since it states what parts 
of speech may follow a given part of speech. Where the 
connectivi ty matrix does not dictate a single 
segmentation and part of speech, generally longer words 
are preferred over shorter segmentations. 

An example JUMAN output is provided in Figure 2. 
The Japanese segment is given first, followed by a slash 

and the part of speech. JUMAN employs approximately 
45 parts of speech. 1 

FIGURE 2a: A Short Example Sentence 

~) ~ " ~ N B  ° /KT 

FIGURE 2b: JUMAN output for example 2a above 

The correction algorithm (AMED) is trained with two 
parallel annotations of the same text. One of the 
annotations is JUMAN's output. The second is 
manually annotated corresponding to correct segmentation 
and correct part-of-speech assignments for each word. 
During training, AMED aligns the parallel annotations, 
identifies deviations as "corrections", and automatically 
generalizes these into correction rules. An example of 
automatic alignment appears in Figure 3. 

AMED performs the following functions: 

• Corrects some segmentation errors made by 
JUMAN. 

Corrects some part-of-speech assignment 
errors made by JUMAN. Some of these 
"corrections" actually introduce ambiguity 
which POST later resolves. 

Transforms the tag set produced by 
JUMAN into the tag set required by the 
grammar. 

Note that all of these functions are the result of the 
learning algorithm, no rules for correction nor for 
translating JUMAN parts of speech into those for the 
grammar were written by hand. 

The third component is POST, which assigns parts of 
speech stochastically via a Hidden Markov model, has 
been described elsewhere [Meteer, et al., 1991]. POST 
performs two vital functions in the case of our Japanese 
processing: 

1 CN = common noun; SN = sa-inflection noun ( 
nominalized .verb); VB = verb; VSUF = verb suffix; CM = 
case marker; etc. 
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POST decides among ambiguous part-of- 
speech labellings and segmentations, 
particularly in those cases where AMED's 
training data includes cases where JUMAN 
is prone to error. 

POST predicts the most likely part of 
speech for an unknown word segment in 
context. 

3. HOW THE ARCHITECTURE 
ADDRESSES THE ISSUES 

In principle, a Hidden Markov Model implementation, 
such as POST, can make both part-of-speech decisions 
and segment text quite reliably. Therefore, why not just 
use POST; why use three components instead? 

The clear reason was to save human effort. We did not 
have access to segmented and labelled Japanese text. 
Labelling tens of  thousands (or even hundreds of 
thousands of words of text) for supervised training would 
have taken more effort and more time in a project with 
tight schedules and limited resources. JUMAN existed 
and functioned above 90% accuracy in segmentation. 

A secondary reason was the opportunity to investigate an 
algorithm that learned correction rules from examples. A 
third reason was that we did not have an extensive lexicon 
using the parts of speech required by the grammar. 

The architecture addressed the four issues raised in the 
introduction as follows: 

1) AMED learned rules to t ransform 
JUMAN's parts of speech to those required 
by the grammar. 

2) Accuracy was improved both by AMED's 
correction rules and by POST's  Hidden 
Markov Model. 

3) POST hypothesizes the most likely part of 
speech in context for unknown words, 
words not in the JUMAN lexicon. 

4) The sample inspection method in AMED 
estimates probabilities for low frequency 
phenomena. 

4. THE CORRECTION MODEL 

The only training data for our algorithm is manually 
annotated word segmentation and part of speech labels. 
Examples of corrections of JUMAN's output are extracted 
by a procedure that automatically aligns the annotated 
data with JUMAN's  output and collects pairs of 
differences between sequences of pairs of word segment 

and part of  speech. Each pair of  differing strings 
represents a correction rule; the procedure also generalizes 
the examples to create more broadly applicable correction 
rules. 

J U M A N  

~.~b/SN 

) ~ T / S N  

~/rrM 
~ / S N  
LAB 
~P.?? 
~P.?? 

- -  E'.X/SN 

~/eM 

O U T P U T  

~ 6 /PT  

9 ~VVB 
° /KT 

Figure  3a: Alignment 
manually annotated correction data. 

D E S I R E D  O U T P U T  

GrrTM 
~LNB 

,~/VSUF 

~ / S N  

UNB 
~P.?? 
~P.?? 

-- U X/CN 

~/CM 

~ ~ /PT 

° /KT 

of JUMAN 

b/VB 

~b ,~/VSUF 

output with 

qh ~J/CN 

F i g u r e  3b: Pairs of differences collected from 
alignment in Figure 3a. above. 

We estimate probabilities for the correction rules via the 
sample inspection method. (see the Appendix.) Here, 
significance level is a parameter, from a low of 0.1 for 
ambitious correction through a high of 0.9 for 
conservative correction. The setting gives us some trade- 
off between accuracy and the degree of ambiguity in the 
results. One selects an appropriate value by empirically 
testing performance over a range of parameter settings. 
Correction rules are ordered and applied based on 
probability estimates. 

