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ABSTRACT 
An architecture for voice dialogue machines is described with em- 
phasis on the problem solving and high level decision making mech- 
anisms. The architecture provides facilities for generating voice 
interactions aimed at cooperative human-machine problem solving. 
It assumes that the dialogue will consist of a series of local self- 
consistent subdialogues each aimed at  subgoals related to the overall 
task. The discourse may consist of a set of such subdiaiogues with 
jumps from one subdialogue to the other in a search for a success- 
ful conclusion. The architecture maintains a user model to assure 
that interactions properly account for the level of competence of the 
user, and it includes an ability for the machine to take the initiative 
or yield the initiative to the user. It uses expectation from the di- 
alogue processor to aid in the correction of errors from the speech 
recognizer. 

1. Supporting the Voice Technologies 
Dialogue theory is the implementing science for the voice 
technologies. The many successes in voice recognition and 
generation will have value only to the extent that they be- 
come incorporated into practical systems that deliver service 
to users. This paper reports on a dialogue system design that 
attempts to implement a variety of behaviors that we believe to 
be necessary for efficient human-machine interaction. These 
behaviors include: 

1. Collaborative problem-solving: The system must have 
the ability for the machine to problem-solve and collab- 
orate with the human user in the process. Specifically, 
the machine must be able to formulate queries to the user 
and process responses that will enable progress toward 
the goal. 

2. Subdialogue processing: It must be able to participate in 
locally coherent subdialognes to solve subgoals and to 
jump in possibly unpredictable ways from subdialogue to 
subdialogue in an aggressive search for the most effective 
path to success. Such jumps may emanate from the 
system's own processing strategy or they may be initiated 
by the user and tracked through plan recognition by the 
system. 

3. User modeling: It needs to maintain a user model that 
enables it to formulate queries appropriate to the user 

. 

. 

and that will inhibit outputs that will not be helpful. 

Variable initiative: The machine must be able to take the 
initiative and lead the interaction at places where it has 
information implying that it can do this effectively. It 
also needs to be able to yield the initiative completely or 
in part at times when data is available indicating that it 
should do so. It needs to be able to negotiate with the user 
to either take or release the initiative when appropriate. 

The use of expectation: It needs to be able to use the 
expectation implicit in the dialogue to support the voice 
recognition stage in error correction. 

2. A Dialogue System Architecture 
Despite the variety of the target behaviors and their seeming 
structural disjoinmess, an architecture has been found that 
supports them all in a relatively uniform and natural way 
[1, 2, 3, 4]. The design is based on the model of a Prolog 
processor but includes a variety of special capabilities to ad- 
dress the needs of this application. This section will describe 
the fundamental theory of the system and the next section 
will describe its performance in a series of tests with human 
subjects. 

The basic operation of the architecture is illustrated in Fig- 
ure 1 where problem-solving is to achieve top level goal G. 
Prolog-style theorem proving proceeds in the usual way and 
ff G can be proven from available information there will be 
no interaction with the user. However, if information is not 
sufficient to allow completion of the proof, the system can 
attempt to provide "missing axioms" through interaction with 
the user. In the figure, this process is illustrated in the subtree 
C where P has been proven from an existing assertion but 
Q is not known. Then the system may be able to resort to a 
voice interaction with the user to discover Q. Thus the archi- 
tecture organizes interactions with the user to directly support 
the theorem proving process. This organization gives the 
dialogue the task-oriented coherent ([5]) organization that is 
needed for effective cooperative problem-solving. It provides 
the intentional structure described by Grosz and Sidner[6]. 

The example continues with the illustrated rule 
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G 

~ 0  B 0 unsolved goal • solved goal 

P ~ Q ~ N N  Missing axiom; interact with user. 

userknows(V) voieeinteraction(observe, V) 

I us~rknows(V) 

howtoobserve(V) 

Figure 1: The theorem proving tree associated with a voice 
dialogue. 