When a rule matches, l) AMED corrects JUMAN's 
output if the probability estimate exceeds a user-specified 
threshold, 2) AMED introduces an alternative if the 
probability falls below that threshold but exceeds a 
second user-supplied threshold, or 3) AMED makes no 
change if the probability estimate falls below both 
thresholds. 
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As a result, a chart representing word segmentation and 
part of  speech possibilities is passed to POST, which 
was easily modified to handle a chart as input, since the 
underlying Viterbi algorithm applies equally well to a 
chart. POST then selects the most likely combination of 
word segmentation and part of speech labels according to 
a bi-gram probability model. 

CN 
VB VSUF 

PT VB KT 

Figure 4: Chart of alternatives produced by AMED. 

~j~[-/CN ~ , ~ / C N  G / I T M  ~,~ L N B  ~ ,~/VSUF ~ . J C N  
~ / N C M  ~ . ~ / C N  " ~ - - ~ ' X / C N  ~ / C M  ~_~ Bb'~J/CN 
~ ~ /PT ~-~ r) ~ - / V B  ° /KT 

Figure 5: Final segmentation and labelling after 
POST. 

5. EXPERIENCE 

The motivation for this study was the need to port our 
PLUM data extraction system [Weischedel, et al., 1992] 
to process Japanese text. The architecture was successful 
enough that it is part of (the Japanese version of) PLUM 
now, and has been used in Government-sponsored 
evaluations of data extraction systems in two domains: 
extracting data pertinent to joint ventures and extracting 
data pertinent to advances in microelectronics fabrication 
technology. It has therefore been run over corpora of 
over 300,000 words. 

There are two ways we can illustrate the effect of this 
architecture: a small quanitative experiment and 
examples of generalizations made by AMED. 

5.1 A Small Experiment 

We ran a small experiment to measure the effect of the 
architecture (JUMAN + AMED + POST), contrasted 
with JUMAN alone. Japanese linguistics students 
corrected JUMAN's output; the annotation rate of an 
experienced annotator is roughly 750 words per hour, 
using the TREEBANK annotation tools (which we had 
ported to Japanese). In the first experiment, we used 

14,000 words of training data and 1,400 words of test 
data. In a second experiment, we used 81,993 words of 
training data and a test set of 4,819 words. 

Remarkably the results for the two cases were almost 
identical in error rate. In the smaller test (of 1,400 
words), the error rate on part-of-speech labelling (given 
correct segmentation) was 3.6%, compared to 8.5%; 
word segmentation error was reduced from 9.4% to 8.3% 
using the algorithm. In the larger test (of 4,819 words), 
the error rate on part-of-speech labelling (given correct 
segmentation) was 3.4%, compared to 8.2%; word 
segmentation error was reduced from 9.4% to 8.3% using 
the algorithm. 

Therefore, using the AMED correction algorithm plus 
POST's hidden Markov model reduced the error rate in 
part of speech by more than a factor of two. Reduction 
in word segmentation was more modest,  a 12% 
improvement. 

Error rate in part-of-speech labelling was therefore reduced 
to roughly the error rate in English, one of our original 
goals. 

Both segmentation error and part of speech error could be 
reduced further by increasing the size of  JUMAN's 
lexicon and/or by incorporating additional generalization 
patterns in AMED's learning alogrithm. However, in 
terms of improving PLUM's overall performance in 
extracting data from Japanese text, reducing word 
segmentation error or part-of-speech error are not the 
highest priority. 

5.2 Examples of Rules Learned 

One restriction we imposed on generalizations considered 
by the algorithm is that rules must be based on the first 
or last morpheme of the pattern. This is based on the 
observation in skimming the result of alignment that the 
first or last morpheme is quite informative. Rules which 
depend critically on a central element in the difference 
between aligned JUMAN output and supervised training 
were not considered. A second limitation that we 
imposed on the algorithm was that the fight hand side of 
any correction rule could only contain one element, 
instead of the general case. Three kinds of  correction 
rules can be inferred. 

• A specific sequence of parts of  speech in 
JUMAN's output can be replaced by a 
single morpheme with one part of speech. 

• A specific sequence of parts of speech plus 
a specific word at the left edge can be 
replaced by a single morpheme with one 
part of speech. 
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A specific sequence of parts of speech plus 
a specific word at the right edge can be 
replaced by a single morpheme with one 
part of speech. 