V :- userknows(V), voiceinteracfion(observe,V) 

which is also shown in Figure 1. Specifically, it asserts that 
if, according to the user model[7, 8, 9, 10], the user knows 
V, then a voice interaction could be initiated to try to obtain 
that information. Our approach effectively enables V to unify 
with any goal to enable the interaction. This could yield an 
exchange between computer and user of the type 

C: Is the switch on? 
U: Yes. 

But the situation might not be as simple as a single question 
and answer. It may be that the user does not know how to 
observe Q but could be told. This is illustrated by the rules 

userknows(V) :- howtoobserve(V) 
howtoobserve(V) : - . . .  

which could lead to a lengthy interaction involving locating 
other objects, carrying out actions, and making other obser- 
vations. Thus a series of voice interactions could ensue with 
the goal of eventually observing Q. The set of all interac- 
tions aimed at the completion of a given goal is defined by 
this project to be a subdialogue. Notice that the subdialogue 
accounts at every step for the user's knowledge through in- 
vocation of the user modeling assertions. The dialogue asks 
only questions that the user model indicates are appropriate 
and explains concepts either extensively, briefly, or not at all 
depending on the assertions contained in the model. Subdia- 
logues by one name or another have been studied by a variety 

of authors [11, 12, 13, 14]. 

The system allows for the possibility of unpredictable jumps 
from one subdialogue to another. In the above example, the 
user might be locally uncooperative and respond as follows: 

C: Is the switch up? 
U: B is true. 

Here we assume that B is an assertion related to another 
subgoal on the theorem proving tree as shown in Figure 1. The 
user may initiate such a change in subdialogue in an attempt 
to pursue another path to the global goal. Here the machine 
first must track the user's intention (in a process called "plan 
recognition" [15, 16, 17, 18, 19]) and then evaluate whether to 
follow the move or not. This decision is based upon the current 
level of the initiative of the system as described below. If the 
system follows the user's initiative, it will apply its internal 
theorem proving system to the subgoal E and pursue voice 
interactions related to it. If it rejects the user's indicated path, 
it will simply store the received fact and reaffirm its own path: 

C: Is the switch up? 

The system may also abandon a subdialogue for reasons of its 
own. For example, processing during the dialogue could yield 
the unexpected result that the current path is no longer likely 
to yield an efficient path to the global goal. Then the system 
could abruptly drop a line of interactions and jump to a new 
subgoal which is momentarily evaluated as more attractive. 

Efficient dialogue often requires regular changes of initia- 
tive depending on which participant currently has the key 
information[20, 21, 22, 23]. When a subject is opened where 
one participant is knowledgeable and the other is not, that par- 
ticipant should lead the interaction to its completion and the 
other should be supportive and respond cooperatively. Our 
project implements four levels of initiative, directive, sugges- 
five, declarative, and passive. These levels result in, respec- 
tively, uncompromising control on the part of the machine, 
control but only at a weaker level, the yielding of control to 
the user but with a willingness to make assertions about the 
problem-solving process, and quiet acceptance of the user's 
initiative. The level of initiative sets the strength at which the 
machine will prefer its own best evaluated solution path when 
it selects the subdialogue to be followed. The initiative level 
also adjusts the assertiveness of the spoken outputs and may 
affect the way inputs are processed. (See [1]). 

Expectation at each point in a dialogue is derived from the 
proof tree and other dialogue information in a manner simi- 
lar to that explained by Young[24]. Concepts that would be 
appropriate in the context of the current local interaction are 
"unparsed" into expected syntactic inputs and voice recogni- 
tion is biased to receive one of these expected inputs. If the 
recognition phase fails to achieve a good match with a local 
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expectation, comparisons are made to nonlocal expectations at 
increasing distances from the local context until an acceptable 
match is found or an error message is reported. Recognition 
of a nonlocal expectation amounts to the discovery that the 
user is following a different path; this is a process called "plan 
recognition" in the literature. If the system is following the 
user initiative at this point, it may shift its theorem proving 
efforts to that subtree and cooperate with the user. 