The crit ical statist ic in select ing among the 
interpretations is the fraction of times a candidate rule 
correctly applies in the training data versus the number of 
times it applies in the training. In spite of these self- 
imposed limitations in this initial implementation, the 
rules that are learned improved both segmentation and 
labelling by part of speech, as detailed in Section 5.1. 
Here we illustrate some useful generalizations made by 
the algorithm and used in our Japanese version of the 
PLUM data extraction system. 

In example (1) below, the hyptohesized rule essentially 
recognizes proper names arising from an unknown, a 
punctuation mark, and a proper noun; the rule 
hypothesizes that the three together are a proper noun. 
This pattern only arises in the case of person names (an 
initial, a period, and a last name) in the training corpus. 

1. */?.?? *,YKG */PN ===> PN 

E/??? 

• /KG 
"7 - -  Y 9 '~ F/PN 

E • ~ - - ~ 9 , ~ , F / P N  

Example (2) is a case where an ambiguous word Cnerai", 
meaning a"aim" or "purpose") is rarely used as a verb, 
but JUMAN's symbolic rules are predicting it as a verb. 
The rule corrects the rare tag to the more frequent one, 
common noun. 

2. ~.[t ~,~NB ===> CN 

~t. ~ a/VB ~'jl~. ~ VCN 

Example (3) represents the equivalent of learning a lexical 
entry from annotation; if  JUMAN had had it in its 
lexicon, no correction of segmentation (and part of 
speech) would have been necessary. There are many 
similar, multi-character, idiomatic particles in Japanese. 
Parallel cases arise in English, such as "in spite off and 
"in regard to". 

3. ~ /NCM */PT */CN */PT===> PT 

/NCM 

¢)/PT 

I~L/CN 

"~TPT 

Example (4) is interesting since the rule learned 
corresponds to a general morphological phenomenon in 
Japanese. "Shita" converts an adverb to an adjective. 

4. */ADV [., T~NB ===> ADJ 

~_ 5/ADV £ 5 L, gC/ADJ 
L/~/VB 

Example (5) represents a lexical omission where an 
inflected form, corresponding to the modal "can", is 
learned. 

5. */'?.?? 7a/?.?? ===> VSUF 

~/)P, ?? ~/) 7~NSUF 

~/777 

6. C O N C L U S I O N  

The most interesting aspect of  this work is the 
implementation and testing of a simple algorithm to 
learn correction rules from examples. Except for the 
annotation of text as to the correct data, the process is 
fully automatic. Even with as little data as we had 
initially (under 15,000 words), the learned correction rules 
improved the performance of morphological processing 
compared to the baseline system. Furthermore, though 
the original error rate of JUMAN was more than double 
the rate typically reported for stochastic part-of-speech 
labellers in English, the result of the correction algorithm 
plus our hidden Markov model (POST) reduced the error 
rate to a level comparable with that experienced in 
English. On the other hand, increasing the training data 
by a factor of five did not reduce the error rate 
substantially. 

The architecture proposed is the morhpological  
component of the Japanese version of the PLUM data 
extraction system, and has been tested on more than 
300,000 words of text in both a financial domain and a 
technical domain. 

Hidden Markov Models, as implementd in POST, were 
applied to Japanese with relative ease. When additional 
data becomes available, we would like to test the 
performance of POST for both word segmentation and 
labelling part of speech in Japanese. 
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A P P E N D I X  

To estimate the reliability of hypothesized correction 
rules, we used the sample inspection method. I f  the 
sample size is small, high frequency cases may tend to 
receive a higher probability estimate than if the sample 
were larger. 

The sample inspection method provides an objective 
measure of how likely estimation error may be, given 
small samples. Suppose we have: 

• a total of N elements in a population, 

• R elements in a desired class, 

• n sample elements in total, and 

• r sample elements in the desired class 

p(R>Rll r=rl) - p(R>R1, r=rl) 
p(r=rl) 

Since we assume the elements of R occur independently, 
we have 

E p(R) p(r=rlIR) 
R>R1 

p(R) p(r=rllR) 
R>O 

Assuming p(R) is approximately constant, we have 

= ~ p(r=rll R) (1) 
R>R~ 

Here p(r = rl  I R), the conditional probability of r desired 
elements given R desired elements in the population, is 
given by a hypergeometric distribution. The distribution 
will approach a binomial distribution as N gets larger. 

p(r=rl IR)- (Rr) (Nn --rR) (aN) 
N --> oo 

....... > (rn)qr(1- q)n-r 
(2) 

Therefore, substituting (2) to (1), given a significance 
level k (the probability that the conclusion is correct; for 
eacmple 0.9), we search for the largest q' which satisfies: 

p{q>q'l r=rl) 

= / 1 (~) qr (1- q)n-r > k 
& 

The conditional probaiblity of R > R1, given r = rl  will 
be: 

2 3 2  