3. T h e  I m p l e m e n t a t i o n  

The major system developed by this project is known as "The 
Circuit Fix-It Shoppe" [1, 25]. It is implemented with a 
domain modeller to guide the process of debugging an elec- 
tric circuit and to present appropriate subgoals for possible 
examination. A complex dialogue controller overviews the 
processing of decisions related to which subgoal to select and 
level of initiative issues. 

The coding has been done primarily in Quintus Prolog on a 
Sun 4 workstation. The parser is coded in C and uses a nearest 
neighbor algorithm to find the best match between the error 
prone recognition system output and the set of expected in- 
puts. The speech recognizer is a Verbex 6000 user-dependent 
connected speech recognizer running on an IBM PC, and the 
vocabulary is currently 125 words. Users are required to be- 
gin each utterance with the word "verbie" and end with the 
word "over." 

The implemented domain processor is loaded with a model 
of a particular experimental circuit that was constructed on a 
Radio Shack 160-in-OneElectronic Project Kit. The model is 
complete enough to do any problem of the circuit that involves 
missing wires. For example, if the system is asked to debug 
the circuit with no wires at all, it will systematically discover 
every missing wire and ask the user to install it. 

Speech output is done by a DECtalk DTC01 text-to-speech 
converter. 

4. Experimental Results 
The system was tested with human subjects solving missing 
wire problems. Subjects were trained to use the system and 
given some guidance on acceptable sentence syntax. They 
were required to register their pronunciation of all of the vo- 
cabulary words and they spoke 239 sentences to train the 
recognizer on coarticulation. They were provided with a list 
of vocabulary words and charts on a poster board suggest- 
ing implemented syntax. They were told not to address the 
experimenter during the test but the experimenter had a set 
of eleven standard messages that he or she would give to the 
subject under certain specified conditions. These included 
such things as "The system is ready for your next utterance" 
or "Please restrict your utterances to one sentence." On two 
later days, subjects were given up to ten problems per session, 

one session with the machine at the strongest initiative level 
and one at a moderately passive level. 

A transcript of one such dialogue follows here. This inter- 
action was in moderately passive mode so the system tends 
to suggest rather than demand action. The user inserted two 
missing wires during the interaction and made two changes in 
subdialogue (marked as * *) that were each correctly tracked 
by the system. The total time of the interaction was 160 
seconds. 

C: This is the circuit fix it shop. How may I help you? 
U: RS 111 is not working. 
C: I am familiar with that circuit. 
C: The LED is supposed to be displaying alternately flashing 
one and seven. 
U: The LED is off. 
C: The power is on when the switch is up. 
U: The switch is up. 
C: The switch is connecting to the battery when there is a wire 
between connector one one one and connector one two zero. 
U: LED is displaying one and seven. ** 
C: Is the one on the LED flashing? 
U: No. 
C: Is the seven on the LED flashing? 
U: No. 
C: There is supposed to be a wire between connector three 
zero and connector seven zero. 
U: R S l l l  is working. ** 
C: Glad to have been of assistance. Good-bye. 

Eight subjects attempted 141 dialogues, 75 with the machine 
in mildly passive mode and 66 with it in directive mode. The 
average problem completion time in the two modes was 270.6 
seconds and 511.3 seconds respectively. The longer sessions 
in the directive mode were because the system required the 
user to pedantically go through every step of a debugging 
procedure while in the more passive mode, the user could 
often jump to the correct subgoal and solve it quite quickly. 
The average number of utterances spoken per dialogue was 
10.7 and 27.6, respectively. The experimenter needed to give 
error messages to the subject about one every six sentences 
with the machine in passive mode and one every eighteen 
sentences in directive mode. This indicates that with the 
greater freedom allowed by the more passive mode, subjects 
tended to get into more difficulty using the system. The exact 
sentence recognition rate by the Verbex machine in the two 
modes was 44.3 and 53.1 percents, respectively. These were 
corrected to 75.3 and 85.0 respectively by the expectation- 
based nearest neighbor error correction system. 

5. Current Research 

Our newest dialogue algorithm by Guinn[3] features a set of 
real numbers on the proof tree paths that are continuously 
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updated to reflect estimates of the nearness to a solution. 
The algorithm follows paths using a best first strategy, and 
it includes automatic mechanisms to change mode, negotiate 
initiatiw.~,, and other efficiency improving behaviors. This 
algorithm has not been incorporated into the voice interactive 
system and is instead being tested separately. 

This algorithm allows a more complicated interaction to occur 
involving negotiation ff the machine and user differ on who 
should control the initiative. Suppose the machine adamantly 
demands its own path (Is the switch up?) and the user is 
equally as uncompromising and demands information related 
to the E subgoal as shown in Figure 1. With Guinn's strategy 
the system negotiates with the user to try to convince the user 
to follow its path. Specifically, it presents the user with part 
of the proof tree leading to the goal to show the user how 
quickly the goal can be achieved. For example, in the case of 
Figure 1, it might assert 

C: If the switch is up, then since P is true, then C 
will be true; consequently G will be true. 

Alternatively, the user could present his or her own path to the 
goal in a negotiation and conceivably convince the system to 
lower its evaluation of its own path. 

This newer theory of initiative bases subdialogne decisions 
on a real number and biases the number with an initiative 
parameter which can take on any value between 0 and 1. In 
this system, the level of initiative is defined over a continuous 
range rather than a discrete set of initiative values. 

Tests on the newer diologne algorithm have been in machine- 
to-machine problem-solving sessions. The methodology has 
been to randomly distribute facts about a murder mystery be- 
tween the two participants and then observe the conversations 
that lead to a solution of the mystery. The transmitted infor- 
mation between the participants is in the form of Prolog-style 
predicates since the machines gain nothing through a transla- 
tion to natural language. Detailed results have been extremely 
encouraging and will be given later. For example, in one test 
involving 85 dialogues, the average number of interactions re- 
quired to solve the problems was 123 without the negotiation 
feature described above and 103 with it. 

6. Comparisons with Other Dialogue Systems 
The system that most resembles the one we describe here is the 
MINDS system of Young et al. [26]. Their system maintains 
and AND-OR tree much like our Prolog tree and engages 
in dialogue similarly to try to achieve subgoals. It similarly 
uses expectations generated by subgoals and enhanced by a 
u~rr model to predict incoming utterances for the purpose of 
error correction. The resulting system demonstrated dramatic 
improvements. For example, the effective perplexity in one 

test was reduced from 242.4 to 18.3 using dialogue level 
constraints while word recognition accuracy was increased 
from 82.1 percent to 97.0. We employ Prolog-style rules for 
the knowledge base and the associated proofs for directing 
the goal-oriented behavior. This leads to the "missing axiom 
theory" we describe above and some rather simple methods 
for handling the user model, multiple subdialogues, variable 
initiative, negotiation and a variety of other features. 

Another dialogue system, by Allen et al. ([27]), uses a black- 
board architecture to store representations of sentence pro- 
cessing and dialogue structures. Processing is done by a 
series of subroutines that function at the syntactic, semantic, 
and dialogue levels. This system models detailed interactions 
between the sentence and dialogue levels that are beyond 
anything we attempt but does not support problem-solving, 
variable initiative and voice interactions as we do. 

A third interesting project has produced the TINA system[28]. 
This system uses probabilistic networks to parse token se- 
quences provided by a speech recognition system, SUMMIT 
by Zue et al. [29]. The networks and their probabilities are 
created automatically from grammatical rules and text sam- 
pies input by the designer. Their main utifity is to provide 
expectation for error correction as we do in our system. How- 
ever, their expectation is primarily syntax-based while ours 
uses structure from all levels, subdialogue (or focus-based), 
semantic and syntactic. Their semantics is built directly into 
the parse trees which is translated into SQL for access to a 
database. Our system is task-oriented, emphasizes problem- 
solving, and employs a user model to assure effectiveness of 
the interaction. 
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